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Abstract
We study a new problem of cross-lingual trans-
fer learning for event coreference resolution
(ECR) where models trained on data from a
source language are adapted for evaluations
in different target languages. We introduce
the first baseline model for this task based
on XLM-RoBERTa, a state-of-the-art multi-
lingual pre-trained language model. We also
explore language adversarial neural networks
(LANN) that present language discriminators
to distinguish texts from the source and tar-
get languages to improve the language gener-
alization for ECR. In addition, we introduce
two novel mechanisms to further enhance the
general representation learning of LANN, fea-
turing: (i) multi-view alignment to penalize
cross coreference-label alignment of examples
in the source and target languages, and (ii)
optimal transport to select close examples in
the source and target languages to provide bet-
ter training signals for the language discrimi-
nators. Finally, we perform extensive experi-
ments for cross-lingual ECR from English to
Spanish and Chinese to demonstrate the effec-
tiveness of the proposed methods.

1 Introduction

Event coreference resolution (ECR) aims to link
event-trigger expressions (event mentions) in a doc-
ument that refer to the same event in real world.
Technically, the core problem in ECR involves pre-
dicting if two event mentions in a document core-
fer to each other or not (i.e., a binary classification
problem). For instance, consider the following text:

With national outrage boiling over, Bangladeshi
paramilitary officers tracked down and arrested
Sohel Rana. When loudspeakers at the rescue site
announced his capture, local news reports said,
the crowd broke out in cheers.

An ECR system in information extraction (IE)
should be able to recognize the coreference of
the two event mentions associated with the trig-
ger words “arrested” and “capture” in this text.

Prior work on ECR assumes the monolingual
setting where training and test data are presented in
the same languages. Current state-of-the-art ECR
systems thus rely on large monolingual datasets
to train advanced models (Nguyen et al., 2016;
Choubey and Huang, 2018; Lu and Ng, 2017, 2018;
Huang et al., 2019) that are only annotated for
popular languages (e.g., English). As document
annotation for ECR is an expensive process, port-
ing ECR models for English to other languages is
crucial and appealing to enhance the accessibility
of ECR systems. To this end, this paper explores
cross-lingual transfer learning for ECR where mod-
els are trained on annotated documents in English
(source language) and tested on documents from
other languages (target languages). To be clear, our
work considers zero-resource cross-lingual learn-
ing that requires no labeled data for ECR in the
target languages as well as human or machine gen-
erated parallel text. The systems in this work only
have access to unlabeled text in the target languages
to aid the cross-lingual learning for ECR. To our
knowledge, this is the first work on cross-lingual
transfer learning for event coreference resolution
in the literature.

Recent advances in contextualized word em-
beddings have featured multilingual pre-trained
language models, e.g., multilingual BERT (De-
vlin et al., 2019), XLM-RoBERTa (Conneau et al.,
2019), that overcome the vocabulary difference
of languages and produce language-universal rep-
resentations for cross-lingual transfer learning in
different NLP tasks (Wu and Dredze, 2019; Sub-
burathinam et al., 2019a). In fact, such pre-trained
language models have set a new standard for mul-
tilingual learning in NLP (Wu and Dredze, 2020;
Nguyen et al., 2021a), serving as the baseline mod-
els for our cross-lingual transfer learning problem
for ECR in this work.

How can we improve the cross-lingual perfor-
mance of ECR models over multilingual language
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model baselines? Treating the source and target
languages as the source and target domains in do-
main adaptation (Chen et al., 2018a, 2019; Keung
et al., 2019), one can borrow the popular technique
of domain adversarial neural networks (DANN)
(Ganin et al., 2016; Fu et al., 2017) to induce better
language-general representations for ECR, called
language adversarial neural networks (LANN) to
make it consistent with our language generalization
problem. As such, in addition to traditional learn-
ing objectives (e.g., cross-entropy), the key idea
of LANN is to introduce a language discriminator
that seeks to differentiate representation vectors for
text inputs from the source and target languages.
To enhance the language generalization, models
will attempt to generate representation vectors so
the language discriminator is fooled, i.e., its per-
formance is minimized to align the source and tar-
get languages (Chen et al., 2018a; Keung et al.,
2019). However, there are two major limitations
with LANN that will be addressed to improve the
cross-lingual performance for ECR models in this
work.

First, taking the binary classification setting
for ECR, inputs to the language discriminator in
LANN involve two pairs of event mentions in the
source and target languages. As coreference labels
for pairs of event mentions in target languages are
not available, the language discriminator will thus
only aim to align marginal distributions of event
mention pairs (called examples) in the source and
target languages (without considering the coref-
erence labels for the pairs). This is less optimal
as the lack of coreference labels in the alignment
might unexpectedly cause coreferring examples in
the source language to be mapped or aligned with
non-coreferring examples in the target languages
and vice versa, thus impairing the discriminative
nature of representation vectors for ECR. To over-
come this issue, we propose to use two network
architectures to obtain two complementary repre-
sentation vectors for each example in both source
and target languages. Representation vectors from
each network will be first aligned between source
and target languages using the usual LANN tech-
nique. In addition, representation vectors from the
two networks will be regularized to agree with each
other over same examples in target languages. As
demonstrated later, this regularization helps to pe-
nalize the alignment between coreferring examples
in the source language and non-coreferring exam-

ples in the target languages (and vice versa) in
LANN, thus improving the representation quality.

Second, as LANN attempts to discriminate all
examples in the source language from all examples
in the target languages, it also employs training
signals from examples whose representations are
far away from each other in the source and tar-
get languages. However, it is intuitive that the
most useful information for model training comes
from close examples in the source and target lan-
guage spaces. Including long-distance examples
might even introduce noise and hurt the models’
performance. Consequently, instead of using all
examples for LANN, we propose to only lever-
age examples with close representation vectors for
the language discriminator in ECR models. As
such, our approach involves measuring distances
between representation vectors of examples in the
source and target languages to determine which
examples are used for the language discriminator.
To access the distance between two examples in the
source and target languages, instead of only rely-
ing on the similarity of learned representations, we
propose to additionally consider coreference likeli-
hoods of examples that assign higher similarity if
two examples have similar coreference likelihoods
(i.e., examples with the same coreference labels are
more similar to each other than others in ECR). Ac-
cordingly, our model employs Optimal Transport,
a method to determine the cheapest transforma-
tion between two data distributions, as a natural
solution to simultaneously incorporate both repre-
sentation vectors and coreference likelihoods of
examples into the distance estimation for example
selection in the language discriminator of LANN.
We conduct cross-lingual ECR evaluation for En-
glish, Spanish and Chinese that demonstrates the
benefits of the proposed methods by significantly
outperforming the baseline models. We will re-
lease experiment setups and code to push forward
research on cross-lingual ECR in the future.

2 Related Work

Regarding coreference resolution, our work is re-
lated to studies in entity coreference resolution that
aim to resolve nouns phrases/mentions for entities
(Raghunathan et al., 2010; Ng, 2010; Durrett and
Klein, 2013; Lee et al., 2017; Joshi et al., 2019).
This work focuses on event coreference resolution
that is often considered as a more challenging task
than entity resolution due to the more complex
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structures of event mentions (Yang et al., 2015).
For event coreference resolution, although there

have been works on cross-document resolution
(Lee et al., 2012a; Kenyon-Dean et al., 2018;
Barhom et al., 2019; Phung et al., 2021), this work
is more related to prior work on within-document
ECR (Lu and Ng, 2018; Tran et al., 2021). In partic-
ular, previous within-document ECR methods have
applied feature-based models for pairwise classi-
fiers (Ahn, 2006; Chen et al., 2009; Cybulska and
Vossen, 2015; Peng et al., 2016), spectral graph
clustering (Chen and Ji, 2009b), information prop-
agation (Liu et al., 2014), markov logic networks
(Lu et al., 2016), end-to-end modeling with event
detection (Araki and Mitamura, 2015; Lu et al.,
2016; Chen and Ng, 2016; Lu and Ng, 2017), and
recent deep learning models (Nguyen et al., 2016;
Choubey and Huang, 2018; Huang et al., 2019;
Choubey et al., 2020; Tran et al., 2021). Our work
is different from such prior work as we investigate
a novel setting of cross-lingual transfer learning for
ECR.

Cross-lingual transfer learning has been studied
for other NLP and IE tasks, including sentiment
analysis (Chen et al., 2018b), relation extraction
(Lin et al., 2017; Zou et al., 2018; Wang et al.,
2018; Nguyen and Nguyen, 2021), event extraction
(Chen and Ji, 2009a; Hsi et al., 2016; Subburathi-
nam et al., 2019b; Nguyen et al., 2021b), and en-
tity coreference resolution (Rahman and Ng, 2012;
Hardmeier et al., 2013; Martins, 2015; Kundu et al.,
2018; Urbizu et al., 2019). Compared to such prior
work, this paper presents two novel approaches to
improve the language generalization of represen-
tation vectors based on multi-view alignment and
OT. Finally, our work involves LANN that bears
some similarity with DANN models in domain
adaptation research of machine learning (Ganin
et al., 2016; Bousmalis et al., 2016; Fu et al., 2017;
Kumar et al., 2018; Naik and Rose, 2020; Ngo
et al., 2021). Compared to such work, our work
explores a new dimension of adversarial networks
for language-invariant representation learning for
texts in ECR.

3 Model

We formalize our ECR problem using a pair-
wise approach (Lu and Ng, 2018; Choubey and
Huang, 2018; Barhom et al., 2019). Let W =
w1, w2, . . . , wn be a document (with n words) that
contains two input event mentions with event trig-

gers located at we1 and we2 in W (1 ≤ e1 <
e2 ≤ n). As such, the core problem in ECR is to
perform a binary prediction to determine whether
two event mentions we1 and we2 refer to the same
event or not. An example in our ECR task thus
involves an input tuple X = (W, e1, e2) and a
binary output variable y to indicate the corefer-
ence of we1 and we2 . This work focuses on cross-
lingual transfer learning for ECR where training
data involve input documents W in English (the
source language) while sentences in test data are
presented in another language (the target language).
To enable the zero-resource cross-lingual setting
for ECR, our model takes two following inputs:
Dsrc = {(Xi = (W i, ei1, e

i
2), yi)}i=1..Nsrc as the

training set with Nsrc labeled examples in the
source language (English), and Dtar = {Xi =
(W i, ei1, e

i
2)}i=Nsrc+1..Nsrc+Ntar as the unlabeled

set in the target language with Ntar examples.

3.1 Baseline Model

As this is the first work on cross-lingual transfer
learning for ECR, this section aims to establish
a baseline method for further research. In par-
ticular, recent work has shown that multilingual
pre-trained language models with deep stacks of
transformer layers, e.g., multilingual BERT (De-
vlin et al., 2019), XLM-RoBERTa (Conneau et al.,
2019), can provide strong baselines with competi-
tive performance for zero-shot cross-lingual trans-
fer for a variety of NLP tasks (Wu and Dredze,
2019). As such, we utilize XLM-RoBERTa1 to
obtain language-general representation vectors for
a cross-lingual baseline model of ECR in this work.
Given the input document and event mentions
X = (W, e1, e2) (in the source or target language),
we first prepend the special token [CLS], and in-
sert two special tokens <e> and </e> right before
and after the trigger words we1 and we2 in W to
mark their positions, leading to a new document
W ′ = [CLS]w1 . . . we1−1<e>we1</e>we1+1

. . . we2−1<e>we2</e> we2+1 . . . wn. Afterward
W ′ is fed into the base version of XLM-RoBERTa
to obtain hidden vectors for their word-pieces.
Let hcls be the hidden vector for the special to-
ken [CLS], h1s and h1e be the hidden vectors for
the special tokens <e> and </e> surrounding
we1 , and h2s and h2e be the hidden vectors for the
special tokens <e> and </e> surrounding we2

1XLM-RoBERTa is chosen due to its better performance
than multilingual BERT in our experiments.
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in W . Note that as the number of word-pieces
in W might exceed the maximum length of 512
in XLM-RoBERTa, we divide the word-piece se-
quence for W into chunks of lengths equal to
or smaller than 512; these chunks are then pro-
cessed separately by XLM-RoBERTa. In the next
step, an overall representation vector V (X) for X ,
i.e., V (X) = [hcls, h

1
s, h

1
e, h

2
s, h

2
e], is formed and

sent into an one-layer feed-forward network FF
with softmax in the end to compute a distribution
P (.|X) = FF(V (X)) over possible coreference
labels (i.e., two possible labels) for the input X .
Finally, the negative log-likelihood function Lpred
over labeled examples in the source language Dsrc
is employed to train the baseline model in this work:
Lpred = −

∑Nsrc
i=1 logP (yi|Xi).

In the test time, we use the trained model to
predict coreference labels for every pair of event
mentions in a document. We then form a graph for
each document where event mentions serve as the
nodes and two event mentions are connected if their
coreference label is positive. As such, connected
components in this graph will be returned as event
mention clusters for the document in ECR.

3.2 Language Adversarial Networks
To further improve the language generalization for
the baseline, we explore the adaptation of domain
adversarial neural networks (DANN) in domain
adaptation (Ganin et al., 2016) for zero-resource
cross-lingual learning (i.e., treating source and tar-
get languages as source and target domains). In
language adversarial neural networks (LANN), a
language discriminator D is introduced to discrimi-
nate examples from the source and target languages.
As such, the overall representation vector V (X)
for each input example X is sent into the language
discriminator D (i.e., a two-layer feed-forward net-
work with the sigmoid function in the end) to ob-
tain a scalar scoreD(V (X)) to indicate whetherX
belongs to the source language or not. The discrim-
inator loss Ldisc is then computed over both source
and target language data (i.e., Dsrc and Dtar):

Ldisc =
Nsrc+Ntar∑

i=1

−li logD(V (Xi))

− (1− li) log(1−D(V (Xi)))

(1)

where li is the language indicator (i.e., li = 1
if 1 ≤ i ≤ Nsrc; and 0 otherwise). The over-
all loss to train the model in this case is thus:
L = Lpred + αLdisc where α is a trade-off pa-
rameter. Note that as LANN aims to prevent the

language discriminator from recognizing languages
from input representation vectors, we insert the
Gradient Reversal Layer (GRL) (Ganin et al., 2016)
between V (X) and D to reverse the gradients dur-
ing the backward pass from Ldisc. Overall, fooling
the language discriminator in LANN with GRL
helps eliminate language-specific features to im-
prove generalization across languages.

3.3 Multi-view Alignment

 

 

Figure 1: Multi-view alignment mechanism.

One limitation of LANN is that it only attempts
to align marginal distributions of examples for ECR
in the source and target languages (due to the lack
of coreference labels for target examples), causing
the unexpected cross-language alignment of coref-
erential and non-coreferential examples between
two languages. To address this issue, instead of re-
lying on one representation vector V (X) forX , we
propose to obtain two complementary representa-
tion vectors V 1(X) and V 2(X) for X (two views)
by sending V (X) into two feed-forward networks
with two layers f1 and f2: V 1(X) = f1(V (X))
and V 2(X) = f2(V (X)) (preserving the dimen-
sionality of V (X)). Afterward, several loss and
regularization terms are proposed to penalize the
alignment of coreferential and non-coreferential
examples across languages in LANN as follows.

First, to ensure that representation vectors
V 1(X) and V 2(X) include discriminative in-
formation for coreference prediction, we pre-
dict the coreference label yi from both vec-
tors using two feed-forward networks (one layer)
with softmax in the end FF1 and FF2 to ob-
tain distributions P 1(.|X) = FF1(V 1(X)) and
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P 2(.|X) = FF2(V 2(X)). Negative log-likelihood
loss functions Lipred from P i(.|X) (i = 1, 2)
are then utilized for the loss function: Lipred =

−
∑Nsrc

i=1 logP i(yi|Xi).
Second, representation vectors of source-

language examples from each view (V 1(X) or
V 2(X)) are also aligned their counterparts in the
target language based on LANN with language dis-
criminators, i.e., D1 or D2 respectively (two-layer
feed-forward networks). As such, the discriminator
loss Lkdisc for the view V k(X) (k = 1, 2) is:

Lidisc =
Nsrc+Ntar∑

i=1

−li logD(V k(Xi))

− (1− li) log(1−D(V k(Xi)))

(2)

Third, to encourage the diversity or complemen-
tary nature of the information captured by two
views V 1 and V 2, we seek to increase the differ-
ence between representation vectors V 1(X) and
V 2(X) over the same source-language examplesX
in Dsrc by including their negative distance Ldiver
into the overall loss function:

Ldiver = −
1

Nsrc

Nsrc∑
i=1

||V 1(X)− V 2(X)||22 (3)

Fourth, representation vectors from two views
V 1(X) and V 2(X) will be constrained to be con-
sistent with each other for the same examples
X ∈ Dtar in the target language. This is done by
introducing the difference Lconst between V 1(X)
and V 2(X) over target-language examples in Dtar
into the overall loss function for minimization:

Lconst =
1

Ntar

Nsrc+Ntar∑
i=Nsrc+1

||V 1(Xi)− V 2(Xi)||22 (4)

As such, consider an unexpected alignment
by LANN where a set of coreferential examples
Ssrc ⊂ {(Xi, yi) ∈ Dsrc|yi = 1} is aligned a
set of non-coreferential examples T tar ⊂ Dtar by
view V 1(X) (V 1(Ssrc)←→ V 1(T tar)). Our pre-
diction consistency regularization Lconst between
two views will hep to penalize this unexpected
alignment as it incorporates the difference between
representation vectors from two views V 1 and V 2

over the target examples in T tar (i.e., V 1(T tar)
and V 2(T tar)) into the loss function. Due to the
alignment V 1(Ssrc) ←→ V 1(T tar), this implic-
itly translates into injecting the difference between
representation vectors in V 1(Ssrc) and V 2(T tar)
into the loss function. However, this difference

is expected to be high to prevent the alignment
between V 1(Ssrc) and V 1(T tar) for two reasons:
(i) V 1 and V 2 are regularized to encode different
information via Ldiver, and (ii) Ssrc and T tar con-
tain examples with different coreference labels, im-
plying the large distance between their represen-
tation vectors for ECR. Consequently, the over-
all loss function to train models in our two-view
model is: L = Lpred + α1

discL1disc + α2
discL2disc +

αdiverLdiver + αconstLconst where α1
disc, α

2
disc,

αdiver, and αconst are trade-off parameters.

3.4 Optimal Transport

Another limitation of LANN is that it employs all
examples of the source and target language data
in Dsrc and Dtar for the language discriminators.
This is unexpected as faraway examples might not
provide useful training signals for the language dis-
criminators in general representation learning. As
such, we aim to only apply the language discrimina-
tors to examples in the source and target language
data that are close to each other. Given that, the
major question is how to effectively estimate the
distance between examples in the source and target
languages in ECR for this example selection. To
this end, as motivated in the introduction, our intu-
ition is to simultaneously consider representations
and coreference likelihoods of examples in Dsrc
and Dtar to compute this distance function.

In particular, we directly use the vector V (X)
obtained before as the representation vector of X
for our example selection purpose in LANN. After-
ward, to obtain a coreference likelihood score uX

for an example X , we compute the average of the
probabilities for being coreferential of X from the
two view’s coreference distributions P 1(y = 1|X)

and P 2(y = 1|X): uX = P 1(y=1|X)+P 2(y=1|X)
2 .

Consequently, to exploit both V (X) and uX of
examples X for distance estimation between exam-
ples, we seek to find an optimal alignment between
examples in the source and target language data
Dsrc and Dtar such that two examples with closer
representation vectors and coreference likelihoods
have better chance to be aligned to each other. As
such, this problem can be solved naturally with
optimal transport (OT) methods that facilitate the
computation of the optimal mapping between two
probability distributions.

Formally, given two probability distributions
p(s) and q(t) over domains S and T , and a cost
function C(s, t) : S × T → R+ for mapping S to
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T , OT finds the optimal joint distribution π∗(s, t)
(over S × T ), which has marginals p(s) and q(t)
and achieves cheapest transportation from p(s) to
q(t), by solving the following problem:

π∗(s, t) = min
π∈Π(s,t)

∑
s∈S

∑
t∈T

π(s, t)C(s, t)dsdt

s.t. s ∼ p(s) and t ∼ q(t)
(5)

where Π(s, t) is the set of all joint distributions
with marginals p(s) and q(t). Here, π∗ represents
a matrix whose entry (s, t) represents the prob-
ability of transforming the data point s ∈ S to
t ∈ T to convert the distribution p(s) to q(t).
To this end, our model defines the domains S
and T in OT via representation vectors for ex-
amples in the source and target language data
Dsrc and Dtar respectively: S = {V (Xi)|Xi ∈
Dsrc}, T = {V (Xi)|Xi ∈ Dtar}. As such,
the cost function C(Xi, Xj) (Xi ∈ Dsrc, Xj ∈
Dtar) is computed by the Euclidean distance be-
tween representation vectors of corresponding el-
ements, i.e., C(Xi, Xj) = ||V (Xi) − V (Xj)||22.
Also, the probability distributions p(Xi) and q(Xj)
(Xi ∈ Dsrc, Xj ∈ Dtar) are defined over the
normalized likelihood scores uXi and uXj , i.e.,
p(Xi) = softmax(uXi |Xi ∈ Dsrc) and p(Xj) =
softmax(uXj |Xj ∈ Dtar). Based on these defi-
nitions, the element (Xi, Xj) of the OT solution
matrix π∗, which is obtained by solving Equation
5, can be used as the distance between the example
Xi and Xj (Xi ∈ Dsrc, Xj ∈ Dtar), aggregating
the information from both representation vectors
V (X) and coreference likelihoods uX .

To facilitate the example selection, we leverage
π∗(Xi, Xj) to compute an overall score vi for each
example Xi ∈ Dsrc to capture the closeness of
Xi w.r.t examples in the target language using the

average distance: vi =

∑
Xj∈Dtar

π∗(Xi,Xj)

|Dsrc| . Simi-
larly, we obtain an overall score vj for each exam-

ple Xj ∈ Dtar: vj =

∑
Xi∈Dsrc

π∗(Xi,Xj)

|Dtar| . Finally,
based on the overall scores vi and vj , we only select
γ percents of examples in Dsrc and γ percents of
examples in Dtar that have smallest scores in their
corresponding sets to participate into the loss func-
tions L1disc and L2disc of the language discrimina-
tors for representation learning (i.e., the unselected
examples are not included in the discriminators’
loss functions). Here, γ is a hyper-parameter of
the model. Note that as solving the OT problem in
Equation 5 is intractable, we employ the entropy-
based approximation of OT and solve it with the

Sinkhorn algorithm (Peyre and Cuturi, 2019).

4 Experiments

Datasets and Hyper-parameters: We leverage
the multilingual KBP datasets annotated by NIST
(Mitamura et al., 2015, 2016, 2017) to perform
cross-lingual evaluation for ECR models in this
work. In particular, we use the KBP 2015 dataset
(Mitamura et al., 2015) that provides annotation for
360 documents in English to train ECR models. For
test and development data, we employ annotated ar-
ticles for ECR in English, Spanish and Chinese of
the KBP 2016 and KBP 2017 datasets. Here, KBP
2016 (Mitamura et al., 2016) involves 85 articles
for each language English, Spanish and Chinese
(i.e., 3 ∗ 85 = 255 documents in total) while the
number of articles for each language in KBP 2017
(Mitamura et al., 2017) is 83 (i.e., 3 ∗ 83 = 249
documents). As such, for each language (English,
Spanish or Chinese), when the models are tested
on KBP 2016, we use a half of the KBP 2017 ar-
ticles for the development data and the other half
for unlabeled data in the language discriminators.
Similarly for the testing on KBP 2017, articles in
KBP 2016 will be used for development and un-
labeled data. Finally, to focus the evaluation of
cross-lingual transfer learning, we employ golden
event mentions in documents in this work.

Following (Choubey and Huang, 2018; Huang
et al., 2019), we employ the official KBP 2017
scorer (version 1.8) to obtain the coreference resolu-
tion performance for models. This evaluation script
reports common performance metrics for ECR, in-
cluding MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998) and CEAF-e (Luo, 2005), BLANC
(Lee et al., 2012b) and Average CoNLL (the aver-
age of four prior metrics).

Hyper-parameters for the models are fine-tuned
by Average CoNLL scores over development data.
The suggested values from the fine-tuning involve:
5e-5 for the learning rate with the Adam optimizer
(selected from [1e-5, 2e-5, 3e-5, 4e-5, 5e-5]); 512
for the numbers of hidden units in the middle layers
of the feed-forward language discriminator D, D1

and D2 (selected from [64, 128, 256, 512, 1024]);
α = 0.1, α1

disc = 0.1, α2
disc = 0.1, αdiver = 0.01,

αconst = 0.01 for the trade-off parameters in
the loss functions of the models (selected from
[0.01, 0.05, 0.1, 0.5, 1]); and γ = 50% for the per-
centage of selected examples for the language
discriminators in the optimal transport (selected
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KBP 2016 Spanish KBP 2017 Spanish
Model B3 CEAFe MUC BLANC AVG-CoNLL B3 CEAFe MUC BLANC AVG-CoNLL
Baseline 86.67 80.17 71.30 80.47 79.65 84.24 78.17 60.86 73.93 74.30
LANN 86.61 79.86 71.80 80.63 79.72 84.70 78.83 61.56 74.60 74.92
CLMAOT 88.65 82.59 74.72 82.22 82.05 85.68 81.10 63.98 75.69 76.61

KBP 2016 Chinese KBP 2017 Chinese
Model B3 CEAFe MUC BLANC AVG-CoNLL B3 CEAFe MUC BLANC AVG-CoNLL
Baseline 85.44 78.01 64.35 77.88 76.42 81.38 74.77 63.64 70.39 72.54
LANN 86.87 79.80 64.59 78.65 77.48 81.56 74.95 63.82 70.68 72.75
CLMAOT 89.03 84.17 66.75 79.02 79.74 83.01 77.85 62.97 69.64 73.37

Table 1: Cross-lingual performance on the test sets of KBP 2016 and 2017 for Spanish and Chinese. Models
are trained on English documents of KBP 2015. The performance improvement of CLMAOT is significant with
p < 0.01 over all datasets.

from [10%, 30%, 50%, 70%, 90%]). Finally, we
use the base version of XLM-RoBERTa for the
models that has 768 dimensions for hidden vectors
of word-pieces, leading to the dimensionality of
768∗5 = 3840 for the representation vectors V (X)
and determining the shape of the feed-forward net-
works (e.g., FF, FF1, FF2, f1, f2, D, D1, D2).

Model Performance: We compare the proposed
model for ECR with cross-lingual multi-view align-
ment and optimal transport (called CLMAOT), the
baseline model with XLM-RoBERTa in Section
3.1 (called Baseline), and the Baseline model in-
troduced with LANN (called LANN) in Section
3.2. Table 1 reports the cross-lingual performance
of the models on the KBP 2016 and 2017 test
datasets for Spanish and Chinese (the models are
trained in English documents in KBP 2015). As can
be seen, LANN improves the cross-lingual perfor-
mance of Baseline over different target languages
and datasets (although the improvements are not
significant for some datasets, i.e., KBP 2016 Span-
ish and KBP 2017 Chinese), thus suggesting the
benefits of language discriminators for language
generalization for ECR. More importantly, compar-
ing with CLMAOT, we find that CLMAOT signifi-
cantly outperforms other baseline models over dif-
ferent performance measures and target languages
(i.e., Spanish and Chinese). In particular, for Span-
ish, CLMAOT is 2.33% and 1.70% better than
LANN on the Average CoNLL scores over KBP
2016 and KBP 2017 respectively. For Chinese, the
performance gaps between CLMAOT and LANN
are 2.26% and 0.62% for KBP 2016 and KBP 2017
(with the Average CoNLL scores), thus demonstrat-
ing the effectiveness of the proposed cross-lingual
model with multi-view alignment and optimal trans-
port for representation learning in ECR.

Interestingly, we have also evaluated the ECR

models (trained on English documents of KBP
2015) on the English documents of KBP 2016
and KBP 2017. The AVG-CoNLL scores of the
Baseline, LANN, and CLMAOT models on KBP
2016 from our experiments are 68.64, 69.21, and
71.14 respectively while the corresponding scores
for KBP 2017 involve 70.68, 71.75, and 73.48 (re-
spectively). As such, CLMAOT is also significantly
better than Baseline and LANN in English, thus
highlighting the advantages of CLMAOT for ECR.
Note that the worse performance of the models on
English (compared to those on Spanish and Chi-
nese) is potentially due to the larger number of
event mentions in English documents in KBP 2016
and KBP 2017 (e.g., KBP 2016 has 2505, 1261,
and 1390 event mentions in English, Spanish, and
Chinese documents respectively).

Ablation Study: Two major components in the
proposed model CLMAOT involve the multi-view
alignment for representation vectors and the OT
to select examples for LANN. This section evalu-
ates ablated versions and variants of such compo-
nents to reveal their contributions for CLMAOT.
First, to highlight the importance of the proposed
regularization terms in the loss function L for the
multi-view alignment component, the following
ablated models are considered: (i) CLMAOT -
LANN: this model eliminates the language dis-
criminators D1 and D2 with the loss terms L1disc
and L2disc from CLMAOT; (ii) CLMAOT - Diver-
sity: this model does not apply the diversity reg-
ularization over source-language examples Ldiver
in CLMAOT; and (iii) CLMAOT - Consistency:
this model excludes the consistency regulariza-
tion over target-language examples Lconst from
CLMAOT. In addition, we evaluate the variant (iv)
CLMAOT_OneView of CLMAOT where the two-
view representations V 1(X) and V 2(X) are not
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KBP 2016 Spanish KBP 2016 Chinese
Model B3 CEAFe MUC BLANC AVG-CoNLL B3 CEAFe MUC BLANC AVG-CoNLL
CLMAOT 88.65 82.59 74.72 82.22 82.05 89.03 84.17 66.75 79.02 79.74
CLMAOT - LANN 87.21 80.39 71.94 81.39 80.23 86.79 79.94 65.00 78.81 77.64
CLMAOT - Diversity 87.27 80.52 71.94 81.39 80.28 87.47 81.07 64.84 78.96 78.08
CLMAOT - Consistency 87.40 80.64 72.47 81.46 80.49 87.61 80.84 65.01 79.44 78.22
CLMAOT_OneView 86.66 80.29 71.74 80.75 79.86 86.65 79.64 65.53 79.15 77.74
CLMAOT - OT 87.50 80.84 72.41 81.65 80.60 87.22 80.48 64.95 78.85 77.88
CLMAOT - OTrep 87.75 81.03 73.13 81.84 80.94 88.26 82.15 66.02 79.90 79.08
CLMAOT - OTcoref 87.79 81.45 73.26 81.75 81.06 88.29 82.47 66.09 79.21 79.02

Table 2: Ablation study for CLMAOT over the KBP 2016 datasets for Spanish and Chinese.

employed, thus directly using V (X) for the lan-
guage discriminator and avoiding the diversity and
consistency regularization Ldiver and Lconst. Note
that the OT for example selection is still preserved
in CLMAOT_OneView.

Second, for the optimal transport component,
we evaluate the following variants for CLMAOT:
(v) CLMAOT - OT: this model removes the op-
timal transport component and utilize all exam-
ples in the source and target languages for the lan-
guage discriminators in CLMAOT (γ = 100%);
(vi) CLMAOT - OTrep: this variant retains the
OT component; however, instead of computing
the cost function C(Xi, Xj) based on the repre-
sentation vectors for Xi and Xj , this version as-
sumes a constant cost function CXi,Xj = 1, aim-
ing to demonstrate the necessity of induced repre-
sentation vectors for OT-based example selection
for language discriminators; and (vii) CLMAOT -
OTcoref : instead of relying on coreference likeli-
hood scores to obtain the probability distributions
p(Xi) and p(Xj), this model assumes uniform dis-
tributions for p(Xi) and p(Xj) in the OT computa-
tion. The motivation for this variant is to emphasize
the importance of introducing coreference likeli-
hood scores into OT for ECR.

Table 2 presents the performance of the models
on the KBP 2016 test sets for Spanish and Chinese.
It is clear from the table that the proposed regu-
larization terms in the multi-view alignment com-
ponent are helpful for CLMAOT as excluding any
of them would significantly hurt the performance.
We attribute this to the fact that the regularization
terms in multi-view alignment might prevent the
alignment of examples with different coreference
labels in the source and target languages for the lan-
guage discriminators. In addition, Table 2 shows
that the performance of CLMAOT degrades when
the optimal transport component or its elements
(i.e., representation vectors for cost computation
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Figure 2: Learning curves over KBP 2016 for Spanish.

and coreference likelihoods for distributions) are
removed. This thus proves the benefits of the de-
signed optimal transport component in CLMAOT
for cross-lingual ECR in this work.

Finally, Figures 2 and 3 show the learning curves
of Baseline, CLMAOT - LANN, and CLMAOT
over Spanish and Chinese where we vary the size
of the training data in English (from KBP 2015)
and test the models’ performance on the KBP 2016
test data. As can be seen, CLMAOT demonstrates
better cross-lingual performance than the baseline
models over different sizes of the training data,
thus further confirming the effectiveness of our
proposed model CLMAOT for ECR.

5 Conclusion

This paper presents the first study on cross-lingual
transfer learning for event coreference resolution.
We introduce the first baseline models for this prob-
lem, leveraging a state-of-the-art pre-trained lan-
guage models for multilingual NLP (i.e., XLM-
RoBERTa) and LANN for language-invariant rep-
resentation learning. We propose two novel tech-
niques for cross-lingual transfer learning based
multi-view alignment to avoid cross-label align-
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Figure 3: Learning curves over KBP 2016 for Chinese.

ment in the source and target languages and optimal
transport for example selection in LANN. Our ex-
periments provide baselines for future research and
demonstrate the benefits of the proposed methods
for cross-lingual transfer learning for ECR.
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