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Abstract
Machine translation has seen rapid progress with the advent of Transformer-based models.
These models have no explicit linguistic structure built into them, yet they may still implic-
itly learn structured relationships by attending to relevant tokens. We hypothesize that this
structural learning could be made more robust by explicitly endowing Transformers with a
structural bias, and we investigate two methods for building in such a bias. One method, the
TP-Transformer, augments the traditional Transformer architecture to include an additional
component to represent structure. The second method imbues structure at the data level by
segmenting the data with morphological tokenization. We test these methods on translating from
English into morphologically rich languages, Turkish and Inuktitut, and consider both automatic
metrics and human evaluations. We find that each of these two approaches allows the network
to achieve better performance, but this improvement is dependent on the size of the dataset. In
sum, structural encoding methods make Transformers more sample-efficient, enabling them to
perform better from smaller amounts of data.

1 Introduction

The task of machine translation has seen major progress in recent times with the advent of
large-scale Transformer-based models (e.g., Vaswani et al., 2017; Dehghani et al., 2019; Liu
et al., 2020a). However, there has been less progress on language pairs that specifically involve
morphologically rich languages. Moreover, although there has been previous work that builds
linguistic structure into translation models to deal with morphological complexity (Sennrich
and Haddow, 2016; Dalvi et al., 2017; Matthews et al., 2018), to the best to our knowledge
there has not been work that applies such strategies to large-scale Transformer-based models.
We hypothesize that providing Transformers access to structured linguistic representations can
significantly boost their performance on translation into languages with complex morphology
that encodes linguistic structure.

In this work, we investigate two methods for introducing such structural bias into
Transformer-based models. In the first method, we use the TP-Transformer (TPT) (Schlag
et al., 2019), in which a traditional Transformer is augmented with Tensor Product Represen-
tations (TPRs) (Smolensky, 1990) (§ 2). At a high level, TPRs use a composition of roles
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English: I want people to raise their hands who are in favour of the motion to report progress. (17)
Turkish: Ilerleme raporunun talep edilmesinden yana olanların el kaldırmalarını istiyorum. (9)
Inuktitut: isaaquvaksi taikkua nangmaksaqtut pigiaqtitausimajumut nuqqarumaliqtu. (5)

Table 1: Parallel sentence in English, Turkish, and Inuktitut. The number of words in each
translation (marked in parentheses) is indicative of their information density and, hence, their
morphological complexity.

and fillers where roles encode structural information (e.g., the part-of-speech of a word) and
fillers encode the content (e.g., the meaning of a word). This enables learned internal struc-
tured representations. In the second method, we encode structure external to the model by
segmenting training data using morphological tokenization (§3): morphological segmentation is
done by existing parsers prior to training the Transformer. Since all neural models that operate
over sequences tokenize the training data, through this method, we aim to answer the question
of whether linguistically-informed tokenization that respects morphological structure can be
helpful in processing morphologically-rich languages. Through the use of TPT, we aim to
examine whether enabling a Transformer to learn its own structured internal representations
will help it learn linguistic structure including structure which is encoded morphologically in
morphologically-rich languages. Unlike the morphological tokenizer, the TPT architecture is
language-agnostic and can be used on arbitrary datasets without feature engineering. We further
investigate how the biases of these two approaches work together. We experiment on the task of
translating from English into two morphologically rich languages: Turkish and Inukitut (Inuit;
Eastern Canada). For Turkish, we train on several different dataset sizes from Open Subtitles
(1.4M, 5M and 36M), a spoken-language domain, and also fine-tune on SETimes (200K), a
news-wire domain. For Inuktitut, we train on the Nunavut Hansard Corpus (1.3M). We test
models’ performance using both an automatic metric and human evaluation (§5).

In the English to Turkish translation task, we find that the TP-Transformer beats the
Transformer when evaluated for nuances such as morphology, word-order and subject/object-
verb agreement. TPT provides a significant improvement on small datasets segmented with
language agnostic BPE (∼ 1 BLEU for Open Subtitles 1.4m and ∼ 2.5 BLEU for Hansard) and
a more modest improvement on larger datasets (0.16 BLEU for Open Subtitles 5m and 0.36
BLEU for Open Subtitles 36m). Using morphologically segmented data helps substantially with
models that are trained on small datasets. This is true for both pre-training (Open Subtitles 1.4m
and Inuktitut Hansard), as well as models that are trained on large datasets and later finetuned
using a smaller dataset (SETimes). This suggests that the method of encoding structure directly
in the training data helps substantially with sample efficiency and transfer learning. When our
two techniques are used together, we achieve an 8 BLEU improvement over the state of the art
on translation into Inuktitut (Joanis et al., 2020).

In order to better understand our models, we conduct detailed analysis, including error
analysis, on sample outputs from different model variations (Appendix G). We also separate
results out into different bins as defined by the morphological density of the target outputs to
understand how results vary with morphological complexity §6. We find that morphological
tokenization is strongly correlated with improved performance on complex sentences.

2 Using the TP-Transformer

The TP-Transformer (TPT) was introduced by Schlag et al. (2019) to improve performance on
mathematical problem solving, a highly symbolic task. The model introduces an additional
component to the attention mechanism which represents relational structure. In addition to the
standard key K, query Q, and value V vectors used in attention, they introduce the role vector R.
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Let the input for token i ∈ 1, .., N at layer l be represented as X l
i . For head h, the vectors are:
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In a Tensor Product Representation, role vectors are bound to their corresponding filler
vectors by the tensor product ⊗ or some compression of it: in the TPT, we use the compression
of discarding the off-diagonal elements, resulting in the elementwise or Hadamard product �.
The query Qlh

i is interpreted as probing for a filler for the role Rlh
i , so the output of attention V̄ lh

i

is taken to be the filler of that role; thus for the original TPT, this yielded: Zlh
i = V̄ lh

i �Rlh
i .

The role vector R is intended to act as a structural encoding independent of that structure’s
content (which is encoded in V̄ ). We hypothesize that, by disentangling structure and content in
this way, we can improve the model’s ability to place familiar linguistic units in novel structures
(e.g., using a suffix with a word stem that never had that suffix during training). Such structural
flexibility is crucial for morphologically-rich languages.
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Figure 1: Architectural diagram of TPT atten-
tion mechanism. Highlighted section shows the
additional components added to standard Trans-
former attention.

We make two modifications to the TPT
used in Schlag et al. (2019)1. First, we use rel-
ative position embeddings (Shaw et al., 2018).
We also use a residual connection to produce
gradients that are not zero; V̄ � R is a mul-
tiplicative interaction, so values of R near 0
will produce activation values and gradients of
0. This is similar to the model detail in Perez
et al. (2017) Section 7.2. A schematic of our
attention is shown in Figure 1. The rest of
the architecture follows the standard residual
connections and encoder-decoder architecture
defined in Vaswani et al. (2017)

3 Using morphological segmentation

Our target languages, Turkish and Inuktitut,
both exhibit a high degree of morphological
complexity. Words in both languages consist
of a root followed by potentially many suf-

fixes, each of which may have multiple surface forms.

Language Segmented Word
Turkish anla-t-ma-yacak
Gloss understand-CAUS-NEG-FUT

English will not tell
BPE anlat-mayacak
Inuktitut miv-vi-liar-uma-lauq-tur-uuq
Gloss land-place-go-want-PAST-3S-say.3S

English He said he wanted to go to the landing strip.
BPE mivvi-lia-ruma-lau-qturuuq

Table 2: Morpheme breakdown, gloss, English,
and BPE tokenization of Turkish and Inuktitut
morphologically complex words

We used two methods of subword tok-
enization: one utilizing a type of character-
level byte-pair encoding (Gage, 1994), and
one incorporating morphological parsing plus
byte-pair encoding. The first method (which
we label ’BPE’) used SentencePiece (Kudo
and Richardson, 2018), a tokenizer that builds
subword tokens using a combination of byte-
pair encoding and unigram language model-
ing. BPE relies only on character frequencies
and incorporates no morphological informa-
tion.

1Code available at https://github.com/psoulos/tpt
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The second method (which we call ‘morphological tokenization’) incorporated morphologi-
cal information by parsing all words (i.e. breaking them up into their composite morphemes) in
our morphologically complex target languages before tokenizing them. For Turkish, we used
the morphological parser from Zemberek (Akın and Akın, 2007), an open-source Turkish NLP
toolkit. Zemberek uses sentence-level disambiguation to produce the most likely parse of each
word given its sentential context. For Inuktitut, we used the morphological parsing method
adopted by Joanis et al. (2020), incorporating a symbolic parser with a neural parser backoff.
See Appendix D for implementational details on morphological segmentation.

The differences in how these tokenizers divide multi-morphemic Turkish and Inuktitut
words into subwords are illustrated in Table 2. The boundaries determined by BPE do not reflect
the internal morphological structure of these words.

4 Dataset description

4.1 English-Turkish data
For pretraining of the English-Turkish translation model, we used the Open Subtitles corpus
(Lison and Tiedemann, 2016). This corpus consists of a large number of aligned pairs of subtitles
from film and television. In order to test the effect of dataset size on model performance, we
utilized three splits of this corpus: the full-size corpus, a sample of five million sentence pairs,
and a sample of approximately one million sentence pairs. For fine-tuning of the English-Turkish
model, we used the South-East European Parallel (SETimes) Corpus. SETimes is a collection of
short written news stories in ten languages. For this task, we used the subset of this corpus that
was used for the WMT 2018 English-Turkish shared translation task (Bojar et al., 2018).

4.2 English-Inuktitut data

Corpus Training Validation Test
Open Subtitles 36m 28,694,211 3,586,776 3,586,777
Open Subtitles 5m 4,000,000 500,000 500,000

Open Subtitles 1.4m 1,300,000 65,000 65,000
SETimes 207,678 3,007 3,000

Nunavut Hansard 1,312,791 5,494 6,181

Table 3: Number of training, validation, and test
samples in the different datasets.

Like Turkish, Inuktitut is a morphologically
complex language. Words may consist of
a root, a prefix, and potentially many suf-
fixes. Table 2 contains an example of a multi-
morphemic Inuktitut word. For training of
the English-Inuktitut translation model, we
used the Nunavut Hansard Inuktitut–English
Parallel Corpus 3.0 (Joanis et al., 2020), the
only sizable publicly available bilingual cor-

pus. The dataset consists of over one million aligned sentence pairs from government proceedings.
The size of the dataset splits are reported in Table 3.

5 Experimental Results

We aim to answer the following research questions (RQ) through our experimentation:
1. Do either or both of our structural methods improve translation?
2. If so, how does that advantage interact with:

(a) Training data quantity?
(b) Transfer learning?
(c) Morphological richness of language?

As a baseline, we trained the standard Transformer model (Vaswani et al., 2017) with
the addition of relative position embeddings (Shaw et al., 2018). Model training details and
computing resources can be found in Section 1 and 2 of the supplementary materials. For
each model, we used either byte pair encoding (BPE) (Sennrich et al., 2016) or morphological
tokenization as described in §3. In order to see how our changes relate to sample efficiency, we
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vary the size of the subset of the Open Subtitles dataset used for training. We used the SETimes
dataset to finetune these models to test whether either structural bias improves transfer learning.
We also trained models on the Inuktitut dataset to compare the results from languages with
differing morphological richness.

5.1 Automatic Metric Results

Transformer TP-Transformer
1.4m 7.5 ±.43 8.44 ±.25

1.4m morph 16.63 ±.19 16.89 ±.07

5m 18.70 18.86
5m morph 18.84 19.19

36m 20.95 21.31
36m morph 21.05 21.32

Table 4: BLEU scores on the test set of Open
Subtitles separated by training set size and tok-
enization method. For the 1.4m runs, we show
the mean and standard deviation of three ran-
domly initialized models. The larger datasets
only have one run each due to computational
resource reasons.

Table 4 shows the test set BLEU2 scores for
the different size splits of the Open Subtitles
dataset (Research Question RQ2a). For the
smallest data split of 1.4m samples, TPT pro-
vides almost 1 BLEU improvement over a
standard Transformer. Using a morphological
tokenization provides an 8 BLEU improve-
ment on the small split. Using TPT with mor-
phologically tokenized data does not provide
any additional benefit on the 1.4m split. For
the two larger splits, TPT (across columns)
and morphological parsing (across rows) pro-
vides minor improvements (0.1–0.36 BLEU),
and this improvement becomes more modest
when both are combined (top left cell to bot-
tom right cell) (0.49 BLEU on the 5m split
and 0.37 on the full 36m split). Next, in order

to analyze whether either structural bias helps with transfer learning (RQ2b), we take the best
performing models shown in Table 4 and finetune them on the SETimes dataset.

Transformer TP-Transformer
5m 14.19 14.25

5m morph 15.16 15.39
36m 16.77 17.01

36m morph 18.35 18.82

Table 5: BLEU scores on the test set of SETimes
from models pretrained on OpenSubtitles (5m)
and finetuned on SETimes (200K) divided by
training set size and tokenization.

The BLEU scores for these finetuned
models can be seen in Table 5. There is a large
increase in BLEU score across rows between
models that use either BPE encoding or mor-
phological tokenization. This provides fur-
ther evidence for the findings from the 1.4m
split in Table 4 that morphological tokeniza-
tion provides a large improvement in low data
regimes. While morphological tokenization
does not provide much of an improvement
during large-scale pretraining, it is beneficial
for transfer learning on a smaller domain.

Transformer TP-Transformer
BPE 18.56 ±1.92 21.12 ±.70

Morphological 26.05 ±.90 28.3 ±.50

Table 6: BLEU scores on the test set of Inuktitut
divided by tokenization. We show the mean and
standard deviation of three randomly initialized
models.

In addition to Turkish, we trained models
on the Inuktitut dataset described in §4.2 to
understand the variance of model performance
by the morphological richness of languages
(RQ2c). We trained models using both data
tokenized by BPE encoding as well as by an
Inuktitut morphological parser. The results
are shown in Table 6. As we saw on both
the 1.4m Open Subtitles split and SETimes,

2We calculated BLEU using SacreBLEU (Post, 2018) and the signature is
”BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.0”. All models were also tested with CHRF
(Popović, 2015) and the results can be found in Appendix E.
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(a) (b) (c)

Figure 2: Human judgment results: (a) Comparison between Transformer (TF) and TPT on
different criteria when trained on Open Subtitles (5m) using BPE encoding. (b) Comparison
between Transformer and TPT when trained on Open Subtitles (5m) using morphologically
segmented data. (c) Comparison between Transformer (TF) and TPT on meaning preservation
when trained on different datasets.

morphological tokenization provides a huge improvement in BLEU. TPT provides a large average
improvement regardless of the tokenization scheme, although the BPE Tranformer in particular
has a high variance and is sensitive to random initialization. Inuktitut is more morphologically
complex than Turkish across several measures of morphological complexity3 and it is possible
that TPT models perform better with more complex morphology. For example, compare the
improvements from using TPT over a standard transformer for BPE on the Open Subtitles 1.4m
split and Inuktitut. TPT provides ∼1 BLEU improvement on Turkish, and this improvement
increases to∼2.5 on Inuktitut. The previous state-of-the-art on the Hansard dataset is 20.3 BLEU
on the test set (Joanis et al., 2020). Both methods proposed in this paper improve on that, and
together they improve the state-of-the-art by 8 BLEU.

5.2 Human-based Evaluation Results
The BLEU scores in the previous section give us a single number summarizing the quality of our
translations. We now evaluate some of the finer-grained characteristics of the outputs. We focus
on four aspects of the output that are likely to benefit from more robust encodings of structure:
morphology, word-order, subject-verb agreement and fluency.

We use Amazon Mechanical Turk to get human judgements. We perform a comparative
study where we show annotators two Turkish translations from the transformer and the TPT
models trained on the 5m Open Subtitles split. We do not show the English source sentence
since the four criteria of evaluation in this study does not require looking at the source sentence.
We collect three annotations per comparison and use only those instances where at least 2 out of
the 3 annotators agree on the same answer. We collect annotations on 180 instances for each of
the two comparative studies. See Appendix F for the questions asked to annotators.

Figure 2a shows the result of this comparison when we use BPE encoding to tokenize the
data whereas Figure 2b shows the result of this comparison when we use morphological segmenter
to tokenize the data. Under BPE encoding, we find that TPT has slightly less morphological and
agreement errors and has significantly less word-order issues. This suggests that the structural
bias introduced by the TPT helps in forming sentences that are overall morphologically better

3Using the parallel test sets from Mielke et al. (2019), we measured a type-token ratio of 0.42 for Inuktitut and 0.19
for Turkish, as well as a relative entropy of word structure of 1.75 for Inuktitut and 1.21 for Turkish
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formed. On the other hand, annotators find translations from the Transformer to be slightly
more fluent than those from the TPT. Under morphologically segmented data, annotators find
translations from TPT are significantly better than the Transformers in morphological form and
word-order and slightly better in subject-verb agreement, providing further evidence that the
structural bias introduced by the TPT is helpful. Moreover, annotators also find translations from
TPT in this case to be more fluent than those from the Transformer.

We perform an additional study to understand which of the two model translations best
preserves the meaning of the English source sentence. We ask an expert, a linguistically-trained
native Turkish speaker, to annotate 30 instances each from eight model outputs (5m Open
Subtitles BPE & morphologically tokenized, SETimes BPE & morphologically tokenized for
both Transformer and TPT). We show them the English sentence and two Turkish translations. We
ask them “Grammatical issues aside, which of the two translations better preserves the meaning
of the English sentence?” and let them choose from A, B or Both preserve equally. Figure 2c
shows the results of this study. In the Open Subtitles dataset, we find the difference between
Transformer and TPT performance is too small under both BPE encoding and morphological
segmentation. In the SETimes dataset, we find the same trend under BPE encoding. Only under
morphologically segmented data in SETimes, TPT significantly wins over Transformer. These
results show that when we include the English source sentence, it is inconclusive if TPT or
Transformer is better. This suggests that although TPT improves the ability to compose Turkish
text (as found by the first study), it does not affect the ability to determine which Turkish output
should go with a given English input.

6 Morphological density analysis

Given the rich morphology of the target languages, we are interested in whether either structural
bias or morphological segmentation improves performance on more morphologically complex
sentences. To answer this question, we used our Turkish morphological segmenter on sequences
from the test set and binned sentences based on the average morphemes per word in a sentence.
For example, a long sentence with simple words that are all a single morpheme would have an
average morpheme per word of 1, whereas a sentence that is made of complex words would
have a larger average morpheme per word. We then calculated the BLEU score for each of these
buckets so that we could see if our models performed better on sentences that are morphologically
complex.

The results are shown in Figure 3. On the 36m training set (top row), both of our methods
provide an improvement at almost every morpheme density. Comparing TPT to a standard
Transformer, Figure 3a shows a relatively consistent improvement of around 0.4 BLEU with
a large increase for simple sentences. Comparing standard transformers with morphological
parsing against BPE, Figure 3b shows that as the morphological complexity of sequences
increases, the model using morphological tokenization improves over BPE tokenization. The
same trend is visible when comparing TPT with morphological tokenization with a standard
transformer using BPE tokenization (Figure 3c), except the magnitude of the increase is greater.

The morphological analysis on the 5m training set (bottom row) is less conclusive. TPT does
not appear to have any impact as the morphological density increases (Figure 3d). Morphological
tokenization shows a similar upward trend as on the 36m dataset, but this improvement disappears
suddenly at 3.0 morphemes per word (Figure 3e). As the morphological density increases, the
number of samples for each bucket on the test set decreases, so it is possible that the sudden drop
is the result of too few samples.

Our results also show some correspondence with the overall morphological complexity
of the dataset. We computed a modified version of the CD measure (the “relative entropy of
word structure”) from Bentz et al. (2016), as we found it to be the most robust to the meaning
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Figure 3: BLEU score differences between models on the Turkish Open Subtitles 36m (top
row) and 5m (bottom row) training sets bucketed by morphological density (average number of
morphemes per word in a sentence).

variations between corpora (Supplementary materials section 4). Higher values of this measure
correspond to more regular structure/information in words, and thus, greater morphological
complexity. We computed the measure over the first 100,000 characters of the test set of each
dataset. We computed CD as 1.89 for the Hansard dataset, while the Turkish datasets ranged
from CD 1.45-1.49. This corresponds to the relatively large increase in BLEU seen for Inuktitut.

7 Related Work

Translating into Morphologically-rich languages Previous work has leveraged morphology
for translating into morphologically-rich languages. Turhan (1997) uses a recursive symbolic
system to translate from English into Turkish including a morphological generator. Ataman
et al. (2020) use hierarchical latent variable models to model both character and morpheme
level statistics for translating into morphologically rich languages (Arabic, Czech, Turkish) with
GRUs. Passban et al. (2018a) introduce a character-level neural machine translation model
for translating into morphologically rich languages which incorporates a morphology lookup
table into the decoder whereas Passban et al. (2018b) propose a subword-level model that uses
separate embedding for stem and affix. Joanis et al. (2020) introduced the dataset that we
use for Inuktitut and also explored using morphological segmentation for alignment as well as
neural and statistical machine translation. This work was followed up by Knowles et al. (2020)
who introduce additional methods techniques on the Inuktitut dataset. Roest et al. (2020) and
Scherrer et al. (2020) also investigated morphological segmentation in Inuktitut in addition to
data augmentation and pretraining.

Using Transformer-based models for translation In recent times, there have been several
work that use variations of Transformer (Vaswani et al., 2017) model for the task of machine
translation. Chen et al. (2018) combine the power of recurrent neural network and transformer.
Dehghani et al. (2019) introduce universal transformers as a generalization of transformers
whereas Deng et al. (2018) combine transformer architecture with several other techniques such
as BPE, back translation, data selection, model ensembling and reranking. Bugliarello and
Okazaki (2020) incorporate syntactic knowledge into transformer model to show improvements
on English to German, Turkish and Japanese translation tasks. Currey and Heafield (2019)
introduce two methods to incorporate English syntax when translating from English into other
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languages with Transformers. Liu et al. (2020b) introduce mBART, an auto-encoder pretrained
on large-scale monolingual corpora and show gains on several languages.

Using TPRs TPRs have gained traction recently with the interest in neurosymbolic compu-
tation to achieve out-of-domain generalization. They have been used in a variety of domains,
including mathematical problem solving (Schlag et al., 2019), reasoning (Schlag and Schmidhu-
ber, 2018), image captioning (Huang et al., 2018), question-answering (Palangi et al., 2018), and
program synthesis (Chen et al., 2020). A separate line of work uses TPRs as an interpretation
tool to understand representations in networks that do not explicitly use TPRs (McCoy et al.,
2019; Soulos et al., 2020).

8 Conclusion

We investigated two methods for improving translation into morphologically rich languages with
Transformers. The TP-Transformer adds an additional component to Transformer attention to
represent relational structure. This model had the largest improvement on smaller datasets and
modest improvement on larger datasets. We also investigated morphological tokenization which
had substantial improvements on small datasets and transfer learning. When used together, our
methods improve on the state of the art for translation from English into Inuktitut by 8 BLEU.
The models were analyzed by human evaluators to tease apart different dimensions along which
our models excel; TP-Transformer had fewer morphological, word-order, and agreement issues.
We analyzed the performance of our networks under varying morphological complexity and
found that morphological tokenization provides a large benefit for more complex sentences.
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Appendix

A Model Training Parameters

Both the standard Transformer and the TP-Transformer (TPT) use 6 layers and 8 heads per layer. TPT has
key/value/query/role dimensions of 64, whereas the standard Transformer has key/value/query dimensions
of 80. The reason for this increase is so that the resulting models match in terms of parameter count, and we
add parameters are the most homologous area. The standard Transformer has 74,375,936 parameters, and
the TP-Transformer has 74,385,152 parameters. Both networks use a token dimension of 512, a feedforward
dimension of 2048, and 32 relative positioning buckets Shaw et al. (2018). The input vocabulary size
is 50,000. We set a training batch size of 80 per GPU and used the Adafactor Shazeer and Stern (2018)
optimizer with square root learning rate decay. Throughout the model, we used a commonly used dropout
rate of .1.

B Computing Resources

The models were all trained with 8 Tesla V100 GPUs. The models trained on the small Hansard and Open
Subtitles 1.4m datasets converged in about 8 hours. The larger Open Subtitles 5m models coverged in
around 40 hours, and the Open Subtitles 32m models coverged in 15 days.

C Corpora Morphological Complexity

Studies have considered what corpus-based measures are correlated with linguistic measures of morpho-
logical complexity. Most notably, Bentz et al. (2016) found several corpus-based measures that correlate
strongly with complex morphological typology. This measure computes the regularity of structure within
words by taking the character-level entropy of the corpus and subtracting that from the entropy of a “masked”
version of the corpus, where all non-whitespace characters have been replaced with random samples from
the uniform distribution over the characters in the corpus. Rather than the approximation used in Bentz
et al. (2016) for character-level entropy, we directly computed the character-level Shannon’s entropy using
a James-Stein shrinkage estimator as in Hausser and Strimmer (2009).

D Morphological parser process

For each target language, its parser was used to insert morpheme boundaries into all multi-morphemic
words in the dataset. Due to the comparatively low level of morphological complexity of the English source
data, no parsing of English words was conducted. From here, each SentencePiece tokenizer’s vocabulary
was built over a dataset’s training data (both the source and target language) with a target size of 50,000
vocabulary items. SentencePiece allows the user to specify special characters that cannot be crossed when
constructing subword tokens, both during training of the tokenizer and during tokenization of a sentence.
The symbol used to represent morpheme boundaries was specified as such a special symbol. As a result,
morpheme boundaries in Turkish and Inuktitut (as identified by their respective parsers) always served as
subword token boundaries.

Each SentencePiece tokenizer’s vocabulary was built over a dataset’s training data (both source and
target language) with a target size of 50,000 vocabulary items. This tokenization method (which we label
simply ‘BPE’) relies only on character frequencies and incorporates no morphological information, so
many multi-morphemic words may each be assigned to a single token, and there is no guarantee that a
word’s subword boundaries align with its morpheme boundaries.

E CHRF Results

The same models used to measure BLEU scores are also tested using CHRF (Popović, 2015). The results
are shown in Tables 7, 8, and 9.
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Transformer TP-Transformer
1.4m .351 ±.005 .365 ±.004

1.4m morph .438 ±.001 .440 ±.001

5m .461 .463
5m morph .467 .469

36m .486 .488
36m morph .490 .492

Table 7: CHRF scores on the test set of Open
Subtitles separated by training set size and tok-
enization method. For the 1.4m runs, we show
the mean and standard deviation of three ran-
domly initialized models. The larger datasets
only have one run each due to computational
resource reasons.

Transformer TP-Transformer
5m .502 .502

5m morph .509 .514
36m .532 .537

36m morph .540 .543

Table 8: CHRF scores on the test set of SETimes
from models pretrained on OpenSubtitles (5m)
and finetuned on SETimes (200K) divided by
training set size and tokenization.

F Annotator Questions

Transformer TP-Transformer
BPE .498 ±.011 .513 ±.003

Morphological .526 ±.007 .539 ±.006

Table 9: CHRF scores on the test set of Inuktitut
divided by tokenization. We show the mean and
standard deviation of three randomly initialized
models.

We ask annotators the following questions:
Morphology: “Which of the two sentences has
more morphological issues (i.e. incorrect suf-
fixes)?” and let annotators choose from A, B, Both
or None.
Word-order: “Which of the two sentences has
word-order issues?” and let annotators choose
from A, B, Both or None.
Agreement: “Which of the two sentences has
more agreement errors between the subject/object
and the verb (i.e. the suffixes for the verbs and/or the nouns do not agree with each other)?” and let
annotators choose from A, B, Both or None.
Fluency: “Which of the two sentences is more fluent i.e. reads more like it was written by a native Turkish
speaker?” and let annotators choose from A, B, Both are equally fluent.

G Output analysis

Here we present an error analysis of a few sample translations from Transformer and TPT models. We
group errors according to the aspects used to perform human-based evaluation in §5.2. Table 10 shows
the result of this analysis. Under fluency issues, Transformer introduces an unnecessary word ‘zamaninda’
making it less fluent compared to the TPT translation. Under meaning preservation, the translation by
Transformer incorrectly suggests “in exchange for money” whereas TPT correctly preserves the meaning.
Under agreement issues, TPT includes incorrect use of first person suffix whereas Transformer does not
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Fluency Issues

English “I want to carry on living,” he said at the time of the CPJ award.
Turkish Transformer CPJ ödülünün zamanında konuşan Jovanoviç, “Yaşamak istiyorum.” dedi.
Turkish TPT CPJ ödülünde konuşan bakan, “Yaşamayı sürdürmek istiyorum.” dedi.
Reason unnecessary use of the word ‘zamaninda’.

Meaning Preservation

English Some say you chose Turkey for money.
Turkish Transformer Bazıları Türkiye’yi para karşılığında seçtiğinizi söylüyor.
Turkish TPT Bazıları, para için Türkiye’yi seçtiğinizi söylüyorlar.
Reason “para karşılığında” suggests ‘in exchange for money’

Subject to verb agreement Issues

English Maybe because I go to bed listening to the message you left, saying how much you liked
missing me.

Turkish Transformer Belki de yatağa gidip, beni özlemeyi ne kadar sevdiğini söyleyen mesajını dinlediğim için.
Turkish TPT Belki de yatağa gidip bıraktığın mesajı dinleyip beni özlediğini söy-le-di-ğ-im için.
Reason incorrect use of first person (‘-im’) instead of second person (‘-in’)

Morphology Issues

English So far we have not received any news nor found any clues.
Turkish Transformer Şimdiye kadar hiçbir haber alamadık ve hiçbir ipucu bulamadık
Turkish TPT Bugüne kadar ne haber aldık ne de ipucu bul-a-ma-dı-k
Reason Highlighted word has a double negative instead of the correct form bul-a-bil-di-k/bul-du-k.

Table 10: Sample outputs showing issues relating to fluency, meaning preservation, agreement
and morphology from Transformer and TPT models.

have any subject to verb agreement issues. Under morphology issues, TPT incorrectly includes a negation
suffix making the sentence a double negative whereas Transformer correctly translates the English sentence.

Table 11 includes analysis of some additional sample outputs from Transformer and TPT models.
Under morphology issues, Transformer includes an unnecessary plural suffix. The TPT translation is okay
but would have been better with the addition of the ‘-mu’ suffix. Under meaning preservation, Transformer
incorrectly translates “Bank of England” as “Bank of England”, thus losing out on the meaning. Whereas
TPT correctly translates that named entity into Turkish. Under tense issues, Transformer uses an incorrect
past tense suffix whereas TPT correctly preserves the tense of the English sentence. Under repetition issues,
Transformer repeats a word which is not required in written-language but might be okay in spoken-language.
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Morphology Issues

English First we have to decide if those lost six minutes will be coming out of game time, bathroom
time or the pizza break.

Turkish Transformer İlk önce, bu altı dakika kaybet-me-ler-i-n oyun zamanından mı yoksa banyo zamanından mı
olacağına karar vermeliyiz.

Turkish TPT İlk olarak, o 6 dakikanın maçtan, banyo saatinden veya pizza molasından (-mı) çıkıp
çıkmayacağına karar vermeliyiz.

Reason Unnecessary plural suffix (-ler)
Meaning Preservation

English Bank of England to keep interest rates at 0.25%
Turkish Transformer Bank of England faiz oranlarını %0,25 oranında tutacak.
Turkish TPT İngiltere Merkez Bankası faiz oranlarını %0,25 oranında tutacak.
Reason Incorrect translation of named entity

Tense Issues

English Barely out of bed and already on the phone.
Turkish Transformer Yataktan zar zor çıktım ve telefonla konuştum bile.
Turkish TPT Yataktan zar zor çıktım ve telefondayım.
Reason Incorrect use of past tense suffix (‘-tum’) instead of present tense suffix (‘yorum’)

Repetition Issues

English Specific criteria, such as an asteroid’s size and collision angle, are the factors that would
determine the depth of its crater and the damage that its impact would cause.

Turkish Transformer Asteroidin büyüklüğü ve çarpışma açısı gibi belli kriterler, kraterin derinliğini belirleyecek
ve etkisinin yaratacağı hasarı belirleyecek faktörler

Turkish TPT Bir asteroidin büyüklüğü ve çarpışma açısı gibi belirli kriterler, kraterinin derinliğini ve
etkisinin yol açacağı hasarı belirleyecek faktörler

Reason The word “belirleyecek” is repeated which is unnecessary in written-language but would be
okay in spoken-language.

Table 11: Sample outputs from Transformer and TPT models showing issues relating to mor-
phology, meaning preservation, tense and repetition.
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