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Abstract

Tracking entity states is a natural language pro-
cessing task assumed to require human anno-
tation. In order to reduce the time and ex-
penses associated with annotation, we intro-
duce a new method to automatically extract
entity states, including location and existence
state of entities, following Dalvi et al. (2018)
and Tandon et al. (2020). For this purpose,
we rely primarily on the semantic representa-
tions generated by the state of the art VerbNet
parser (Gung, 2020), and extract the entities
(event participants) and their states, based on
the semantic predicates of the generated Verb-
Net semantic representation, which is in propo-
sitional logic format. For evaluation, we used
ProPara (Dalvi et al., 2018), a reading compre-
hension dataset which is annotated with entity
states in each sentence, and tracks those states
in paragraphs of natural human-authored pro-
cedural texts. Given the presented limitations
of the method, the peculiarities of the ProPara
dataset annotations, and that our system, Lexis,
makes no use of task-specific training data and
relies solely on VerbNet, the results are promis-
ing, showcasing the value of lexical resources.

1 Introduction

Question answering in reading comprehension
tasks focusing on procedural texts (i.e. texts de-
scribing processes) is particularly challenging in
natural language processing (NLP), because this
type of text describes a changing world state (Clark
et al. 2018, Dalvi et al. 2018, Tandon et al. 2018,
Du et al. 2019, Gupta and Durrett 2019). Tracking
the state of entities in such texts is an important
task to enable proper question answering in read-
ing comprehension tasks. The challenging part in
such question answering tasks is not where answers
are explicitly mentioned in a sentence (Clark et al.,
2018). For example, in Figure 1, the sentence with
bold elements tells us explicitly that urea and car-
bon dioxide are located in kidneys by the end of

Paragraph:
Blood delivers oxygen in the body.
Proteins and acids are broken down in the liver.
The liver releases waste in the form of urea.
The blood carries the urea and carbon dioxide to the
kidneys.
The kidneys strain the urea and salts needed from the
blood.
The carbon dioxide by product is transported back
to the lungs.
Q: Does blood enter the kidney?
A: Yes.

Figure 1: A paragraph from ProPara about blood,
showing one kind of inference needed to answer a ques-
tion. Knowing that blood (as well as the urea and car-
bon dioxide) will end up in the kidney requires lexical
semantics knowledge.

this sentence. However, the fact that the blood itself
will also be located at the kidneys is implicit in the
semantics of the verb “carry”, in which the agent
of the action (mover) moves along with the theme
(thing moved). Therefore, answering the question
in Figure 1 requires knowledge of the particular
semantics of this verb. This is the kind of inference
our system, Lexis, is able to model using VerbNet.

This type of reasoning requires event extraction
as a first step, and event participant state extraction
as a second step. Our method covers both steps, but
is at this point limited to sentence-level inference.

In section 2, we provide an overview of the work
related to this research. Section 3 introduces the
dataset used to evaluate Lexis, as well as the details
of the methods we have used. Section 4 presents
our experimental settings, followed by section 5
which illustrates the results of each setting. Section
6 discusses the advantages of Lexis, and provides
an error analysis to illuminate the sources of weak-
ness. In section 7, we conclude and briefly discuss
our future work.



124

Sentence:
The water forms a stream.

VNSP VerbNet semantic predicates output:
[{‘polarity’: False, ‘predicateType’: ‘Has State’,
‘args’: [{‘type’: ‘Material’, ‘value’: ‘’},
{‘type’: ‘Verbspecific’, ‘value’: ‘V_Final_State’}]},
{‘polarity’: True, ‘predicateType’: ‘Do’,
‘args’: [{‘type’: ‘Agent’, ‘value’: ‘The water’}]},
{‘polarity’: True, ‘predicateType’: ‘Be’,
‘args’: [{‘type’: ‘Result’, ‘value’: ‘a stream’}]}]

A more readable format:
¬HAS_STATE(?Material,

V_Final_StateVerbSpecific)
¬BE(a streamResult)
DO(The waterAgent)
BE(a streamResult)
HAS_STATE(?Material,

V_Final_StateVerbSpecific)

Extracting a CREATE entity state:

In this case, based on the predicateType ‘Be’ along
with a ‘Result’ argument type, we can conclude that
the value ‘a stream’ is the created entity. This is then
fed into spaCy to extract the head noun ‘stream’ as
the entity.

Figure 2: VerbNet semantic predicate output of VNSP
on the input sentence above, and how it is used to
predict a CREATE type change of state for the entity
‘stream’

2 Related Work

Our method is similar to Clark et al. (2018) in
the sense that we both rely on VerbNet semantic
representations to make inferences. However, our
point of departure is that previously, VerbNet did
not have a neural semantic parser, and Clark et al.
(2018) did not disambiguate verb senses, and used
the most frequently used verb sense instead. Also,
they had to develop a huge rulebase to encode com-
monsense knowledge about the states that events
produce, using a STRIPS-style list of before (pre-
conditions) and after (effects) expressed as possibly
negated literals. In order to extract arguments (i.e.
event participants), they relied on the syntactic pat-
terns provided in the VerbNet, and used them to
instantiate the arguments in the before/after literals.
They also performed a manual annotation effort to
check and correct the rulebase entries, and added
entries for other verbs that affect existence and loca-

tion. In addition, they added new entries for verbs
not existing in VerbNet. In contrast, our method is
fully automatic (see section 3.2).

Most work on tracking entity states uses neural
methods (Henaff et al. 2016, Ji et al. 2017, Tandon
et al. 2018, Tang et al. 2020). However, these
models rely on large amounts of annotated data,
which is expensive and labor-intensive to provide
(Sun et al., 2020). One of the commonly used
solutions to the data scarcity problem in NLP tasks
is data augmentation. According to Feng et al.
(2021), the goal of data augmentation is increasing
training data diversity without directly collecting
more data. Most strategies for data augmentation
consist of creating synthetic data based on the main
data. On the same note, automatic training data
generation attempts show promise in various NLP
tasks, such as event extraction (Chen et al. 2017,
Zeng et al. 2018), and named entity recognition
(Tchoua et al., 2019).

As explained below, Lexis uses a state-of-the-art
semantic parser to automatically generate entity
states for each sentence. These entity states are
the same as the entity state labels provided by hu-
man annotators in the dataset on which we evaluate
Lexis. The generated inferences can be used, in
future work, to augment the existing training data.

3 Data and Methodology

The main contribution of this work is bringing to
the forefront the advantages of using lexical re-
source based methods. In particular, in this work,
these methods are used for automatic annotation of
text with labels regarding the location and existence
states of entities in a given sentence.

3.1 Data

The ProPara (Process Paragraphs) dataset (Dalvi
et al., 2018), developed by the Allen Institute for
AI (AI2), contains 183 prompts (with 152 topics)
and 488 human authored paragraphs of procedural
text in response to these prompts (each paragraph
having 10 or less sentences), along with 81k an-
notations about the changing states (existence and
location) of entities in those paragraphs. The train-
ing set contains 391 paragraphs (80% of the data).
The end-task of the dataset is predicting and track-
ing location and existence changes for the entities.
ProPara is the first dataset of annotated, natural
text for real-world processes, which also contains a
simple representation of entity states during those
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processes.

3.2 Methodology

We used the recently developed BERT-based Verb-
Net semantic parser (Gung 2020, Gung and Palmer
2021), which is located at the GitHub SemParse site
1, to parse every single sentence in each paragraph.
The VerbNet semantic parser (VNSP) returns a json
file containing the verb sense disambiguated Verb-
Net class, the complete logical predicates for that
class instantiated with arguments extracted from
the sentence, as well as the text spans (phrases)
labeled with both VerbNet thematic roles (Schuler,
2005) (if applicable) and PropBank argument role
labels (Kingsbury and Palmer 2002, Palmer et al.
2005).

The main idea of using VNSP, and in general
what gives VNSP an edge over other semantic
parsers, is the logical predicates it generates (for a
list of some of the VerbNet predicates used in this
work, see Table 1). These predicates are utilized
here to infer/predict an entity’s change of location
and change of existence state (i.e. whether it has
been created or destroyed during the course of the
sentence). Some of these predicates uncover im-
plicit information about entity states, so our method
covers explicit and implicit information, as long
as the information is implicit in the semantics of
the verb, rather than requiring world knowledge.
Figure 2 illustrates the utility of the semantic pred-
icate part of the VNSP output and how it is used
to predict that the entity ‘stream’ is CREATED in
the input sentence ‘The water forms a stream’. The
VNSP output is close to our desired form, but does
not match exactly. Certain inferences first need
to be drawn, and we have implemented blocks of
Python code for this purpose. Figure x gives the
block of Python code for ‘Results’ that extracts
“a stream” as the created entity. VNSP also gives
us syntactic phrases, and we still have to extract
head nouns and objects of prepositions, etc, to get
specific entities, as well as before-after states. We
use spaCy (Honnibal et al., 2020) to do this.

We represent the inferred entity states as a triple
for change of location cases (entity, AtLoc, loca-
tion), and a tuple for change of existence cases
(entity, Created) or (entity, Destroyed). These gen-
erated states can, in future work, be used for data
augmentation, to improve the performance of ma-
chine learning models on this task.

1https://github.com/jgung/verbnet-parser

Location Existence
Has Location Appear
Take In Becomes
Admit Create Image
Apply Material Degradation Material Integrity
Contain Destroyed
Free Develop
Contact Emit

Table 1: Some of the VerbNet predicates used in our
method to infer state changes.

Sentence:
The roots absorb water and minerals from the soil.

VNSP VerbNet semantic predicates output:
[{‘polarity’: True, ‘predicateType’: ‘Take In’,
‘args’: [{‘type’: ‘Goal’, ‘value’: ‘’}, {‘type’:
‘Theme’, ‘value’: ‘water and minerals’}]}]

VNSP PropBank parse output:
[{‘text’: ‘The roots’, ‘pb’: ‘A0’},
{‘text’: ‘absorb’, ‘pb’: ‘V’},
{‘text’: ‘water and minerals’,
‘pb’: ‘A1’}, {‘text’: ‘from the soil’, ‘pb’: ‘A2’]}]

Extracting a MOVE entity state:
In this case, based on the predicateType ‘Take In’
along with a ‘Theme’ and a ‘Goal’ argument type,
we can conclude that the value ‘water and minerals’
is an entity that moves to the value for ‘Goal’. How-
ever, the value for ‘Goal’ has remained uninstanti-
ated, so we resort to the PropBank parse. Knowing
that the ‘Goal’ argument for the ‘Take In’ predicate
is the same as A0 numbered argument, we extract
‘The roots’ as the destination for the extracted en-
tity. This is then fed into spaCy to extract ‘water’
and ‘minerals’ as two entities, both moving to the
destination ‘root’. A separate block of Python code
draws Take In inferences

Figure 3: VerbNet semantic predicate and PropBank
output of VNSP on the input sentence above, and how
it is used to predict a MOVE type change of state for
the entities ‘water’ and ‘minerals’

This completes the process used for Setting 1 in
Section 4.1. In the second setting for our experi-
ments, 4.2, we added information from the Prop-
Bank argument roles generated by VNSP to cover
cases where there are uninstantiated arguments in
the VerbNet semantic parse that PropBank can sup-
ply. This should, in theory, increase recall, but may
decrease precision, because VerbNet thematic roles



126

are more fine grained compared to PropBank, and
are therefore more accurate in predicting semantic
roles. Figure 3 illustrates the utility of the Prop-
Bank parse part of the VNSP output and how it
is used to predict that the entity ‘water’ and the
entity ‘minerals’ is MOVED to ‘root’ in the in-
put sentence ‘The roots absorb water and minerals
from the soil’. This example illustrates a case in
which the VerbNet semantic predicate generated by
the VNSP fails to generate a value for the ‘Goal’
argument, while looking at the PropBank A0 argu-
ment supplies us with it. It also illustrates another
example of lexically encoded implicit semantic in-
formation, since for the Take In predicate that is
provided in the VNSP output, the ‘Goal’ argument
is the same as ‘Agent’ argument. For that reason,
we can confidently extract the value for A0 from
the PropBank parse as the value for the Goal, and
therefore the destination of the MOVE event.

In addition, we have also introduced a relaxed
setting in which the predicted false positive labels
are evaluated by a human judge to be true false pos-
itives or correctly predicted labels that are missed
in the gold labels in ProPara.

4 Experiments

The text spans that represent arguments are either
noun phrases (for entities, e.g. sediment from the
ocean in the sentence The waves contain sediment
from the ocean.) or prepositional phrases (for loca-
tion state tracking, e.g. in sediment in the sentence
They are buried in sediment.). A human annotator
labels sediment as the destination of they, but the
parser labels the whole phrase in sediment as the
destination. On the other hand, there are cases of
conjunction, where several entities are conjoined
and one predicate is stated about them. In that case,
we should be able to separate the conjoined entities
and generate a triple or tuple for each. For example,
in the sentence Algae and plankton die, two change
of existence tuples should be generated: (algae,
Destroyed), and (plankton, Destroyed).

Such syntactic problems were solved using the
spaCy (Honnibal et al., 2020) dependency parser.
Nouns were lemmatized, the nominal heads of
the noun phrases in prepositional phrases were ex-
tracted, the conjoined noun phrases were disjoined.

4.1 Setting 1

In setting 1, we only relied on the predicates from
the VerbNet semantic representations part of the

output of the VNSP. Given the definition of each
predicate and the types of arguments it can take
across the VerbNet, we categorized the predicates
into those indicating a change of location and those
indicating a change of existence (in particular, cre-
ation and destruction). We also used the VerbNet
thematic role hierarchy to collect all thematic roles
that could point to an event participant (e.g. Agent,
Co-Agent, Pivot, Patient, etc.), a location (e.g. Des-
tination, Location, Goal, Source, etc.), an Under-
goer (e.g. Patient, Theme, Pivot, etc.), as well as
those particularly indicating a Destination-type lo-
cation and a Source-type location. For example,
in the sentence Water from oceans, lakes, swamps,
rivers, and plants turns into water vapor., the se-
mantic predicate output of the VNSP is summa-
rized (by our algorithm) into the following:

[(True, ‘Has State’, [(‘Patient’, ‘Water from oceans ,
lakes , swamps , rivers , and plants’), (‘Initial State’,
‘’)]),
(True, ‘Has State’, [(‘Patient’, ‘Water from oceans ,
lakes , swamps , rivers , and plants’), (‘Result’, ‘into
water vapor’)])]

From this logical statement, since the final sub-
predicate is a ‘Has State’ predicate and it has a
‘Result’ argument, our algorithm extracts the value
for the ‘Result’, i.e. into water vapor, as the entity
created.

Another example of the semantic predicate out-
put that explains the inference in Figure 1 follows:

[ (True, ‘Has Location’, [(‘Theme’, ‘the urea and car-
bon dioxide’), (‘Initial Location’, ‘’)]), (True, ‘Has
Location’, [(‘Agent’, ‘The blood’), (‘Initial Loca-
tion’, ‘’)]), (True, ‘Do’, [(‘Agent’, ‘The blood’)]),
(True, ‘Motion’, [(‘Theme’, ‘the urea and car-
bon dioxide’), (‘Verbspecific’, ‘Trajectory’)]), (True,
‘Motion’, [(‘Agent’, ‘The blood’), (‘Verbspecific’,
‘Trajectory’)]), (True, ‘Has Location’, [(‘Theme’,
‘the urea and carbon dioxide’), (‘Destination’, ‘to the
kidneys’)]), (True, ‘Has Location’, [(‘Agent’, ‘The
blood’), (‘Destination’, ‘to the kidneys’)])]

The last two lines show that both the Theme (the
urea and carbon dioxide) and the Agent (The blood)
will end up in the Destination (to the kidneys), un-
covering the implicit information in the semantics
of the verb carry.

Some predicates required special handling. For
example, the Take In predicate (representing verbs
such as inject, drink, eat, smoke) is fairly opaque,
and does not explicitly indicate a change of location
in VerbNet. However, we know that as a result of
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Block of Python Code:

Figure 4: Python code for extracting a MOVED entity, along with its location states, from the VerbNet semantic
predicate Take In.
Pseudo Code:
If Take In is in the list of generated VNSP semantic predicates for this sentence:

loop over the generated predicates
If there is a Take In predicate with positive polarity:

loop over the arguments of that predicate:
If the type of an argument is Theme:

extract the head noun of the value as an entity which has MOVED.
If the type of an argument is Goal or Agent:

extract the noun head of the prepositional object as the after state.

this type of event, an undergoer (such as a Theme)
would move to the Goal, Agent, or Recipient of
the event, whichever is specified in the predicates.
The block of Python code for Take In (Figure 4)
includes an explicit expansion of Take In to indicate
the Goal is now At The Agent. Such semantic
expansions needed to be assumed in the semantics
of such predicates in the entity extraction algorithm,
as VerbNet fails to do its normal expansion of the
predicates. These expansions will be added to the
next VerbNet release.

4.2 Setting 2

In setting 2, we used the PropBank argument roles
included in the VNSP output in addition to the
VerbNet predicates. This covered cases of verbs
that exist in VerbNet, but VNSP fails to instantiate
the entity or location. This is most likely due to
the small size of the VerbNet labeled training data
compared to PropBank labeled training data. For
example, in the sentence The stream becomes a
river. from the training data, here is the output of
the VNSP:

[(False, ‘Has State’, [(‘Patient’, ‘The stream’), (‘Re-
sult’, ‘’)]),
(True, ‘Has State’, [(‘Patient’, ‘The stream’), (‘Re-
sult’, ‘’)])]

Here, the value for the ‘Result’ semantic role has
remained uninstantiated, which means that setting
1 yields no output (i.e. does not extract ‘river’ as
a created entity). Therefore, we look at the A2 ar-
gument in the PropBank parse output of the VNSP,
summarized below:

[‘text’: ‘The stream’, ‘pb’: ‘A1’, ‘vn’: ‘Patient’,
‘text’: ‘becomes’, ‘pb’: ‘V’, ‘vn’: ‘Verb’,
‘text’: ‘a river’, ‘pb’: ‘A2’, ‘vn’: ‘’]

Linguistically, the A2 argument for this verb is
described as ‘new state’, which is exactly what we
need. Since the numbered arguments in PropBank
are too coarse-grained, we use SemLink (Palmer
2009, Bonial et al. 2013, Stowe et al. 2021) to find
their mapping into VerbNet thematic roles and find
those that suit our purposes in this task.

In general, we assumed that A1 (proto-patient,
which is typically the undergoer) is the entity
moved or created. This assumption should be accu-
rate in theory at least for verbs indicating creation
or motion, because an entity in motion is theoret-
ically a “theme”, and an entity created could be
a “result”, a “product”, or “theme”, which are all
labeled A1 in PropBank. However, there are also
change of state verbs such as become, for which
the ‘Result’ (new state) is not the entity undergoing
change or created, so it is marked as A2 rather than
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A1. It should also be noted that since the Prop-
Bank numbered arguments A2 and above are very
coarse-grained and overloaded. That is the reason
we consult SemLink to find the correct mapping.

4.3 Relaxed Setting

Since Lexis generates more states than gold stan-
dard annotations in ProPara. For example, for the
sentence ‘Magma rises from deep in the earth.’ in
the training data, no motion has been predicted for
magma, while as a human judge, we know that
magma moves in this sentence. Lexis predicts this
movement of magma in this sentence, and this is
counted as a false positive in evaluation, reducing
the precision and F1 score. Therefore, we exam-
ined a third setting in which we do not count the
extra annotations as false positives, if they are cor-
rect. Knowledge of whether these extra predicted
entities are correct or wrong requires human judg-
ment.

For that matter, we set up a judgment task
on the system output (i.e. the predicted cre-
ated/destroyed/moved entities) on the test data, and
asked two unbiased human annotators to make
judgments. The results were then examined by
the authors to identify the sources of false nega-
tives. These will be discussed in section 6.2, and
illustrated in Table 6.

5 Results

Tables 2, 3, and 4 illustrate the evaluation results.
In addition to the cumulative/general state tracking
results, we have evaluated location tracking and
existence tracking separately in order to monitor
the sources of error. We have also provided the
results for the relaxed setting in Table 4 (see 4.3).

As expected, the inclusion of PropBank argu-
ment roles (in setting 2) increases recall from 0.29
(Table 2) to 0.39 (Table 3). Interestingly, this
is achieved through existence tracking, not loca-
tion tracking. Within location tracking, not much
change is observed between the two settings, as
discussed in section 6.2.

While performing the human judgment task for
the relaxed setting, we also came across cases of
gold label errors (see ‘GLE’ in Table 6), as well as
useless gold labels in location tracking, labeling the
location of an entity as unk (i.e. unknown). Both
the GLE and superfluous labels were considered
unlabeled in the gold data for evaluation purposes.
Therefore, the results in the top section of Table 4

are different from the results in setting 2 (VerbNet +
PropBank, see Table 3), because here we removed
the gold label errors. These will be discussed fur-
ther in section 6. Within Table 4, it is notable that
the precision significantly increases (by 20%) in
the relaxed setting (compared to the strict setting
in the same table).

Within the Allen AI leaderboard for the ProPara
task (see Table 5), our general recall in setting 2
(VerbNet + PropBank) beats Facebook AI Research
EntNet, University of Washington QRN, and AI2
ProLocal. The recall increases from 0.39 to 0.48
in the relaxed setting (Table 4). There are 6 teams
that have a higher recall, and Lexis Relaxed would
stand on the 7th place with respect to recall. For the
general F1 score, too, Lexis Relaxed would take
the 7th place on the leaderboard.

6 Discussion

6.1 Advantages

First and foremost, it should be noted that in this
work, we have relied solely on a lexical resource,
and no task-specific learning-based methods have
been utilized. Also, our method generates more
entity states than human annotators generated. That
increases our system’s false positives, which in
turn decreases the precision and F1 scores. For
this reason, we decided to create a relaxed setting
(cf. section 4.3) and judge which one of the false
positives are true false positives and which ones are
correct labels which are missing from the train set.
In the judgment task to find true false positives, out
of 235 false positives (in 42% of the train set), 129
were in fact judged as correct labels missed in the
gold data. Therefore, the count of false positives in
the relaxed settings was reduced from 235 to 106
(i.e. 45% of the false positives were not true false
positives).

Another advantage of Lexis is that it predicts
states for all possible entities in a sentence, and is
not limited to the set of entities labeled in ProPara.
However, for evaluation purposes, we only com-
pared our results against the gold labeled entities.

What makes our method valuable is the fact
that, unlike learning models which need annotated
data, Lexis does not require training. As such, this
method can be used for automatic generation of
entity states, potentially with higher recall than hu-
man annotation. In addition, this is not limited
to the ProPara dataset, or even procedural texts.
Since VerbNet is a general semantic lexicon for



129

Precision Recall F1 Score
Lexis
General 0.38 0.29 0.33
Location 0.41 0.21 0.28
Existence 0.85 0.40 0.55

Table 2: Evaluation Results for Setting 1 - using only
VerbNet semantic predicates and semantic representa-
tions provided in the VNSP output.

Precision Recall F1 Score
Lexis
General 0.36 0.39 0.38
Location 0.41 0.22 0.29
Existence 0.64 0.65 0.64

Table 3: Evaluation Results for Setting 2 - using the
VerbNet predicates, and utilizing PropBank argument
roles (numbered arguments) when an argument is unin-
stantiated in the semantic representations. Both the
VerbNet semantic representations and PropBank argu-
ment labels are provided by the VNSP.

English verbs, the VNSP output can be utilized to
predict entity states in any domain. However, we
should also acknowledge the sources of error and
weaknesses of this method, which are discussed in
section 6.2 below.

6.2 Error Analysis

In this section, we discuss and analyze the sources
of error and weakness of our method and results,
illuminating the limitations.

The first noticeable source of weakness is the
limited coverage of the VerbNet lexicon itself.
There are currently 4588 unique verbs in VerbNet.
For the verbs that are absent from the VerbNet, the
VNSP output is empty. Out of 2639 sentences in
the train set, 158 remained unparsed ( 6%). This
increases false negative counts and therefore de-
creases our recall and F1 score.

Another source of weakness of VNSP, and there-
fore our method, is the relatively small size of
VerbNet-labeled data for training the VNSP. This is
in comparison to the size of the PropBank-labeled
data.

One of the most important sources of error was
use of world knowledge in the gold standard hu-
man annotation in addition to the explicit linguistic
knowledge – something that is beyond the scope of
VerbNet. For a complete picture of the false nega-
tive underlying reasons, see Table 6. An illustrative

Precision Recall F1 Score
Lexis (Gold Label Errors Removed)
General 0.44 0.48 0.46
Location 0.54 0.44 0.49
Existence 0.37 0.53 0.44
Lexis (Relaxed: True False Positives Filtered)
General 0.64 0.48 0.55
Location 0.79 0.44 0.57
Existence 0.53 0.53 0.53

Table 4: Evaluation Results for the Relaxed Setting.
At the top, we have the predicted labels from Table 3,
except that we have removed the gold label errors. At
the bottom, in addition to removing gold label errors,
we have also filtered the false positives and kept only
the true false positives (not counting the correct labels
that are only missing from the gold data).

example follows. Given the paragraph

Get some seeds. Pick a spot to plant them. Dig
a hole in the dirt. Put the seed in the hole. Pour
some water on the seed and hold. Cover up the hole.
Press down on it. Spray some plant food on it.

The annotator has annotated the highlighted step
with a ‘Move’ state change of the ‘seed’ entity
to ‘dirt’. This knowledge requires recovering of
information from step 4 to know that the seed is
in the hole, from step 3 to know that the hole is
dug in the dirt, and from world knowledge to know
that covering up the seed in the hole which is in the
dirt normally happens with the dirt that has been
dug. Another example of the same type is in the
paragraph below.

Water from the surface seeps below the soil. The
water comes into contact with the rock below. The
water over the years carves through the rock. The
space in the rock becomes larger and forms into a
cave. As more rather rushes through the cave be-
comes a cavern.

One of the annotations is that in the highlighted
sentence, the entity ‘space’ has been ‘Created’,
whereas, space is not even mentioned in this sen-
tence (or before that). The annotator infers, from
the following sentence, that a space must have been
created at this point. These types of inference re-
quire real world knowledge that goes way beyond
lexical semantics.

Finally, true entity state tracking requires entity-
reference tracking in a given paragraph. For this,
we need to go beyond sentence-level semantic anal-
ysis (i.e. what we have achieved in this work) and
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ProPara Leaderboard
Precision Recall F1 Score

KOALA 0.777 0.644 0.704
TSLM 0.684 0.689 0.686
DynaPro 0.752 0.579 0.655
NCET 0.671 0.585 0.625
KG-MRC 0.693 0.493 0.576
LACE 0.753 0.454 0.566
Lexis Relaxed 0.64 0.48 0.55
ProStruct 0.743 0.430 0.545
AQA 0.620 0.451 0.523
ProGlobal 0.488 0.617 0.519
ProLocal 0.817 0.368 0.507
QRN 0.609 0.311 0.411
EntNet 0.547 0.307 0.394
Lexis (VN+PB) 0.36 0.39 0.38
Lexis (VN) 0.38 0.29 0.33

Table 5: ProPara Leaderboard and where different set-
tings of Lexis would be placed.

analyze the whole paragraph as one unit of dis-
course. This is mandatory to uncover anaphora (or
even cataphora) cases in the text, which is required
to track the state of entities in a paragraph. For ex-
ample, in the sentence “Spray some plant food on
it.”, our system predicts that the location of ‘plant
food’ at the end of this sentence will be ‘it’, with-
out finding the reference to ‘seed’. State-of-the-art
reference resolution is clearly indicated to improve
results.

7 Conclusion and Future Work

The goal of this work was demonstrating how lex-
ical resource-based methods using existing NLP
resources could be utilized in automatic annotation
of text for tracking entity states. The results were
quite encouraging and demonstrated the potential
of leveraging pre-existing rich lexical resources for
challenging inference tasks. The limitations of our
approach were examined, including VerbNet’s lack
of coverage compared to PropBank, another seman-
tic role labeling lexical resource. We also found
certain VerbNet predicates that were particularly
opaque and benefited from expansion. In addition,
and as expected, using the VerbNet semantic parser
does not always yield a 100% accurate parse, re-
sulting in downstream errors. In addition, there is a
clear need for document-level entity state tracking,
which requires automatic reference resolution.

Given the limitations of the VerbNet semantic

False Negative Type Frequency
RT 34
WK 30
GLE 22
REF 7
UP 3
ONT 2
Other 100
Total 198

Table 6: Underlying reasons for predicted labels
judged as false negative. RT (Reverse Tracing): the
annotator has assumed the existence or motion of an
entity in a prior state for it to have an effect later.
WK (World Knowledge): the annotator has used world
knowledge to generate this label. GLE (Gold Label Er-
ror): This was judged as erroneous – something that
is not true even given the world knowledge or reverse
tracing. In the judgment task, this was considered an
empty gold label. REF (Reference Resolution): the
gold label is achievable given a reliable reference reso-
lution system. UP: (Unparsed): state extraction failure
due to parsing failure. ONT (Ontology): the gold label
is achievable given a reliable entity ontology. Other:
failure in predicting the state due to none of the above
reasons.

parser discussed in section 6.2, we can expect to
increase the recall by backing-off to a PropBank
semantic parser (e.g. Li et al. 2020), that has been
trained on much larger training data. This is the
next step we plan to undertake. However, it is im-
portant to note that the reason we chose VNSP for
this task is that it is the only semantic parser that
generates the rich semantic representations in the
predicate logic format that we employed in our
method. Therefore, another possibility that looks
more promising (but is a much longer-term solu-
tion) is continuing to update the VerbNet lexical
resource based on the error analysis introduced in
this work, annotating new data to cover examples
from these updates, and re-training the VerbNet
semantic parser.

Another area for planned future work is to use
the generated entity states to augment the ProPara
data and feed it into a machine learning model
to assess performance improvement. Finally, as
proposed in section 6.2, we will be adding a state-
of-the-art reference resolution system to achieve
document-level entity state tracking. All of these
additions will be evaluated and reported on.

https://leaderboard.allenai.org/propara/submissions/public
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