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Abstract

Recent vision-language understanding ap-
proaches adopt a multi-modal transformer pre-
training and finetuning paradigm. Prior work
learns representations of text tokens and visual
features with cross-attention mechanisms and
captures the alignment solely based on indi-
rect signals. In this work, we propose to en-
hance the alignment mechanism by incorporat-
ing image scene graph structures as the bridge
between the two modalities, and learning with
new contrastive objectives. In our prelimi-
nary study on the challenging compositional
visual question answering task, we show the
proposed approach achieves improved results,
demonstrating potentials to enhance vision-
language understanding.

1 Introduction

Vision-language tasks, such as image captioning
(Vinyals et al., 2015), visual question answering
(Antol et al., 2015), and visual commonsense rea-
soning (Zellers et al., 2018), serve as rich test-beds
for evaluating the reasoning capabilities of visually
informed systems. These tasks require joint un-
derstanding of visual contents, language semantics,
and cross-modal alignments. In particular, beyond
simply detecting what objects are present, models
have to understand comprehensively the semantic
information in an image, such as objects, attributes,
relationships, actions, and intentions, and how all
of these are referred to in natural language.

Inspired by the success of BERT (Devlin et al.,
2019) on a variety of NLP tasks, there has been
a surge of building pretrained models for vision-
language tasks, such as ViLBERT (Lu et al., 2019),
VL-BERT (Su et al., 2020), and UNITER (Chen
et al., 2020). Despite the impressive performance
on several vision-language tasks, these models suf-
fer from fundamental difficulties in learning ef-
fective visually grounded representations, as they
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Figure 1: A Visual question-answering example illus-
trating the effectiveness of using scene graph as the
bridge for cross-modal alignment

rely solely on cross-attention mechanisms to cap-
ture the alignment between image and text features,
and learn from indirect signals without any explicit
supervisions. Recently, Oscar (Li et al., 2020) in-
troduced object tags detected in images as anchor
points to ease the learning of semantic alignments
between image regions and word sequences. How-
ever, individual object tags in isolation ignore the
rich visual information, such as attributes and rela-
tionships between objects. Without such informa-
tion as contextual cues, the core challenge of ambi-
guity in visual grounding remains difficult to solve.
As Figure 1 shows, in order to answer the question
correctly, the model needs to reason about object
relationships. Without the relation "on" between
"cup" and "table", the model mistakenly thinks the
"cup" is on the "tray".

This work tackles the above challenges by intro-
ducing visual scene graphs as the bridge to align
vision-language semantics. Extracted from the im-
age using modern scene graph generators, a visual
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scene graph effectively depicts salient objects and
their relationships. The visually-grounded inter-
mediate abstraction permits more effective vision
language cross attention for disambiguation and
finer-grained alignment. Specifically, we propose
Samformer (Semantic Aligned Multi-modal trans-
FORMER) that learns the alignment between the
modalities of text, image, and graphical structure.
For each of object-relation labels in the scene graph,
the model can easily find the referring text seg-
ments in natural language, and then learn to align to
the image regions already associated with the scene
graph. On the basis of the visually-grounded graph,
we apply a contrastive loss and a masked language
model loss that explicitly encourage image-text
alignment. Furthermore, we propose a per-triplet
(object, relation, subject) contrastive loss to align
object and relation representations across the two
modalities respectively.

We adopt a set of datasets, including Microsoft
COCO Captions dataset (Lin et al., 2014), Visual
Genome (Krishna et al., 2016), VQA (Antol et al.,
2015), GQA (Hudson and Manning, 2019), Flicker
30k (Young et al., 2014), SBU (Ordonez et al.,
2011), and Conceptual Caption (Sharma et al.,
2018) to pre-train our model and fine-tune it on
visual compositional question answering (GQA)
(Hudson and Manning, 2019). Our preliminary
analyses show improved performance and demon-
strate the potential of the proposed approach on
broader visual-language applications.

2 Semantic Aligned Vision and
Language Transformer

This section presents the proposed semantic aligned
multi-modal transformer (Samformer) for vision-
language pre-training. Figure 2 provides an overall
architectural view of the method.

Given a pair of an image I and a text sequence w
describing the image, the goal of vision-language
pre-training is to learn a joint representation of
the pair which captures the alignment between the
words and image regions and can be adapted to
assist downstream tasks. Same as the previous
vision-language models (Li et al., 2020; Chen et al.,
2020), the proposed Samformer first separately en-
codes each modality into singular embedding fea-
tures, and then employs a multi-layer self-attention
transformer to align the features and obtain a cross-
modal contextualized representation.

Samformer differs critically from previous meth-

ods in that we incorporate the visual scene graph ex-
tracted from the image to enhance the cross-modal
representation learning. The structured, visually-
grounded graph encodes rich semantic information
(e.g., objects, relationships), which, compared to
isolated object tags (Li et al., 2020) and bare image
text singular features (Chen et al., 2020; Lu et al.,
2019; Su et al., 2020), offers valuable cues to re-
solve ambiguity and bridge together text and visual
semantics. We describe in details how visual scene
graph is integrated to interplay with the text and
image modalities for better alignment (section 2.1),
and on this basis how contrastive learning strategies
are devised for fine-grained alignment supervisions
(section 2.2).

Figure 2: Architecture of the proposed Samformer.

2.1 Cross-modal Alignment with Visual
Scene Graph Encoding

Given an image-text pair (I,w), we first extract
the visual scene graph G from the image with an
off-the-shelf scene graph generator (Tang et al.,
2020). A scene graph is a directed graph with
the nodes representing the objects and the edges
depicting their pairwise relationships. We repre-
sent the graph as a set of triplets, where a triplet
(oi, rij , oj) denotes the relation type rij between
object oi and object oj , e.g., (“woman”, “riding”,
“motorcycle”) in Figure 2. Crucially, the scene
graph is already visually grounded. That is, each of
the components in the triplets is associated with the
corresponding regions in the image. For example,
the object “woman” is associated with the bound-
ing box of woman while the relationship “riding”
corresponds to the bounding box that contains both
the woman and the motorcycle. With such aligned
object/relationship tokens and image regions, the
visual scene graph thus serves as a bridge between
the original image I and text sequence w. That
is, the model can easily find the correspondence
between the text segments in the sequence w and
the triplet tokens in the scene graph, since both are
in the text modality. The text segments are then
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naturally aligned with the respective image regions
associated with the scene graph. More importantly,
the triplets containing both object and relationship
information provide the model with ample contex-
tual cues to resolve ambiguity. For example, Fig-
ure 1 shows the relationship "on" between "cup"
and "table" resolves the ambiguity whether the cup
is on the table or the tray.

In implementation, we first embed tokens in both
the text sequence w and scene graph triplets (ex-
tracted by SGG (Tang et al., 2020)) with a pre-
trained BERT embedder (Devlin et al., 2019). We
then extract the visual embedding of each image re-
gion and also the union region of each triplet with
the Faster R-CNN component (Ren et al., 2015)
used in the bottom-up-attention (Anderson et al.,
2018). All the embedding vectors are then fed into
a transformer network with self-attention mecha-
nisms to infer the alignment, as shown in Figure 2.
In particular, to inform the transformer about the
known alignment between the scene graph triplet
tokens and image regions, we augment each triplet
embedding and its corresponding image region em-
bedding with the same position embedding.

2.2 Pre-training
We describe the pre-training method of the model.
After pre-training, the model can then be applied
to downstream visual-language tasks with efficient
finetuning.

2.2.1 Masked Language Modeling (MLM)
This task is very similar to the Masked Language
Modeling (MLM) task utilized in BERT (Devlin
et al., 2019). The key difference is that visual clues
are incorporated to predict the masked words for
capturing the dependencies among visual and lin-
guistic contents. During pre-training, each word in
the input sentence is randomly masked (at a prob-
ability of 15%). For the masked word wm, its to-
ken is replaced with a special token [MASK]. The
model is trained to predict the masked words, based
on the unmasked words w\m, the scene graph G,
and the visual features v of image regions (Fig-
ure 2). During pre-training, the final output feature
at the position of the masked word is fed into a clas-
sifier over the whole vocabulary, and we minimize
the prediction loss:

LMLM(θ) = −Ew,m logPθ
(
wm | w\m, G,v

)
(1)

The MLM task learns to use the relevant tokens in
triplet tags which effectively aligns the representa-

tion between text w and graph G.

2.2.2 Contrastive Losses for Cross-Modal
Alignment

As shown in Subsection 2.1, our model aligns the
scene graph of an image with paired text using
triplet tags as the bridge. We use two Contrastive
loss terms. One is at the sequence level to align
G and v. The other is to align each triplet tag and
its region features. For each training example, we
randomly decide whether to use the first term or
second. As training progresses, we increase the
probability of using the first term. The reason to
use the sequence level loss is because many down-
stream visual-language problems directly finetune
the sequence level representation.

Specifically, given an image, we sample a object-
relation triplet g from its scene graph G. We then
replace the scene graph G by G′ randomly sampled
from the entire dataset with probability 50%. De-
note H the resulting scene graph. We apply a fully-
connected (FC) layer as a binary classifier on top
of the encoder output of [CLS] to predict whether
the scene graph is original (y = 1 if H = G) or has
been replaced (y=0 if H = G′). The cross-modal
contrastive loss at a global level (CMCG) is defined
as:

LCMCG(θ) = −Ew,G logPθ (y | w, H,v) (2)

The second contrastive loss at the triplet tag level
is constructed as follows. For each triplet tag g, we
randomly determine with probability 50% whether
we replace with another tag, g′. We apply a fully-
connected (FC) layer as a binary classifier on top
of the encoder output of g′ and its region features
to predict whether the tag is original (z = 1) or has
been polluted (z = 0). The cross-modal contrastive
loss for each triplet tag (CMCT) is defined as:

LCMCT(θ) = −Ew,g logPθ
(
z | w, G\g, g

′,v
)

(3)

3 Preliminary Experiments

3.1 Experimental Settings
We initialize our model with Oscar (Li et al., 2020)
base model weights and pre-train it further on
the collected image-text corpus. The scene graph
used in our model is extracted using the pretrained
model of SGG (Tang et al., 2020).

After pre-training, we conduct our preliminary
experiments on GQA (Hudson and Manning, 2019).
The task focuses on visual reasoning and compo-
sitional question answering in real-world settings



77

Method Test-dev Test-std
Oscar 58.40 59.01
Samformer w/ CMCG 60.46 60.33
Samformer w/ CMCG+CMCT 60.51 60.62
Improvement 2.11 1.61

Table 1: Comparison of Samformer and Oscar on
GQA test sets (fine-tuned on train-bal only).

Method Test-dev-open Test-std-open
Oscar 42.27 43.32
Samformer w/ CMCG 46.36 46.77
Samformer w/ CMCG+CMCT 45.88 46.26
Improvement 4.09 3.45

Table 2: Comparison of Samformer and Oscar on
GQA open questions (fine-tuned on train-bal only).

which involve diverse reasoning skills including
spatial reasoning, relational reasoning, logic and
comparisons. The task is formulated as a classi-
fication problem that chooses an answer from a
shared set of 1,852 candidate answers. We select
the particular task in our preliminary study because
the task would benefit from effective alignment of
the text-vision modalities on objects, relationships
and attributes. In particular, GQA needs rich scene
graph information from images to answer challeng-
ing compositional questions.

Since we build our model upon Oscar, we use it
as the baseline for comparison. We choose Oscar
base which has 12 layers and each layer has 12
attention heads. Both Oscar and ours were fine-
tuned on the GQA train-balance dataset. For Oscar,
we reproduced it with the official published pretrain
model on the smaller balance training set.

3.2 Results

In this section, we study the performance on the
downstream GQA task. As shown in Table 1,
our Samformer by incorporating scene graphs im-
proves the accuracy by 2.11% on GQA test-dev and
1.61% on test-std. The improvement is stronger if
we focus on the challenging open questions (non-
binary) in GQA, as shown in Table 2. Specifically,
our method achieves 4.09% and 3.45% improve-
ment, respectively, suggesting that including scene
graph triplets help with understanding complex
scenes and questions. The per-triplet contrastive
loss, CMCT further improves the gains.

For fine-grained analysis of our method, we eval-
uate the performance grouping by the semantic type
on the validation set. Among 5 semantic types, our
method achieves 3.84% improvement on category
type and 2.33% relation type. Although category
questions are not directly asking about relation, the
question itself sometimes related to a relation, for
instance "Who is walking?". A triplet tag such
as "man walking on street" would help the model
better answer question like this.

To understand the full potential of the proposed
approach that makes use of scene graphs, we eval-
uate the performance of Samformer when ground-

Figure 3: GQA evaluation accuracy curve without rela-
tion tags, with predicted relation tags, and with ground-
truth relation tags.

truth scene graph is available. Figure 3 shows
the results of evaluation accuracy as training pro-
ceeds. By including ground-truth scene graph rela-
tion tags, we can see significantly improved results
compared to the baseline model that does not use
relation tags at all. Using predicted relation tags
also helps, though the improvement margin is more
narrow since the predicted tags can be noisy.

4 Conclusion and Future Work

In this work, we propose Samformer, a novel se-
mantic aligned multi-modal transformer model for
vision-language pre-training. We explicitly align
the visual scene graphs and text using triplet tags
as anchors as well as a contrastive loss between
each triplet tags and its paired visual features. We
show improved preliminary results on GQA.

As shown in the empirical study, the perfor-
mance is to some extent capped by the rather lim-
ited relations and object categories that can be ex-
tracted from off-the-shelf pre-trained scene graph
models and object detectors. For future work, we
plan to jointly train with scene graph models to
more effectively learn from limited labeled data
and weak supervision signals from paired text.
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