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Abstract

In this paper, we describe our approach to-
wards the task of hope speech detection. We
participated in Task 2: Hope Speech Detec-
tion for Equality, Diversity and Inclusion at
LT-EDI-2021 @ EACL2021. The goal of
this task is to predict the presence of hope
speech, along with the presence of samples
that do not belong to the same language in
the dataset. We describe our approach to fine-
tuning RoBERTa for Hope Speech detection
in English and our approach to fine-tuning
XLM-RoBERTa for Hope Speech detection in
Tamil and Malayalam, two low resource In-
dic languages. We demonstrate the perfor-
mance of our approach on classifying text
into hope-speech, non-hope and not-
language. Our approach ranked 1st in En-
glish (F1 = 0.93), 1st in Tamil (F1 = 0.61) and
3rd in Malayalam (F1 = 0.83). We make our
code available on Github.1

1 Introduction

Hate speech and the need for its moderation on so-
cial media platforms has recently become the focus
of research (Zhang and Luo, 2019; Das et al., 2020).
The need for detection of hate speech is clear, and
worthy of the efforts. However, detecting and re-
moving hate speech, while providing important
benefits to conversations online, should be supple-
mented by other efforts to improve human connec-
tion and communication. There is a clear need
to find common themes in community and build
bridges to reduce the recent wave of polarization
which has gripped many social media platforms
(Prasetya and Murata, 2020; Levy, 2020).

There has been extensive work including pro-
posed tasks and datasets on hate speech detection
online. There have been multiple SemEval2 tasks

1https://tinyurl.com/teamuncc-hope
2https://semeval.github.io/

to detect hate speech, including binary (2 classes,
(Basile et al., 2019)), and multi-label (>2 classes
with overlaps (Mollas et al., 2020)) annotations.
Hate speech detection has also further been ex-
panded to cover explainability for the approaches
used by Mathew et al. (2020), who propose Ha-
teXplain in which the span of text constituting
the hate speech must also be detected. However,
hate speech is just one facet of human behavior,
especially on social media (Chakravarthi et al.,
2020; Mandl et al., 2020; Chakravarthi et al., 2021;
Suryawanshi and Chakravarthi, 2021). There are
equally interesting studies on prosocial behaviors
online including solidarity (Herrera-Viedma et al.,
2015; Santhanam et al., 2021 (in press) and altru-
ism (Althoff et al., 2014), as well as hope speech.

The Hope Speech Detection for Equality, Di-
versity and Inclusion task at LT-EDI-2021 @
EACL2021 (Chakravarthi and Muralidaran, 2021)
marks a step towards helping push for more pos-
itive, uplifting speech on social media. Exacer-
bated by the pandemic, and the subsequent need
of communication to move to online communities,
research in the detection of “hope speech”, which
promotes positive, uplifting discussion to build sup-
port, is an important step (Puranik et al., 2021;
Ghanghor et al., 2021). Findings from this effort
could have an overall positive effect in the real
world.

The task mainly focuses on multilingual clas-
sification for identifying speech associated with
promise, potential, support, reassurance, sugges-
tions or inspiration provided to participants by their
peers during periods of illness, stress, loneliness
and depression (Snyder et al., 2005). In addition
to being a multi-class problem, each language (En-
glish, Tamil and Malayalam) also had differing
amounts of class imbalance. We describe our ap-
proach in detail in Section 2 and present our results
in Section 3.

https://tinyurl.com/teamuncc-hope
https://semeval.github.io/
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2 Method

RoBERTa is an improved BERT (Devlin et al.,
2019) model by Facebook AI which achieves state-
of-the-art results on several natural language un-
derstanding (NLU) tasks including GLUE (Wang
et al., 2018) and SQuAD (Rajpurkar et al., 2016).
RoBERTa is improved through training BERT for
a longer duration on longer sequences, increasing
the data quantity, removing the sentence predic-
tion objective during pre-training, and changing
the masking pattern applied during pre-training.
With the aim of improving cross-lingual language
understanding (XLU), XLM-RoBERTa was devel-
oped using a Transformer-based masked language
model (MLM). XLM-RoBERTa was pre-trained
using 2 terabytes of CommonCrawl data (Wen-
zek et al., 2020) containing one hundred lan-
guages. XLM-RoBERTa outperforms its multi-
lingual MLMs mBERT (Devlin et al., 2019) and
XLM (Lample and Conneau, 2019).

We thus do not propose a novel system, and
instead rely on fine-tuning these two large trans-
formers for the task of hope speech detection. We
use the RoBERTa transformer (Liu et al., 2019)
for English. We select XLM-RoBERTa (Conneau
et al., 2020) for Tamil and Malayalam tasks due
to its robustness and pre-training on low-resources
languages including Tamil and Malayalam. For
our implementation, we use the Simple Transform-
ers3 library which is built upon the transformers
library by huggingface (Wolf et al., 2020). We use
Adam (Kingma and Ba, 2014) as our optimizer.
Our hyperparameters are presented in Table 1.

Hyperparameter Value

epochs 6
bacth size 8
α (English) 0.00002
α (Malayalam & Tamil) 0.00001
max length 256
decay (L2) 0

Table 1: Hyperparameter values

3 Results

We present detailed results for each language be-
low. We also compare with baselines provided in
the original dataset paper (Chakravarthi, 2020), and

3https://simpletransformers.ai/

include them in the results in Tables 2, 3, and 4.
We report results to 2 significant digits, since the
baseline provided by the task is also limited to 2
significant digits. We also provide the dataset dis-
tribution in these tables, in the “Support” column.
We discuss our findings further in Section 4.

Evaluation for English. Table 2 overviews the
results of detecting hope-speech, non-hope,
and not-english. The baseline for English was
weighted average F1 = 0.90 (Chakravarthi, 2020).
Our approach scored a weighted average F1 = 0.93
on both the dev (N = 2843) and test (N = 2846)
sets, achieving the 1st place in the task among 31
team submissions. We note the class imbalance be-
tween hope-speech (N = 272) and non-hope
(N = 2569) denoted in the support column. While
our approach does achieve high numbers overall,
there is clearly room for improvement. Incorrectly
labeled non-hope utterances (N = 59) tend to
be fewer than incorrectly labeled hope-speech
utterances (N = 118), hence the precision (0.69) is
greater than the recall (0.53) on the test set.

Evaluation for Tamil. Table 3 overviews
the results of detecting hope-speech, non-
hope, and not-tamil. The baseline perfor-
mance for Tamil was weighted average F1 =
0.56 (Chakravarthi, 2020). Our approach scored
a weighted average F1 = 0.61 on the dev set (N
= 2018) and a weighted average F1 = 0.60 on the
test set (N = 2020) giving us the 1st place in the
task as well against 30 team submissions. Simi-
lar to English, we observe higher precision (0.59)
over recall (0.49) suggesting a tendency for false
positives to be lower than false negatives.

Evaluation for Malayalam. Table 4 overviews
the results of detecting hope-speech, non-
hope, and not-malayalam. The baseline
weighted F1 performance for Malayalam was F1 =
0.73 (Chakravarthi, 2020). At the time of submis-
sion, our submission scored weighted average F1
= 0.82 on the dev set (N = 1070) and weighted av-
erage F1 = 0.83 on the test set (N = 1071), ranking
us 3rd for the task among 31 teams. The approach
for Malayalam was incomplete - being trained only
on 2 epochs instead of 6. After complete training
(epochs = 6), our approach scores a weighted av-
erage F1 = 0.87 on the test set. We observe very
little difference between precision and recall sug-
gesting a balance between missed hope-speech
and false alarm hope-speech utterances.

https://simpletransformers.ai/
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Class Dev Set Test Set Baseline
Support Precision Recall F1 Support Precision Recall F1 Test F1

Hope 272 0.69 0.55 0.61 250 0.69 0.53 0.60 0.42
Non-hope 2569 0.95 0.97 0.96 2593 0.95 0.98 0.97 0.95
Not-English 2 0.00 0.00 0.00 3 0.00 0.00 0.00 0.00
Accuracy 2843 - - 0.93 2846 - - 0.94 -
Macro 2843 0.55 0.51 0.52 2846 0.55 0.50 0.52 0.46
Weighted Avg 2843 0.93 0.93 0.93 2846 0.93 0.94 0.93 0.90

Table 2: Classification Results - English

Class Dev Set Test Set Baseline
Support Precision Recall F1 Support Precision Recall F1 Test F1

Hope 757 0.58 0.45 0.51 815 0.59 0.49 0.54 0.46
Non-hope 998 0.65 0.70 0.67 946 0.64 0.68 0.66 0.65
Not-Tamil 263 0.59 0.8 0.68 259 0.55 0.72 0.63 0.55
Accuracy 2018 - - 0.62 2020 - - 0.61 -
Macro 2018 0.61 0.65 0.62 2020 0.59 0.63 0.61 0.55
Weighted Avg 2018 0.62 0.62 0.61 2020 0.61 0.61 0.60 0.56

Table 3: Classification Results - Tamil

Class Dev Set Test Set Baseline
Support Precision Recall F1 Support Precision Recall F1 Test F1

Hope 190 0.69 0.61 0.64 194 0.70 0.72 0.71 0.36
Non-hope 784 0.89 0.91 0.90 776 0.91 0.91 0.91 0.86
Not-Malayalam 96 0.75 0.80 0.77 101 0.83 0.80 0.81 0.45
Accuracy 1070 - - 0.84 1071 - - 0.87 -
Macro 1070 0.78 0.77 0.77 1071 0.81 0.81 0.81 0.56
Weighted Avg 1070 0.84 0.84 0.84 1071 0.87 0.87 0.87 0.73

Table 4: Classification Results - Malayalam

3.1 Negative Results

Since there is class imbalance between the 3 classes
(non-hope >> hope-speech >> not-
language), we attempted to modify the class
weights during our fine-tuning process weighing
the minority classes more than the majority
class. The class weights for hope-speech and
non-hope for the English, Tamil, and Malayalam
languages are computed using Equation 1 inspired
by (King et al., 2001) and implemented by the
scikit-learn library (Pedregosa et al., 2011). N
represents the number of samples in the dataset
and x is a class label.

weightx =
N

(count(classes)× count(x))
(1)

To address the larger imbalance between the

not-language and other classes, we manu-
ally assign weights for these classes, so that they
weigh less than the hope-speech class. The
non-english class was weighed as 1 and the
non-tamil and non-malayalam classes were
weighed as 0.5. In future work, these weights will
be empirically chosen. However, we did not submit
these as our final models since the performance on
weighted average F1 was lower.

Results. The weighted average F1 using the
class-weights approach described above were a
bit lower than the results described in Tables 2, 3,
and 4 across all languages. On the English dev set,
we scored weighted average F1 = 0.92, with F1
= 0.60 for hope-speech, F1 = 0.95 for non-
hope, and F1 = 0.00 for non-english. We
note that all of the results are a bit lower than the
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(a) English (b) Tamil (c) Malayalam

Figure 1: UMAP scatter plots visualizing clusters (color code) and prediction correctness (mark shape) using
sentence transformers on the test set for an analytical evaluation of our approach.

our submission results. On the Tamil dev set, we
scored weighted average F1 = 0.61, F1 = 0.57
for hope-speech, F1 = 0.65 for non-hope,
and F1 = 0.60 for non-tamil. We note that
all of the results are lower than the our original
submission results with the exception of the hope-
speech class. On the Malayalam dev set, we
scored weighted average F1 = 0.84, F1 = 0.64 for
hope-speech, F1 = 0.89 for non-hope, and
F1 = 0.75 for non-malayalam. We note that
all of the individual class results are slightly lower
than the our submission results.

4 Qualitative Evaluation

In this section, we analytically go through sample
records in the English test set to better understand
the dataset, and to evaluate the strengths and weak-
nesses of our approach.

Analytical Evaluation. We use sentence-
transformers (Reimers and Gurevych, 2019, 2020)
to further evaluate our approach. Sentence trans-
formers were created by utilizing word-level rep-
resentation models such as BERT and RoBERTa
for better downstream computational performance
on sentence-level tasks, since utilizing word-
level representations for tasks such as determin-
ing the similarity of 2 sentences takes much
longer than computing sentence-level represen-
tations. We use the paraphrase-xlm-r-
multilingual-v1 pretrained model to get our
sentence embeddings, and then use K-means clus-
tering using scikit-learn (Pedregosa et al., 2011) to
cluster the test set into 3 clusters, the same number
of classes as the classification task. We provide
clustering results, showing cluster assignments of

data samples and whether our classifiers labelled
them correctly or not in Figure 1.

For English (Figure 1a), there are fewer misclas-
sified samples, but most of them lie in cluster 1,
shown on the bottom right of the UMAP scatter plot
1. This cluster, upon further observation, mostly
consists of Youtube comments related to the Black
Lives Matter (BLM) movement. We conclude that
the our approach specifically struggles with cor-
rectly classifying such utterances, and elaborate
with illustrative examples in the next section.

For Tamil (Figure 1b), we observe closely clus-
tered data points, a property that is also reflected in
our classification results as seen by the misclassi-
fied points (shown by square markers in the scatter
plot). We see a similar trend as English in Malay-
alam (Figure 1c), however an observational analy-
sis is not possible for Malayalam and Tamil since
we do not speak the language, and wish not to
rely on automatic translation systems for informal,
code-mixed text (Chakravarthi, 2020).

Observations. In Table 5, we present a quali-
tative evaluation using select examples from the
English test set. First, we examine misclassifi-
cations in the English test set and report on our
observations. The model predicts 3 samples as
non-hope when the ground-truth label is not-
english. However upon examination, 2 of these
3 samples predominantly contain English words
that seem to be non-hope sentences. We demon-
strate one of the non-english sentences in the
test set in the sixth row of Table 5). The third
not-english sample contains a latin-alphabet
utterance of a non-english sentence with some
recognizable English words. Furthermore, upon
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# Sentence Actual Predicted Cluster

1 Speak for yourself non-hope non-hope 0
2 What do you mean by the word sniped? non-hope non-hope 0
3 Everyone matters stop racism hope-speech hope-speech 2
4 Realize Black lives matter is designed to cause

division. All lives matter is to state unity. We are
in this together. The tactic of divide and conquer
is ancient... But still works!

hope-speech non-hope 1

5 It’s one thing to ideally believe that all lives matter non-hope hope-speech 1
6 We have and they know we are Israelites the real

jews and got jealous...
not-english non-hope 2

7 Trying to end racism by supporting everyone
equally. Blm mob

non-hope hope-speech 2

Table 5: Illustrative examples of successful (bold) and failure cases of the TeamUNCC approach for English.

examining misclassifications of non-hope and
hope-speech, we observe a trend that BLM re-
lated samples tend to compose quite a bit of our
misclassified samples. Over 46 out of 177 samples
seem to be BLM related. We observe that it can
be ambiguous and tricky to determine whether it
expresses hope or not. The ambiguity observation
for some of the samples is inline with the findings
of (Chakravarthi, 2020). In the fifth row, we note
that the utterance expresses that all lives matter but
the ground truth is non-hope. The fourth and
seventh rows are similar, both utterances express
support for equality but it also express negative
sentiments towards the BLM movement; yet the
ground truth labels for both these utterances are
different. The first 3 rows showcase examples of
where the classifications are correct. We observe
that the model might have learned to look for lin-
guistic markers such as questions and inquiries, and
thus tended to label them as non-hope.

5 Conclusion

We found that fine-tuning RoBERTa (English) and
XLM-RoBERTa (Tamil and Malayalam) for clas-
sification performed well. Providing class weights
helped handle the data imbalance, leading to a bal-
anced performance over the baselines. We submit-
ted the results of our approach using the RoBERTa
and XLM-RoBERTa models without class weights
as our final submission for the Hope Speech De-
tection Task. Admittedly, our approach does not
break new ground in terms of novelty of models
or architecture; we instead rely upon fine-tuning
pre-trained models. However, we present it as a

first step in this direction, and aim to build on our
success in future iterations. The Hope Speech De-
tection task was an important and necessary step
towards promoting positive speech online. Our
goal is to keep participating in the effort to detect
and promote more positive speech online. Addi-
tionally, we hope to extend this task to COVID19
data, and work towards understanding community
support during the pandemic.
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