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Abstract

Previous existing visual question answering
(VQA) systems commonly use graph neu-
ral networks(GNNs) to extract visual relation-
ships such as semantic relations or spatial re-
lations. However, studies that use GNNs typ-
ically ignore the importance of each relation
and simply concatenate outputs from multiple
relation encoders. In this paper, we propose
a novel layer architecture that fuses multiple
visual relations through an attention mecha-
nism to address this issue. Specifically, we de-
velop a model that uses question embedding
and joint embedding of the encoders to ob-
tain dynamic attention weights with regard to
the type of questions. Using the learnable at-
tention weights, the proposed model can effi-
ciently use the necessary visual relation fea-
tures for a given question. Experimental re-
sults on the VQA 2.0 dataset demonstrate
that the proposed model outperforms existing
graph attention network-based architectures.
Additionally, we visualize the attention weight
and show that the proposed model assigns a
higher weight to relations that are more rele-
vant to the question.

1 Introduction

VQA (visual question answering) is a task that
aims to output an answer for a given question re-
lated to a given image. VQA is a multimodal task
that requires an understanding of multiple modali-
ties. Therefore, VQA has received much attention
in both computer vision and natural language pro-
cessing research.

Most related works on VQA focus on the prob-
lem of image understanding and various attention
mechanisms to fuse textual and image inputs. For
example, Bottom-up Top Down Attention (Ander-
son et al., 2018) uses the features from detection
models instead of CNN outputs and demonstrates
their effectiveness with VQA tasks. Additionally,
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Figure 1: Two examples showing simple weighted sum
results in wrong predictions. In both cases, although
one relation encoder has given the correct answer, the
final model’s answer is incorrect, and averaging them
result in wrong answer.

variable attention networks such as a stacked atten-
tion network (Yang et al., 2016) show that an atten-
tion mechanism between visual and text modalities
is necessary for solving VQA tasks to find the ob-
jects to be focused on to answer a given question.

However, to solve higher-level VQA problems
that require multi-hop reasoning, the model must
consider various relations, such as geometric re-
lationships between objects in the image. For this
reason, researchers try to extract higher-level visual
information using a graph neural network(GNN)
based relation encoder to aggregate the relational
information between the objects in an image.

For example, ReGAT (Li et al., 2019), an ex-
isting VQA architecture that uses GNNs, utilizes
various relations between objects using graph atten-
tion networks (Veličković et al., 2018). Specifically,
ReGAT uses three predefined relations: implicit, se-
mantic, and spatial. To capture visual information,
ReGAT constructs GNN-based relation encoders
for each relation and combines the output proba-
bility distributions from the encoders using fixed
weights to make the final prediction. However, this
process can be problematic because the importance
of each relationship for the given question cannot
be considered. Figure 1 shows two examples where
ReGAT does not make the correct prediction due
to using fixed weights. In all cases, even though the
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correct answer is given by one of the relation en-
coders, ReGAT finally predicts the incorrect answer
due to the incorrect answers in the other encoders.
For example, in the first example in Figure 1, a se-
mantic relationship is particularly important com-
pared to the other relationships because the model
must consider the relation defined as wearing be-
tween the man and the tie. And the prediction from
this semantic relation encoder is correct. However,
the other encoders, including implicit and spatial,
outputs incorrect answers because these relations
are less related to the given question. Therefore,
while ReGAT uses various attention mechanisms
on objects to obtain relation-aware features, sim-
ply using the average or weighted summation with
fixed weights to combine the relation-aware fea-
tures can lead to incorrect predictions when aver-
aging is insufficient to smooth out the noise from
the less important relation features.

To resolve this shortcoming of previous models,
we propose a novel model that can dynamically
select a proper graph representation by considering
the input question. We use attention mechanisms
to make full use of relation encoders by giving
them question-adaptive weights. Specifically, we
train all relation encoders concurrently and learn
adaptive weights to form a combined joint represen-
tation. Using these attention weights, the proposed
model assigns higher weights to the relations that
are meaningful for a given question. Experimental
results demonstrate that the proposed model outper-
forms the previous existing model. Our model has
an accuracy of 64.27%, compared to the existing
model with 62.65% in VQA v2.0 dataset. Addition-
ally, the proposed attention module can be easily
visualized and has a natural form of interpretability.
Thus, we analyze examples through the visualiza-
tion of attention weights and verify that our model
properly assigns attention weights to the relevant
relationships for the question. Our contributions
can be summarized as follows:

• We propose a novel attention-based VQA model
that can dynamically select an essential relation
for the given question.

• Experimental results show that the proposed
model with adaptive attention weights for each
relation outperforms the existing model.

• We also visualize the attention weights given to
each relation and show that the proposed model
can properly assign higher weights to question-
related relations.

2 Related Work

2.1 Visual Question Answering
Models that are designed to solve VQA (Antol
et al., 2015) are typically composed of four parts:
an image encoder, a question encoder, multimodal
fusion, and an answer predictor. In many studies,
such as (Yang et al., 2016; Fan and Zhou, 2018;
Patro and Namboodiri, 2018; Lu et al., 2016; Teney
et al., 2018; Nam et al., 2017; Zhu et al., 2017; Ma-
linowski et al., 2018), CNN-based attention mecha-
nisms are frequently used in image encoders, which
use the attention mechanism with images to concen-
trate on useful objects based on the input questions.
Conversely, (Lu et al., 2016; Nam et al., 2017; Fan
and Zhou, 2018; Yang et al., 2020) also uses atten-
tion mechanisms in question encoders to produce
image-adaptive question embeddings.

Many previous works on VQA (Yao et al., 2018;
Kipf and Welling, 2016; Santoro et al., 2017; Hu
et al., 2018; Cadene et al., 2019; Yang et al., 2018;
Teney et al., 2017; Norcliffe-Brown et al., 2018;
Wang et al., 2019) use graph attention networks to
extract visual features from images. Graph atten-
tion networks can more accurately identify various
relations, such as semantic relations or spatial re-
lations, between important objects with regard to
questions, making the model more accurate and
more interpretable. Among those studies, (Li et al.,
2019) adds another encoder called an implicit re-
lation encoder and applies each relation encoder
directly to images to produce a graph representa-
tion for each relation. Then the model uses those
representations equally to predict the answer.

Our model also uses relation encoders and graph
representations but learns how much from each en-
coder’s output will be used based on each question.

2.2 Relation-aware Graph Attention
Network

The relation-aware graph attention net-
work(ReGAT) uses a graph attention network
to solve visual question answering tasks. Using
a graph network to tackle such tasks was also
previously explored in (Yao et al., 2018), where
a pretrained semantic relation classifier was used
to learn semantic relationships between objects.
Using this information, a graph network was
created, and graph convolution was used to finally
obtain the relation-aware representation of each
object. This method has been shown to be suc-
cessful in image captioning. ReGAT improves this
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Figure 2: Overall architecture of the proposed model. After the encoders and graph attention layer, the question-
relevant relation selection layer efficiently aggregates several visual relationships through an attention mechanism.

graph network using two additional relation types,
spatial relations, implicit relations, and graph
attention, instead of graph convolution. Spatial
relation graphs are similar to semantic relation
graphs but use geometric information between
the objects to construct the graph. An implicit
relation graph, conversely, uses no preexisting
relationships between objects. A fully-connected
graph is formed with the detected objects as
nodes, and the interaction between objects is
captured using attention over this graph. Graph
attention allows each node in the neighborhood to
have different importance and can capture more
dynamic information between objects.

3 Model

Our model consists of four major components: a
question encoder, an image encoder, a graph atten-
tion layer, and a question-relevant relation selec-
tion layer. The overall architecture of the proposed
model is shown in Figure 2. In this section, we also
describe the multimodal fusion method, which is a
technique for fusing questions and image informa-
tion.

3.1 Encoder

Our model uses a bidirectional RNN with a gated
recurrent unit(GRU) (Cho et al., 2014) as the
question encoder. Bidirectional RNN uses two
hidden layers to process the input sequence in
both directions. GRU is a simplified variant of

LSTM (Hochreiter and Schmidhuber, 1997) that
uses fewer parameters. The question encoder is
built using these two well-known architectures. The
output question embedding is later used as an input
to the graph attention layer, multimodal fusion, and
question relevant relation selection layer.

For the image, we use Faster R-CNN (Ren et al.,
2015), which can identify the image as a set of
objects. Each object has a visual feature vector
vi and a bounding-box feature bi that contains its
location information. These objects are forged into
a graph that is used as inputs to the graph attention
layer.

3.2 Graph Attention Layer

The graph attention (Wang et al., 2019) layer in-
jects visual relationship information between ob-
jects into their corresponding visual features. To fa-
cilitate this process, we construct a fully-connected
graph where each node represents each object from
an image. Then, we aggregate the information from
each node with the following procedure:
Each node in the neighborhood of vi including it-
self, is projected by matrixW ; then the edge weight
αij is multiplied. All results are then summed and
passed through a nonlinearity function to produce
v∗i , the relation-aware visual feature for object i. To
make these relation graphs question-adaptive, ques-
tion embedding is concatenated to each object’s
visual feature before applying graph attention. The
way the edge weights are calculated differs depend-
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ing on the type of relation graph.

Algorithm 1: Graph attention
Data: G initial graph, q question embedding, W

projection matrix
Result: G∗ relation-aware graph
Let G∗ be an empty graph;
for each v ∈ G.V do

Let n be a new node;
S = 0;
for each w ∈ G.Adj[v] do

wq = [w.visual||q];
wq = wqW ;
α =

EDGE-WEIGHT(v, wq, w.bbox, relation type);

S = S + α ∗ wq;
end
S = RELU(S);
n.visual = S;
ADD-VERTEX(G∗, n);

end
return G∗;

Implicit Relation Graph If the model is trained
with no predefined edge weights, an implicit rela-
tion graph is created, where the model learns the
relationship between objects on its own.

The edge weights for the implicit relation graph
are learned using both the visual feature v and
bounding-box feature b of each object. The detailed
equation is as follows (Hu et al., 2018):

αij =
αb
ij · exp(αv

ij)∑K
j=1 α

b
ij · exp(αv

ij)
(1)

αv
ij is calculated by the scaled dot-product of the

two visual features:

αv
ij = (Uv

′
i)
T · V v′j (2)

αb
ij is computed by the following equation:

αb
ij = max(0, w · fb(bi, bj)) (3)

,where fb represents the geometric relationship be-
tween objects i and j. Further details are available
in (Hu et al., 2018).

However, if certain relationships between objects
are known beforehand and the edges are labeled
based on this information, the model creates an
explicit relation graph (Yao et al., 2018). We use
two types of explicit relation graphs in this study.

Semantic Relation Graph The first explicit re-
lation graph used is the semantic relation graph.
Semantic relationships between objects are learned

Relation type Predicate list

Semantic wearing, holding, sitting on,
standing on, riding, eating,

hanging from, carrying, attached to,
walking on, playing, covering,
lying on, watching, looking at

Spatial 1(inside), 2(covering),
3(overlap with IoU above 0.5),

4-11(overlap with IoU below 0.5)

Table 1: List of predicates used in the construction of
semantic and spatial relation graphs.

beforehand using a semantic relation classifier on
a visual relationship dataset. Then, if objects i and
j have relationship pi,j , the edge between node i
and j is labeled pi,j . Objects with no semantic re-
lationships have their edges pruned. A total of 15
such semantic relationships are used. The list of
relationships used is shown in Table 1.

Edge weights are calculated similarly to the im-
plicit relation case but using only the visual features
of each object. However, the direction and label of
each edge must be considered. Further details are
available in (Li et al., 2019).

Spatial Relation Graph The next explicit rela-
tion graph used is the spatial relation graph which
encodes positional information between objects.
Similar to the semantic relation graph, if two nodes
i and j have a semantic relationship p, their edges
are labeled pi,j . Spatial relations are classified into
11 categories, and the category number and its
meaning are shown in Table 1.

Attention weights are calculated in the same as
with the semantic relation graph.

3.3 Multimodal Fusion

The graph attention layer produces relation-aware
visual features for each object in the image. These
features must be fused with question embedding
to form a joint representation. The general form of
multimodal fusion is computed as follows:

J = f(v, q) (4)

,where v is the collection of relation-aware visual
features of each object, q is the question embed-
ding, and f is the multimodal fusion type. Popu-
lar multimodal fusion methods for VQA include
bottom-up top-down (Anderson et al., 2018), multi-
modal Tucker fusion (Ben-Younes et al., 2017) and
bilinear attention networks (Kim et al., 2018). We
use BUTD and BAN fusion in the proposed model.
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Bottom-up Top-down Fusion In the bottom-up
top-down (BUTD) fusion method (Anderson et al.,
2018), question embedding and visual features are
fed into nonlinear layers and joint representation is
obtained by elementwise multiplication of the re-
sults. However, because there are k object features
and just one question embedding for each image-
question pair, an attention mechanism is used for
each image feature with the question as a query to
obtain one overall summary v∗ of k objects in the
image:

v′ = σ(vWv + bv) (5)

q′ = σ(qWq + bq) (6)

p = softmax(σ((v′ ∗ q′)Wh + bh)) (7)

v∗ = v · p (8)

,where v ∈ Rk×v, q ∈ R1×q, Wv ∈ Rv×h,
Wq ∈ Rq×h, Wh ∈ Rh×1, bv ∈ Rh, bq ∈ Rh,
bh ∈ R1, and σ denote the ReLU nonlinearity func-
tion. When calculating the product of v

′
and q

′
, q
′

is repeated k times, so that the same question em-
bedding is multiplied to each of the visual features.

After obtaining v∗, it is then fed into nonlinear
layers along with q, and the results are multiplied
elementwise to compute the joint representation J
finally as follows:

J = σ(v∗W
′
v + b

′
v) ∗ σ(qW

′
q + b

′
q) (9)

Bilinear Attention Networks The bilinear at-
tention network(BAN) (Kim et al., 2018) fusion
method takes a single-channel input and a mul-
tichannel input as inputs and combines them to
form a single-channel joint representation. In the
proposed model, the question vector q is the single-
channel input that will be used across the multi-
channel input relation-aware visual features v to
produce the joint representation J . The detailed
equations are as follows:

a = ((qU) ∗ (vV ))P (10)

p = softmax(a) (11)

v∗ = v · p (12)

,where v ∈ Rk×v, q ∈ R1×q, U ∈ Rq×h, V ∈
Rv×h, and P ∈ Rh×m, where m denotes the num-
ber of attention heads. These equations indicate that
the vector on the left side is repeated k times and
multiplied elementwise to the right matrix. When
using multiple attention heads(m > 1), v∗ is the
concatenation of all the attended outputs.

Once v∗ is obtained, the final joint representation
J is calculated as follows:

J = ((qU
′
) ∗ (v∗V ′))P ′ (13)

3.4 Question Relevant Relation Selection
The QRR (question-relevant relation) layer calcu-
lates the combined joint representation J∗ given the
joint representation of each relation, Jimp, Jsem,
Jspa and the question embedding q.

Most questions do not use all relations with an
equal amount of importance to predict the answer.
For example, in the right example of Figure 1, the
question requires understanding the spatial relation-
ship between the riders and the motorcycle. Spatial
information between objects is primarily encoded
in the spatial joint representation, Jspa. However,
the semantic joint representation Jsem, which en-
codes interactive dynamics between objects, plays
nearly no part in answering this question. Thus,
using fixed weights for each relation(e.g., 0.3, 0.4,
0.3, respectively in the original model) to predict
the answer will not produce the best result due
to noise from unnecessary attention given to irrele-
vant relation encodings like this example. The QRR
layer gradually determines which of these relations
is the most essential in deriving the correct answer
to the given question by feeding the three repre-
sentations and the given question to an attention
network.

More specifically, the QRR layer computes the
combined joint representation J∗ through the fol-
lowing attention mechanism:

h = tanh((J
′
Wv + bv)⊕ (qWq + bq)) (14)

p = softmax(hWp + bp) (15)

,where J
′ ∈ R3×d is the concatenation of the

three joint representations, and q ∈ Rq is the ques-
tion embedding. J

′
and q are first passed through

a linear layer with Wv ∈ Rd×k, bv ∈ R3×k,
Wq ∈ Rq×k, and bq ∈ R1×q, where k is a hy-
perparameter denoting the dimension of the hidden
layer. The operator ⊕ indicates that the row of
the second operand is to be added to each row of
the first operand. The resulting matrix is passed
through tanh nonlinearity which yields h ∈ R3×k.
The attention distribution over the different rela-
tions p ∈ R3 are finally obtained by passing h
through a linear layer with Wp ∈ Rk×1, bp ∈ R3×1

and the result is passed through softmax. Each ele-
ment of p = [pimp psem pspa]

T represents the
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optimal weight of each relation given question q.
The combined joint representation J∗ can then be
computed by the inner product of J

′
and p:

J∗ = pimpJimp + psemJsem + pspaJspa (16)

This question-adaptive combined joint represen-
tation is then fed into the classifier to make a pre-
diction. The combined joint representation J∗ is
a selective summary of the three relations tailored
to the input question q. Compared to the ReGAT,
which simply uses fixed weights regardless of the
question, the proposed model determines weights
dynamically and produces an exclusive representa-
tion of the image for the given question. The atten-
tion mechanism used in this study is similar to that
used in bottom-up top-down multimodal fusion.
However, in multimodal fusion, attention values
are calculated among the different objects in an im-
age. In the QRR layer, the attention distribution is
computed over the three different relations, which
allows the model to make more informative predic-
tions and achieve higher accuracy. The QRR layer
also adds interpretability to the original model by
allowing us to examine the weight of each relation
type directly.

4 Experiments

4.1 Datasets

We evaluate the proposed model using the VQA
2.0 (Goyal et al., 2017) dataset. VQA 2.0 dataset
contains real images from MSCOCO (Lin et al.,
2014) with questions in 3 categories: Yes/No, Num-
bers and Others. VQA 2.0 dataset was proposed
to counter language priors present in the previous
VQA dataset by providing complementary images
that are similar but have different answers for the
same question. There are 256,016 images and an
average of 5.4 questions per image in the dataset.
And the dataset has ten answers collected from
human annotators for each image.

4.2 Implementation Details

For the question encoder, we set the question em-
bedding dimension and GRU hidden dimension as
1024. We also set 1024 as the dimension of the
relation-aware visual features and the QRR hidden
layer. We use bottom-up and top-down fusion to
fuse the visual features and question embedding.

We pretrain the semantic relation classifier using
the Visual Genome dataset (Krishna et al., 2017),

Model Yes/No Others Numbers Overall
BUTD 80.30 55.80 42.80 63.20

MUTAN 81.45 47.17 37.32 60.17

Implicit 77.50 52.44 44.21 61.39
Semantic 76.85 51.35 44.19 60.61
Spatial 77.49 52.54 43.79 61.38

ReGAT+BUTD 78.80 45.82 53.57 62.65
ReGAT+BAN 81.22 49.87 55.45 65.02
Ours+BUTD 79.71 46.62 56.01 64.27
Ours+BAN 80.84 49.36 56.65 65.37

Table 2: Performance on VQA 2.0 dev split with differ-
ent models.

Figure 3: Average validation error rate of four models
(the proposed model, implicit only, semantic only, spa-
tial only).

which contains 108,000 images with labels for ob-
jects, attributes, and relationships. The classifier is
trained over the 14 semantic relations that we have
defined in Table 1.

In the experiments, we use the PyTorch
1.3.1 (Paszke et al., 2017) framework to implement
the proposed model. A batch size of 64 per GPU is
used and we train the model for 20 epochs. We use
a gradual warm-up learning rate, with the learning
rate set initially to 0.0005 and increase linearly to
0.002 in the first 4 epochs. The learning rate is re-
duced by half every 2 epochs after the 15th epoch.
We use the Adamax optimizer (Kingma and Ba,
2014) with weight normalization and dropout (Sri-
vastava et al., 2014). We then train the model using
a binary cross-entropy loss.

We measure the accuracy using the following
metric:

acc(p) = min

(
1,

∑10
i=1 1(ai = p)

3

)
(17)

,where p is the model’s prediction and ai is the
answer provided by human annotators.

4.3 Performance Comparison

Table 2 summarizes the results of the proposed ex-
periment. We compare the results with the results
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Figure 4: Model output examples and visualization of
the attention weights for the QRR layer. Each column
represents the cases in which each relation is given the
highest weight.

of single relation encoder models and several ex-
isting VQA models, including ReGAT, BUTD and
MUTAN. We also present a graph that shows the
average validation error rate of each relation and
our model for each epoch in Figure 3.

When using the BUTD fusion method, the pro-
posed model outperforms ReGAT by 1.62%p in ac-
curacy. We also observe consistent improvement in
accuracy when looking at the results for each ques-
tion type. Our model surpasses ReGAT by 0.91%p
in Yes/No questions, 0.80%p in Others questions,
and 2.44%p in Number questions. The table also
shows the results when using BAN as the multi-
modal fusion method. The proposed model out-
performs ReGAT by 0.35%p in accuracy overall.
However, results are somewhat mixed if we con-
sider the accuracy based on each question type. For
the Others questions, the proposed model yields
better accuracy than any other model and outper-
forms ReGAT by 1.20%p. For Yes/No and Num-
bers questions, however, the proposed model fails
to achieve the accuracy produced by ReGAT by
0.38%p and 0.51%p, respectively, even though the
proposed model surpasses all single relation mod-
els. Compared with other existing models, the pro-
posed model with any fusion method outperforms
BUTD and MUTAN by more than 1%p. The ac-
curacy of each type of question shows us that the
proposed model performs better with Number ques-
tions, even surpassing the models that outperform

Figure 5: Cases where the model predicts incorrect an-
swers.

the proposed model in overall accuracy.
To interpret the relative importance of each rela-

tion type, we analyze the weights used with each re-
lation encoder on the VQA v2.0 validation dataset.
On average, the implicit encoder has a weight
of 5.78%, the semantic encoder has a weight of
73.70%, and the spatial encoder has a weight of
20.52%. These results show that the three relations
are not equally important in answering each ques-
tion, highlighting our claim that assigning fixed
weights of 0.3, 0.4, and 0.3 to each encoder is not
optimal. In fact, semantic relation has a much larger
weight than the other two relations in most cases.
We also define weights above 0.05 as the meaning-
ful usage of that relation. Based on this criterion,
29.88% of the examples show meaningful usage
of all three relations, which further highlights that
in the remaining 70.12% of the dataset, using two
types or one type of relation encoder is sufficient
for predicting the correct answer.

4.4 Qualitative Analysis

We visualize the amount of attention given to each
relation encoder depending on the input question,
as shown in Figure 4. We present certain image-
question pairs from the dataset that best demon-
strate the usefulness of the QRR layer and visu-
alize the attention given to each relation using a
bar graph with each number representing the rel-
ative weight. We also show the predictions of the
single-relation models and ReGAT below the ques-
tion along with the proposed model’s prediction for
comparison.

In Figure 4, we present 12 image-question pairs
along with predictions from each model. We orga-
nize them into three columns where each column
contains examples with the most attention in im-
plicit, semantic, and spatial relations, respectively.
Across all examples, we see that the QRR layer
has correctly captured the most relevant relation in
answering the given question.

The examples for the implicit weighted exam-
ples in Figure 4 (a) contain questions that require
a thorough understanding of the image to answer.
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For example, the first entry asks whether the animal
in the picture is in a given state or not. This ques-
tion cannot be easily answered with only a superfi-
cial description of the image. The implicit relation
graph has learned this relationship correctly, and
the proposed model identified this relation as most
important. The third example shows why the pro-
posed model yields higher accuracy than ReGAT.
Only the implicit-relation model yields the correct
answer, possibly by connecting the small cluster
of white pixels in the top left corner to an object
seen at night. The other two relations provide in-
correct answers; however, ReGAT cannot filter out
such misleading information. The proposed model
accurately selects the implicit relation as the most
critical relation by giving it a weight of 0.641.

The semantically weighted examples in Figure 4
4 contain questions and answers that are heavily
related to the 14 semantic relations that we have
defined. The first example asks for the action of the
dog. In this example, only the semantic-encoder
that is most relevant to the question yields the cor-
rect answer. Unlike ReGAT that fails to answer
correctly, our model gives higher weights to the
most important relation to deliver the correct an-
swer. The third example shows that ReGAT is un-
able to guess correctly due to suboptimal weight
distribution. The proposed model blocks out all un-
necessary noise by assigning the semantic relation
the largest weight for this image-question pair.

The examples in Figure 4 (c) show questions that
involve understanding the geometric relationship
between objects. The third example demonstrates
the effectiveness of the proposed model, which has
correctly determined that objects that have an ’on’
spatial relation with the motorcycle are the most
important in giving the right answer, of which there
are none. Other single-relation models and ReGAT
possibly suffer from question bias and provide an
incorrect answer of 1, which may be correct in
many different cases.

The examples in the first and second columns
of the last row are interesting in that the proposed
model is the only network that has correctly pre-
dicted the answer, which shows that the proposed
method can derive new answers using optimized
weights for each relation type.

4.5 Error Analysis

We explore frequently observed error cases where
the proposed model fails to produce the correct an-

swer and present examples in Figure 5. For each
example, the prediction of the proposed model is
shown in red, and the true label is shown in green.
From the examples, we observe the typical reasons
for these errors. Most error cases are due to the
incorrect prediction of the relation encoder itself,
even though our model correctly predicts the type
of visual relation. In the first image, the question
asks for the direction of motion of the traffic. The
bar graph on the right shows that the proposed
model determines the implicit relation as the most
important relation. However, the implicit relation
encoder itself fails to encode such information in
the visual features correctly, and our model prop-
agates the incorrect answer to the final output. In
the second image, the most important relationship
is the semantic relation, where the relation "sitting
on" is explicitly encoded between the objects "per-
son" and "bench". However, the proposed model
fails to yield the correct result in this case by as-
signing near-zero weight to the semantic relation.
The final prediction then deviates from the correct
answer by considering to irrelevant relations. In
the last image, the question asks for the number
written on the bus on the right. It is clear that the
spatial relationship should be used, and indeed, the
proposed model assigned the highest weight to the
spatial relation. However, the predicted answer ’38’
is incorrect, which may occur because the qual-
ity of the picture is low, and ’36’ may even be
interpreted as ’38’ by humans. Thus, even if the
proposed model correctly identifies the best rela-
tion for the given question, it still predicts incorrect
results if the optimal encoder itself cannot answer
the question correctly.

5 Conclusion

In this paper, we propose a novel stacked attention
model that assigns dynamic attention weights for
various visual relations with the VQA model. We
show that the proposed model yields higher accu-
racy than existing graph attention network models
that equally consider each relation. Additionally,
the proposed model, which uses an attention mecha-
nism, has a natural form of interpretability through
the visualization of learnable weights multiplied
by each encoder’s output. By analyzing attention
weights, we show that the proposed method pro-
vides higher attention to the desired relation en-
coder.
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