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Abstract

Due to a lack of annotated data, theories of
historical syntax are often based on very small,
manually compiled data sets. To enable the
empirical evaluation of existing hypotheses, the
present study explores the automatic recogni-
tion of phrases in historical German. Using
modern and historical treebanks, training data
for a neural sequence labeling tool and a proba-
bilistic parser is created, and both methods are
compared on a variety of data sets. The evalua-
tion shows that the unlexicalized parser outper-
forms the sequence labeling approach, achiev-
ing F1-scores of 87%–91% on modern German
and between 73% and 85% on different histori-
cal corpora. An error analysis indicates that ac-
curacy decreases especially for longer phrases,
but most of the errors concern incorrect phrase
boundaries, suggesting further potential for im-
provement.

1 Introduction
In recent years, the availability of ever-larger data
sets and increasing computational power have led
to major changes in the way language is analyzed.
Today, NLP tools can automatically enrich large
amounts of text quickly and accurately with linguis-
tic annotations needed for commercial or research
purposes. When it comes to non-standard data like
historical language, though, the availability of mod-
els and annotated corpora is still limited compared
to modern language and hypotheses are often based
on qualitative analyses of very small data sets. For
example, Speyer (2011) investigates object order in
the middle field of Early New High German sen-
tences based on a total of 70 pairs of direct and indi-
rect objects from three centuries. Similarly, Light
(2012) grounds her study of extraposition, i.e. the
movement of elements behind the clause-final verb,
on 115 cases of extraposed subjects in one Early
New High German bible translation, while Sapp

(2014) analyzes 683 extraposed phrases spread over
texts from five centuries. Although data-driven qual-
itative analyses like these provide valuable insights
for linguistic research, they require a lot of manual
effort and cannot achieve the same statistical signif-
icance as studies of modern language.
Recently, there have been several attempts to ad-

dress the lack of annotated historical data and pro-
vide a basis for the empirical evaluation of exist-
ing hypotheses by automatically identifying relevant
syntactic units in historical text (e.g. Chiarcos et al.,
2018; Ortmann, 2020, 2021). The present paper
takes a similar approach and looks explicitly at the
units targeted by the qualitative studies mentioned
above, namely phrases.
In the context of this study, phrases are under-

stood as continuous, non-overlapping constituents
from a sentence’s parse tree. Since the concrete
definition of constituents may vary depending on
the annotation scheme and not all constituents are
equally relevant for linguistic studies like the ones
mentioned above, this paper focuses on four main
phrase types: noun phrases (NP), prepositional
phrases (PP), adjective phrases (AP), and adverb
phrases (ADVP). For each sentence, only the high-
est non-terminal nodes of the given types are consid-
ered, ignoring the internal structure of phrases. This
means that phrases may dominate other phrases
of the same or different types, but the dominated
phrases are not evaluated here. Example (1) shows
an annotated sentence from a 1731 theological text.

(1) [NP Der kraͤftigſte Bewegungs-Grund] nimmt
[NP seinen Urſprung] [PP aus einer zaͤrtlichen
Leydenſchaft meines Gemuͤhts].
The most powerful motive takes its origin from
a tender passion of my heart.

To enable research on phenomena like extraposi-
tion, phrases may not cross topological field bound-



aries.1 For example, a prepositional phrase in the
middle field is considered separate from an adjacent
modifying relative clause in the post-field, as shown
in example (2) from a chemistry essay (field bound-
aries are indicated by vertical pipes). Also, discon-
tinuous structures as they exist in some German cor-
pora are not allowed here.

(2) Erhebt | [NP es] [NP ſich] [PP mit dem
Waſſerſtoffgas], | [NP welches] | [NP die
Moraͤſte] [PP in Ueberfluß] | ausdunſten?
Does it rise with the hydrogen gas that the
swamps evaporate in abundance?

The goal of this study is to automatically recog-
nize phrases that meet the aforementioned require-
ments in historical German texts. The remainder of
the paper is structured as follows: Section 2 presents
related work on the syntactic analysis of (historical)
German before Section 3 introduces the data sets
used in this study. In Section 4, two different meth-
ods for the automatic recognition of phrases are se-
lected based on the findings of previous studies and
their performance is evaluated in Section 5. The pa-
per concludes with a discussion in Section 6.

2 Related Work

The recognition of phrases as defined in the previ-
ous section is related to chunking as well as (con-
stituency) parsing and can be located somewhere in
between the two tasks regarding its complexity.
Chunking refers to the identification of non-

overlapping, non-recursive phrases from a sen-
tence’s parse tree, ending with the head token (Sang
and Buchholz, 2000). As a consequence, chunks are
often shorter than phrases because post-modifying
elements form separate chunks. For simple cases
without pre- or post-modifying elements, however,
the definitions of chunks and phrases overlap and
methods that are successful at chunking may also
be useful for phrase recognition.
Parsing, on the other hand, aims at a complete

syntactic analysis of the sentence. Hence, the re-
sulting constituency tree includes more information
than just the phrase annotation, e.g. dominance re-
lations, which are not considered in this study. As
a result, phrase annotations can be derived from the
more complex parse output, but the complexity of
the task may also reduce overall accuracy.

1For an overview of the topological field model, see e.g.
Cheung and Penn (2009) or Wöllstein (2018, in German)

While studies on chunking observe F1-scores
>95% for modern German (cf. Müller, 2005; Ort-
mann, 2021), the highest F1-scores for constituency
parsing of German are reported with approx. 90%,
compared to 95% for English (Kitaev et al., 2019).
In general, parsing results heavily depend on the se-
lected treebank and the inclusion of grammatical
functions (Dakota and Kübler, 2017) and discontin-
uous structures (cf. Vilares and Gómez-Rodríguez,
2020). Also, all of these results are obtained for
standard language like newspaper text. For non-
standard data, performance drops must be expected
(Pinto et al., 2016; Jamshid Lou et al., 2019).

For historical German, so far, there have been
experiments on chunking (Petran, 2012; Ortmann,
2021) and topological field parsing (Chiarcos et al.,
2018; Ortmann, 2020). For chunking, the best re-
sults are observed for CRF-based sequence label-
ing with overall F1-scores between 90% and 94%
(Ortmann, 2021). For topological field identifica-
tion, the application of a probabilistic parser yields
overall F1-scores >92% (Ortmann, 2020). In the
present study, both of these approaches will be ex-
plored for the purpose of phrase recognition in his-
torical German.

3 Data

The data sets for the experiments are taken from a
previous chunking study (Ortmann, 2021).2 The
training data consists of two modern and two his-
torical treebanks. The TüBa-D/Z corpus (Telljo-
hann et al., 2017)3 and the Tiger corpus (Brants
et al., 2004)4 contain modern German newspaper
articles, whereas the Mercurius corpus (Demske,
2005)5 and the ReF.UP corpus (Demske, 2019)6
comprise Early New High German texts from the
14th to 17th century. All four data sets are anno-
tated with constituency trees, but before they can
be used to train a parser or extract phrase annota-
tions for sequence labeling, a few modifications are
necessary.

2https://github.com/rubcompling/
nodalida2021

3Release 11.0, http://www.sfs.uni-tuebingen.
de/ascl/ressourcen/corpora/tueba-dz.html

4Version 2.2, https://www.ims.uni-stuttgart.
de/forschung/ressourcen/korpora/tiger

5Mercurius Baumbank (version 1.1),
https://doi.org/10.34644/
laudatio-dev-VyQiCnMB7CArCQ9CjF3O

6ReF.UP is a subcorpus of the Reference Corpus of Early
New High German (Wegera et al., 2021), https://www.
linguistics.rub.de/ref
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Figure 1: Example modification of a sentence from the ReF.UP corpus. At the top, the original constituency tree with
discontinuous annotations according to the Tiger scheme is displayed. The bracket structure to the right represents the
linearized version of the tree without crossing branches and grammatical functions. This format can be used to train
a standard parser. At the bottom, the phrase annotation for the sentence is shown. The phrases have been extracted
from the tree structure to the right and checked with a topological field parser to ensure that phrases do not cross field
boundaries (indicated by dashed lines). The phrase annotations serve as training data for a sequence labeling tool and
are also used for evaluation.

(i) The underlying annotation scheme of the Tiger
corpus and the two historical treebanks allows
for discontinuous annotations, which must be
removed to enable the use of standard chunk-
ing and parsing methods. Here, a combina-
tion of the raising and splitting approaches de-
scribed by Hsu (2010) is applied to the trees
until no crossing branches remain.7

(ii) Since German exhibits a relatively free word
order, grammatical functions like subject and
object play an important role in the syntactic
analysis of sentences, especially for the reduc-
tion of ambiguity (Fraser et al., 2013). For
the purpose of phrase recognition, however,
they are not relevant and, therefore, mostly ex-
cluded from the trees to reduce the size of the
tagset and improve parsing performance (Raf-
ferty and Manning, 2008; Dakota and Kübler,
2017).8

7Basically, discontinuous nodes are split and re-inserted
into the tree based on the linear order of tokens in the sen-
tence. The same holds for punctuation, which is appended to
the same parent node as the next token to the left (or to the right
for sentence-initial punctuation).

8The only exception are GFs that are needed to extract
correct phrases from the trees. For the Tiger scheme, these
are S:RC and S:OC. For TüBa-D/Z, the following GFs are

The modified trees can serve as training input for
a parser, or they can be used to extract phrase an-
notations. Contrary to chunking studies, where the
lowest non-terminal nodes are converted to chunks
(Kübler et al., 2010; Ortmann, 2021), here, the high-
est non-terminal nodes of the relevant types cor-
respond to the desired phrases.9 Before the ex-
tracted phrases can be used for evaluation or to
train a sequence labeling tool, another difference
between the annotation schemes of the treebanks
regarding topological fields must be taken into ac-
count, though.

(iii) While the TüBa-D/Z trees represent a com-
bination of constituency and topological field
annotations, the other three corpora that fol-
low the Tiger scheme do not include topolog-
ical fields. This means that constituents in
the TüBa-D/Z data are already bound to the
corresponding fields as required by the phrase

preserved: KONJ, OS, R-SIMPX, NX:HD within PX, and
NX:APP within NX. Also, one-word children of sentence
nodes that only receive a grammatical function according to
the Tiger scheme are assigned a phrase type NP, PP, AP, AVP,
VP, or SVP based on their POS tag.

9Again, phrases of the four types are added for one-word
constituents from Tiger-scheme trees based on the POS tag of
the word.



News1 News2 Hist Mix
#Docs 3,075 1,863 28 1,891
#Sents 83,515 40,037 23,747 63,784
#Toks 1,566,250 727,011 569,854 1,296,865

#Phrases 388,531 162,336 152,866 315,202

Table 1: Overview of the four training sets. Only sen-
tences with a gold parse are included, and the number of
phrases refers to phrases of the four relevant types. The
Mix set is a combination of the News2 and Hist sets.

Corpus #Docs #Sents #Toks #Phrases
TüBa-D/Z 364 10,488 196,630 49,329

Tiger 200 4,445 78,018 17,622
Modern 78 547 7,605 2,240

Mercurius 2 818 18,740 4,401
ReF.UP 26 2,173 54,005 15,355

HIPKON 53 342 4,210 1,146
DTA 29 608 18,515 4,068

Table 2: Overview of the test data. The number of
phrases includes NP, PP, AP, and ADVP phrases as de-
scribed in Section 1. Only sentences containing at least
one of the four phrase types are considered.

definition in this study, whereas constituents
in the other data sets may cross field bound-
aries. Therefore, phrases that are extracted
from these data sets or identified by a parser
that is trained on them are corrected with the
help of a topological field parser (Ortmann,
2020).10 Phrases that cross fields are split at
the field boundary and replaced by the domi-
nated sub-phrases to ensure that no phrase is
located in more than one field.11

An example of the different modifications of the
trees and extracted phrases can be found in Figure 1.
The resulting data sets are used to build four distinct
training sets: News1 corresponds to the TüBa-D/Z
data, News2 is based on the Tiger treebank, Hist
contains the historical data, and a joined set Mix
includes all data sets that follow the Tiger annota-
tion scheme. Table 1 gives a summary of the four
training sets.
For evaluation, the test sections of the four tree-

banks12 are processed in the same way as the train-
ing data, and phrases of the four types are extracted

10https://github.com/rubcompling/
latech2020

11Theoretically, it would also be possible to merge the con-
stituency trees with automatically created topological field an-
notations before training a parser on the merged trees. How-
ever, experiments indicate that this creates too many inconsis-
tencies in the training data, e.g. due to errors in the automatic
field annotation, and therefore leads to worse results than split-
ting the extracted phrase output at the field boundaries after-
wards.

12While the Tiger corpus is provided with official training,

Corpus NP PP AP ADVP
TüBa-D/Z 54.30 22.47 6.41 16.82
Tiger 55.28 27.55 6.09 11.07
Modern 61.88 17.72 5.94 14.46
Mercurius 50.44 26.68 5.23 17.66
ReF.UP 56.46 20.48 6.11 16.96
HIPKON 51.83 27.40 2.01 18.76
DTA 51.55 25.76 6.15 16.54

Table 3: Distribution of the four phrase types in the test
data. Numbers are given in percent.

and split at topological field boundaries if necessary.
In addition, the chunking study (Ortmann, 2021)
provides three other test sets, which were annotated
with phrases for the present paper: a corpus of mod-
ern non-newspaper data with texts from different
registers and two historical data sets from the HIP-
KON corpus (Coniglio et al., 2014) and the Ger-
man Text Archive DTA (BBAW, 2021) covering
different genres and time periods. Table 2 gives an
overview of the test data.13
In Table 3, the distribution of the phrase types in

the data sets is displayed. The most frequent phrase
type are NPs with 50% to over 60% in the mod-
ern non-newspaper data, followed by PPs with 18%
to 28%. ADVPs make up for 11% to 19%, while
APs that are not dominated by other phrases are rare
with 6% or less.

4 Methods

So far, the automatic syntactic analysis of historical
German has been focused on the identification of
chunks and topological fields. As described in Sec-
tion 2, the best results for these tasks are reported
for sequence labeling and statistical parsing. In the
following, both approaches are applied to the recog-
nition of phrases.
For sequence labeling, the neural CRF-based se-

quence labeling tool NCRF++ (Yang and Zhang,
2018) is selected. It achieves state-of-the-art perfor-
mance for several tasks, including tagging, chunk-
ing, and named entity recognition in English (Yang
et al., 2018). When POS tags are used as features,
it also proves successful at identifying chunks in
historical German with F1-scores>90% (Ortmann,
2021). The default configuration consists of a three-
layer architecture with a character and a word se-
development, and test sections, for the other three corpora, the
same splits into training (80%), development (10%), and test
set (10%) as in the chunking study (Ortmann, 2021) are used.

13The manually annotated data sets can be found in
this paper’s repository at https://github.com/
rubcompling/konvens2021.
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quence layer plus a CRF-based inference layer. For
the present study, the toolkit is trained on the ex-
tracted phrases from the four training sets, where
phrases are represented as BIO tags. POS tags
are included as additional feature and, during train-
ing, the tool is also provided with the development
sections of the training corpora. For every word,
NCRF++ outputs the single most likely BIO tag,
i.e. B-XP (beginning of phrase), I-XP (inside of
phrase), or O (outside of phrase). For evaluation,
the labels are converted to phrases, and the best re-
sult over five runs with different random seeds is
reported.
For parsing, the unlexicalized Berkeley parser

(Petrov et al., 2006)14 is selected. It achieves a pars-
ing F1-score of 91.8% on the TüBa-D/Z corpus and
72% on the Tiger corpus (Dakota and Kübler, 2017)
and has also been successfully applied to topologi-
cal field parsing of historical German with overall
F1-scores >92% (Ortmann, 2020). In the present
study, it is trained with default settings15 on the four
training sets, where the modified constituency trees
are used as training input. For annotation, the parser
is invoked in interactive mode16 and given a sen-
tence annotated with POS tags, it returns the single
best parse. For evaluation, the constituency trees
are then converted to phrases as described in the
previous section.

5 Evaluation
To evaluate the performance of the selected ap-
proaches on the task of phrase recognition, the out-
put of the trained systems is compared to the gold
standard annotation. However, the evaluation of se-
quence annotations like phrases with standard met-
rics faces the problem of double penalties, meaning
that one unit can count as two errors. For example,
and adjective phrase that is recognized as adverb
phrase would correspond to a false negative AP and,
at the same time, a false positive ADVP. Similarly,
if a system misses the initial preposition of a PP
and instead annotates the rest as an NP, this would
result in a false negative PP and a false positive
NP. There have been different suggestions on how
to deal with this problem. For word tokenization,

14https://github.com/slavpetrov/
berkeleyparser

15java -cp BerkeleyParser-1.7.jar
edu.berkeley.nlp.PCFGLA.GrammarTrainer
-treebank SINGLEFILE -out grammar.gr
-path treebank.txt

16java -jar BerkeleyParser-1.7.jar -gr
grammar.gr -maxLength 1000 -useGoldPOS

Shao et al. (2017) argue that recall should be used as
the only evaluation metric. While precision favors
under-splitting systems, recall values clearly show
the percentage of correctly recognized units that are
relevant for higher-level tasks. However, in the case
of segmentation tasks that include labeling, identi-
fying entities with almost correct boundaries may
also be useful (cf. Ortmann, 2021). For example,
the studies on extraposition mentioned in Section 1
would still benefit greatly from the recognition of
incomplete phrases, if not for a complete automatic
analysis, then at least for an easier and faster com-
pilation of much larger data sets (see also Eckhoff
and Berdičevskis (2016) for a study on using auto-
matic dependency parsing for pre-annotation of his-
torical data to speed up manual annotation). Hence,
precision values should not be disregarded entirely.
Instead, in Ortmann (2021), I proposed a more fine-
grained error analysis that takes into account differ-
ent types of possible errors while at the same time
circumventing the problem of multiply penalizing
errors in a single unit.
In the following, this error analysis is adopted for

the evaluation of phrase recognition and the out-
put of the different methods and models is com-
pared phrase-wise to the gold standard annotation,
grouping phrases into one of seven classes: true
positives (TP), false positives (FP), labeling errors
(LE), boundary errors (BE), labeling-boundary er-
rors (LBE) and false negatives (FN). In addition
to the standard categories, labeling errors refer to
phrases that cover the same token span but are la-
beled with a different phrase type. Boundary er-
rors are phrases of the correct type but with incor-
rect boundaries, and labeling-boundary errors are a
combination of the former two error types. Since
the three error types indicate an existing and not a
missing annotation, they are counted as false posi-
tives for the calculation of F-scores. Only sentences
containing at least one of the four phrase types are
evaluated, and punctuation at phrase boundaries is
ignored.

Sequence labeling As already mentioned, the
neural sequence labeling tool NCRF++ has been ap-
plied successfully to the identification of chunks in
German, reachingF1-scores between 90% and 94%
for different historical data sets (Ortmann, 2021).
As could be expected from previous studies (e.g.,
Petran, 2012), the accuracy for the recognition of
phrases, i.e. longer units, with CRF-based sequence
labeling is considerably lower. Table 4 gives a sum-

https://github.com/slavpetrov/berkeleyparser
https://github.com/slavpetrov/berkeleyparser


Corpus News1 News2 Hist Mix
TüBa-D/Z 85.18 76.82 n.a. n.a.
Tiger 78.93 79.69 n.a. n.a.
Modern 86.80 83.10 n.a. n.a.
Mercurius 70.25 67.83 9.05 8.93
ReF.UP 70.62 67.91 8.80 9.90
HIPKON 80.13 81.18 8.17 7.99
DTA 72.02 68.89 6.93 7.78

Table 4: Overall F1-scores of the sequence labeling ap-
proach. Models trained on historical data are only ap-
plied to the historical test sets. The table reports the high-
est F1-score over five runs and the best result for each
corpus is highlighted in bold.

mary of the results for each of the four models.
Using gold POS tags as a feature, the two

newspaper-based models still perform relatively
well. Model News1 achieves the best results with
F1-scores between 70.3% and 86.8%. The results
for the second modern model News2 also lie above
67% for all data sets. Contrary to the results for
chunking (Ortmann, 2021), using historical train-
ing data does not improve the results on the his-
torical test sets. Instead, the historical and mixed
models do not reach F1-scores >10% for phrase
recognition, indicating that the tool was not success-
ful at learning to identify the different phrase types
based on the historical corpora. Possible reasons
could be the high syntactic complexity of Early New
High German sentences or too much variation in the
training data, e.g. caused by the non-standardized
spelling in historical German.

Parsing So far, the parsing approach has only
been evaluated for topological field parsing of his-
torical German with overall F1-scores >92% (Ort-
mann, 2020). In Table 5, the results of the Berke-
ley parser for the recognition of phrases are given.
On the modern data sets, the parser achieves F1-
scores of 87.8% to 91.3% with visible differences
between the two modern models. While, unsurpris-

Corpus News1 News2 Hist Mix
TüBa-D/Z 91.30 81.50 n.a. n.a.
Tiger 82.73 87.81 n.a. n.a.
Modern 88.27 84.44 n.a. n.a.
Mercurius 60.32 65.72 81.50 81.06
ReF.UP 56.44 58.86 84.15 84.05
HIPKON 74.44 75.13 85.05 85.12
DTA 73.66 69.44 69.07 70.63

Table 5: Overall F1-scores (in percent) for the four
parser models on each data set. Models trained on his-
torical data are only applied to the historical test sets,
and the highest F1-score for each corpus is highlighted
in bold.

Figure 2: Comparison of the bestF1-scores for sequence
labeling and parsing on the different test sets.

ingly, each of them performs best on the test section
of the corpus it was trained on, the News1 model
also achieves the best results on the Modern data set
and the DTA corpus, while the News2 model per-
forms better on the other historical data sets.
In contrast to the sequence labeling results, here,

including historical training data improves the syn-
tactic analysis of historical language, probably be-
cause the unlexicalized parser is unaffected by the
non-standardized spelling or can better handle the
complex sentence structures. For three of the four
historical data sets, the Hist and Mix models
outperform the modern models by ten percentage
points or more. F1-scores lie between 81.5% and
85.1% for the Mercurius, ReF.UP and HIPKON
data, while the DTA is only analyzed with an F1-
score of 73.7%.
When compared to the sequence labeling tool,

the parsing approach yields better results for the
recognition of phrases. Figure 2 confirms that the
best parser model outperforms the best sequence la-
beling model by up to 13.5 percentage points on
each data set. Only for the modern non-newspaper
data and the DTA, the results of the methods are
similar. For the modern data, this could be due to
the fact that the data set contains many non-complex
phrases that are similar to chunks, e.g. simple noun
phrases. 54% of the phrases in this data set con-
sist of only one token, compared to 35%–50% in
the other data sets, which makes it easier for the se-
quence labeling approach to identify them.
However, parser accuracy also declines for larger

units (cf. Bastings and Sima’an, 2014). While the
Berkeley parser reaches overall parsingF1-scores of
92% and 86% for the modern data and 78%–79%
for the historical data (cf. Table 6), F1-scores heav-
ily decline for larger constituents as well as phrases
(see Figure 3). For constituents with more than
five words, the average F1-score of the four mod-



News1 News2 Hist Mix
TüBa-D/Z 91.96 n.a. n.a. n.a.
Tiger n.a. 86.42 n.a. n.a.
Mercurius n.a. 52.27 77.68 77.44
ReF.UP n.a. 45.15 78.97 79.13

Table 6: Overall labeled F1-score for the four trained
parser models on the test data, excluding virtual root
nodes. Training and test trees are modified as described
in Section 3, and models are only evaluated on test data
that follows the same syntactic annotation scheme as the
training data.

els is only about 70%. For phrases, the reduction is
even larger with F1-scores below 40% for phrases
of twenty or more words. This observation may,
in part, explain the lower results for the DTA be-
cause, proportionally, this data set contains about
twice as many phrases of twelve or more words than
the other corpora due to many dedications and very
long phrases with coordinations and dominated sen-
tences, e.g. in legal texts. A parser that performs
better on larger constituents thus might be better
equipped to analyze this data set.
Table 7 reports the parser results broken down

by phrase types. Here, each category is evaluated
separately and one unit may thus appear in two cate-
gories, e.g. as a false negative PP and a false positive
NP as exemplified above. For most data sets, the
highest F1-scores are reached for adverb and noun
phrases. While the former are usually very short
and therefore easier to identify, noun phrases and
prepositional phrases often contain pre- and/or post-
nominal modifiers including longer constituents like
relative clauses that lead to errors in the parser out-
put. Adjective phrases are the least frequent phrase
type and, although they tend to be short, also show
the least accurate results for more than half of the
data sets. Often they get mixed up with neighbor-
ing adverbs because a lexicalized model would be
necessary to distinguish between pre-modifying ad-
verbs as in example (3) and a separate adverb phrase
in (4).

(3) Sie war [AP sehr/ADV glücklich/ADJD].
She was very happy.

(4) Sie war [ADVP gestern/ADV] [AP glück-
lich/ADJD].
Yesterday, she was happy.

Finally, Table 8 shows the distribution of error
types for the best parser models. For all test sets,
boundary errors are by far the most frequent er-
ror types with a proportion of 52% to 66%. The

Corpus NP PP AP ADVP
TüBa-D/Z 89.03 83.26 86.99 91.40
Tiger 86.60 79.28 75.80 82.35
Modern 87.35 76.37 80.60 79.94
Mercurius 77.96 70.47 62.61 82.59
ReF.UP 82.72 75.21 63.31 81.77
HIPKON 80.49 77.62 60.00 84.49
DTA 66.53 64.98 67.98 72.06

Table 7: Overall F1-scores for each phrase type (in per-
cent) for the best performing parser model on each data
set.

Corpus FP LE BE LBE FN
TüBa-D/Z 22.47 0.96 62.85 0.75 12.97
Tiger 20.15 1.08 59.22 1.15 18.41
Modern 19.12 1.99 64.34 0.40 14.14
Mercurius 26.84 1.23 51.94 1.49 18.50
ReF.UP 22.74 1.53 53.20 1.23 21.30
HIPKON 20.00 3.03 66.36 1.21 9.39
DTA 17.73 1.01 60.91 2.47 17.88

Table 8: Proportion of the five error types: false posi-
tives (FP), labeling errors (LE), boundary errors (BE),
labeling-boundary errors (LBE), and false negatives (FN).
Numbers are given in percent for the best parser model
on each data set.

remaining errors are mostly traditional false posi-
tives and false negatives, while labeling and labeling-
boundary errors are rare. Considering that the iden-
tification of phrases with almost correct boundaries
may still satisfy the requirements of certain tasks as
discussed above, this can thus be assumed for more
than half of the errors. Furthermore, the results
suggest great potential for improvement because the
high percentage of boundary errors means that the
parser already identified these phrases, and correct-
ing boundaries could potentially lead to significant
increases in precision.

6 Discussion

The present study has explored the automatic recog-
nition of phrases in historical German. Two tools
that proved successful in previous studies on chunk-
ing and topological field parsing were selected and
trained on modern and historical treebanks. The
evaluation has shown that the Berkeley parser out-
performs the neural CRF-based sequence labeling
tool NCRF++ on all data sets, reaching overall F1-
scores of 87.8% to 91.3% on modern German and
73.7%–85.1% on different historical corpora. Pars-
ing results are most accurate for simple phrases
while scores decline with increasing phrase length.
Since the majority of errors turn out to be boundary
errors, the results leave room for further improve-



Figure 3: Average F1-score of the four parser models for the recognition of constituents and phrases of sizes 1–25.
The number of constituents includes all constituents of the given sizes in the test sections of the four training corpora.
The number of phrases refers to phrases of the four types in the seven test sets.

ment of annotation precision.
Interestingly, the inclusion of historical training

data improves the results of the parser, whereas the
sequence labeling tool did not benefit from it. One
possible explanation could be too much variation in
the data due to the non-standardized spelling in his-
torical German, which does not affect the unlexical-
ized parser. Future studies could experiment with
spelling normalization, which was observed to im-
prove the annotation results of modern NLP tools
for parsing Middle English (Schneider et al., 2015)
or tagging historical German (Bollmann, 2013) and
Dutch (Tjong Kim Sang et al., 2017).
The normalized data could then also be used

to explore lexicalized parsing, e.g. with the neu-
ral Berkeley parser (Kitaev and Klein, 2018). Al-
though parsers do not necessarily need lexical in-
formation for good performance (Coavoux et al.,
2019), studies on modern English show that the
application of neural parsing methods in combina-
tion with pre-trained word embeddings can further
improve the results (cf. e.g. Vilares and Gómez-
Rodríguez, 2020). For morphologically more com-
plex languages like German, this should be even
more relevant (Fraser et al., 2013) and could also
help in cases where lexical information is necessary
to decide about the correct phrase boundaries.
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