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Abstract

This paper describes the offline and simulta-
neous speech translation (ST) systems devel-
oped at AppTek for IWSLT 2021. Our of-
fline ST submission includes the direct end-
to-end system and the so-called posterior tight
integrated model, which is akin to the cas-
cade system but is trained in an end-to-end
fashion, where all the cascaded modules are
end-to-end models themselves. For simultane-
ous ST, we combine hybrid automatic speech
recognition (ASR) with a machine translation
(MT) approach whose translation policy deci-
sions are learned from statistical word align-
ments. Compared to last year, we improve
general quality and provide a wider range of
quality/latency trade-offs, both due to a data
augmentation method making the MT model
robust to varying chunk sizes. Finally, we
present a method for ASR output segmentation
into sentences that introduces a minimal addi-
tional delay.

1 Introduction

In this paper, we describe the AppTek speech trans-
lation systems that participate in the offline and
simultaneous tracks of the IWSLT 2021 evaluation
campaign. This paper is organized as follows: In
Section 2, we briefly address our data preparation.
Section 3 describes our offline ST models followed
by the experimental results in Section 3.6. For the
offline end-to-end translation task, we train deep
Transformer models that benefit from pretraining,
data augmentation in the form of synthetic data
and SpecAugment, as well as domain adaptation
on TED talks. Motivated by Bahar et al. (2021),
we also collapse the ASR and MT components into
a posterior model which passes on the ASR pos-
teriors as input to the MT model. This system is
not considered a direct model since it is closer to
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the cascade system while being end-to-end train-
able. Our simultaneous translation systems are
covered in Section 4 with discussions on experi-
mental results in Section 4.5. We resume the work
on our streaming MT model developed for IWSLT
2020, which is based on splitting the stream of in-
put words into chunks learned from statistical word
alignment. Most notably, we can implement a flexi-
ble quality/latency trade-off by simulating different
latencies at training time. We also meet this year’s
requirement to support unsegmented input by de-
veloping a neural sentence segmenter that splits the
ASR output into suitable translation units, using a
varying number of future words as context which
minimizes the latency added by this component.

The experiments have been done using RASR
(Wiesler et al., 2014), RETURNN (Zeyer et al.,
2018a), and Sisyphus (Peter et al., 2018).

2 Data Preparation

2.1 Text Data

We participate in the constrained condition and
divide the allowed bilingual training data into in-
domain (the TED and MuST-C v2 corpora), clean
(the NewsCommentary, Europarl, and WikiTitles
corpora), and out-of-domain (the rest). The con-
catenation of MuST-C dev and IWSLT tst2014 is
used as our dev set for all experiments. Our data
preparation includes two main steps: data filtering
and text conversion. We filter the out-of-domain
data based on similarity to the in-domain data in the
embedding space, reducing the size from 62.5M
to 30.0M lines. For the details on data filtering,
please refer to our last year’s submission (Bahar
et al., 2020).

For a tighter coupling between ASR and MT in
the cascade system, we apply additional text nor-
malization (TN) to the English side of the data.
It lowercases the text, removes all punctuation
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marks, expands abbreviations, and converts num-
bers, dates, and other digit-based entities into their
spoken form. This year, our TN approach includes
a language model to score multiple readings of
digit-based entities and randomly samples one of
the top-scoring readings. We refer to it as ASR-like
preprocessing. The target text preserves the casing
and punctuation such that the MT model is able to
implicitly handle the mapping.

2.2 Speech Data
We use almost all allowed ASR data, including Eu-
roParl, How2, MuST-C, TED-LIUM, LibriSpeech,
Mozilla Common Voice, and IWSLT TED corpora
in a total of approximately 2300 hours of speech.
The MuST-C and IWSLT TED corpora are chosen
to be the in-domain data. For the speech side of the
data, 80-dimensional Mel-frequency cepstral coef-
ficients (MFCC) features are extracted every 10ms.
The English text is lower-cased, punctuation-free,
and contains no transcriber tags.

3 Offline Speech Translation

3.1 Neural Machine Translation
Our MT model for the offline task is based on the
big Transformer model (Vaswani et al., 2017). Both
self-attentive encoder and decoder are composed
of 6 stacked layers with 16 attention heads. The
model size is 1024 with a ReLu layer equipped
with 4096 nodes. The effective batch size has been
increased by accumulating gradient with a factor
of 8. Adam is used with an initial learning rate of
0.0003. The learning rate decays by a factor of 0.9
in case of 20 checkpoints of non-decreased dev set
perplexity. Label smoothing (Pereyra et al., 2017)
and dropout rates of 0.1 are used. SentencePiece
(Kudo and Richardson, 2018) segmentation with a
vocabulary size of 30K is applied to both the source
and target sentences. We use a translation factor to
predict the casing of the target words (Wilken and
Matusov, 2019).

3.2 Automatic Speech Recognition
We have trained attention-based models (Bahdanau
et al., 2015; Vaswani et al., 2017) for the offline task
mainly following (Zeyer et al., 2019). To enable
pre-training of the ST speech encoder with differ-
ent architectures, we have trained two attention-
based models. The first model is based on the
6-layer bidirectional long short-term memory (BiL-
STM) (Hochreiter and Schmidhuber, 1997) in the
encoder and 1-layer LSTM in the decoder with

# Model TED MuST-C MuST-C
tst2015 tst-HE tst-COMMON

1 LSTM 6.9 7.5 9.7
2 Transformer 5.2 5.5 7.3

Table 1: ASR word error rate results in [%].

1024 nodes each. Another model is based on the
Transformer architecture with 12 layers of self-
attentive encoder and decoder. The model size is
chosen to be 512, while the feed-forward dimen-
sion is set to 2048. Both models employ layer-wise
network construction (Zeyer et al., 2018b, 2019),
SpecAugment (Park et al., 2019; Bahar et al., 2019)
and the connectionist temporal classification (CTC)
loss (Kim et al., 2017) during training. We further
fine-tune the models on the in-domain data plus
TED-LIUM. As shown in Table 1, the models ob-
tain low word error rates without using an external
language model (LM). These attention-based mod-
els also outperform the hybrid LSTM/HMM model
used in our simultaneous speech translation task.

3.3 Speech Translation

The ST models are trained using all the speech
translation English→German corpora i.e. IWSLT
TED, MuST-C, EuroParl ST, and CoVoST. After
removing the off-limits talks from the training data,
we end up with 740k segments. 5k and 32k byte-
pair-encoding (BPE) (Sennrich et al., 2016) is ap-
plied to the English and German texts, respectively.
We have done the data processing as described in
Section 2. We also fine-tune on the in-domain data,
using a lower learning rate of 8× 10−5.

3.3.1 End-to-End Direct Model
Following our experiments from last year, the direct
ST model uses a combination of an LSTM speech
encoder and a big Transformer decoder. The speech
LSTM encoder has 6 BiLSTM layers with 1024
nodes each. We refer to this model as LSTM-enc
Transformer-dec. The model is initialized by the
encoder of LSTM-based ASR (line 1 in Table 1)
and the decoder of the MT Transformer model.

We also experiment with the pure Transformer
model both in the encoder and decoder. The
Transformer-based ST models follow the network
configuration used for speech recognition in Sec-
tion 3.2. In order to shrink the input speech se-
quence, we add 2 layers of BiLSTM interleaved
with max-pooling on top of the feature vectors in
the encoder with a total length reduction of 6.

Layer-wise construction is done including the de-
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coder: we start with two layers in the encoder and
decoder and double the number of layers after ev-
ery 5 sub-epochs (approx. 7k batches). During this,
we linearly increase the hidden dimensions from
256 to 512 nodes and disable dropout, afterwards it
is set to 10%. Based on our initial observation, the
layer-wise construction helps convergence, in par-
ticular for such deep architectures. The CTC loss
is also applied on top of the speech encoder during
training. The Transformer-based model uses 10
steps of warm-up with an initial learning rate of
8× 10−4. We set the minimum learning rate to be
50 times smaller than this initial value. We also
apply SpecAugment without time warping to the
input frame sequence to reduce overfitting.

3.3.2 Posterior Tight Integration

The posterior model is inspired by Bahar et al.
(2021) where the cascade components, i.e. the end-
to-end ASR and MT models, are collapsed into a
single end-to-end trainable model. The idea is to
benefit from all types of available data, i.e. the
ASR, MT, and direct ST corpora, and optimize all
parameters jointly. To this end, we concatenate the
trained Transformer-based ASR and MT models,
but instead of passing the one-hot vectors for the
source words to the MT model, we pass on the
word posteriors as a soft decision. We sharpen the
source word distribution by an exponent γ and then
renormalize the probabilities.

A value of γ = 1 produces the posterior distri-
bution itself, while larger values produce a more
peaked distribution (almost one-hot representation).
To convey more uncertainty, we use γ = 1.0 in
training and γ = 1.5 in decoding to pick the most
plausible token. We further continue training of
the end-to-end model using the direct ST parallel
data as a fine-tuning step. The constraint is that
the ASR output and the MT input must have the
same vocabulary. Therefore, we need to train a new
MT model with the appropriate English vocabulary
with 5K subwords. The ASR model is trained with
SpecAugment, the Adam optimizer with an initial
learning rate of 1× 10−4, and gradient accumula-
tion of 20 steps. We also apply 10 steps of learning
warm-up. We employ beam search with a size of
12 to generate the best recognized word sequence
and then pass it to MT with the corresponding word
posterior vectors.

3.4 Synthetic Data
To provide more parallel audio-translation pairs,
we translate the English side of the ASR data (Jia
et al., 2019) with our MT model. From our initial
observations, we exclude those corpora for which
we have the ground-truth target reference and only
add those with the missing German side. There-
fore, combining the real ST data with the synthetic
data generated from the How2, TED-LIUM, Lib-
riSpeech corpora, and the English→French part of
MuST-C (Gaido et al., 2020b), we obtain about
1.7M parallel utterances corresponding to 33M En-
glish and 37M German words, respectively.

3.5 Speech Segmentation
To comply with the offline evaluation conditions
for a direct speech translation system with unseg-
mented input, we cannot rely on ASR source tran-
scripts for sentence segmentation. Thus, we train a
segmenter aiming to generate homogeneous utter-
ances based on voice activity detection (VAD) and
endpoint detection (EP). The segmenter is a frame-
level acoustic model that applies a 5-layer feed-
forward network and predicts 3530 class labels,
including one silence and 3529 speech phonemes.
It compares the average silence score of 10 succes-
sive frames with the average of the best phoneme
score from each of those frames to classify silence
segments. We wait for a minimum of 20 consecu-
tive silence frames between two speech segments,
whereas the minimal number of continuous speech
frames to form a speech segment is 100.

Besides improving audio segmentation, follow-
ing the idea by Gaido et al. (2020a), we fine-tune
the direct model on automatically segmented data
to increase its robustness against sub-optimal non-
homogeneous utterances. To resegment the Ger-
man reference translations, we first use the baseline
direct model to generate the German MT output
for the automatically determined English segments.
Then, we align this MT output with the reference
translations and resegment the latter using a variant
of the edit distance algorithm implemented in the
mwerSegmenter tool (Matusov et al., 2005).

3.6 Offline Speech Translation Results
The offline speech translation systems results in
terms of BLEU (Papineni et al., 2002) and TER

(Snover et al., 2006) are presented in Table 2. The
first group of results shows the text translation us-
ing the ASR-like processing. By comparing lines 1
and 3, we see an improvement in our MT develop-
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TED MuST-C MuST-C
tst2015 tst-HE tst-COMMON

# System BLEU TER BLEU TER BLEU TER

Text MT (ASR-like source processing)
1 AppTek 2020 submission 32.7 57.3 31.0 59.4 32.7 55.0
2 Transformer 32.4 57.8 30.8 60.0 33.1 54.5
3 + fine-tuning 33.8 56.5 32.0 58.6 34.5 53.1

Cascaded ASR→MT
4 AppTek 2020 submission (single) 30.9 61.0 29.3 61.7 30.0 58.0
5 AppTek 2020 submission (ensemble) 31.0 61.2 29.5 61.8 30.8 57.3
6 Transformer 31.4 59.3 30.1 60.7 31.4 56.9

7 Posterior ASR→MT 31.3 59.8 29.2 60.7 31.8 56.3

Direct ST
8 AppTek 2020 submission (single) 26.4 64.7 24.7 66.9 29.4 58.6
9 LSTM-enc Transformer-dec 28.8 62.7 28.5 61.9 31.4 56.9
10 + fine-tuning 28.3 64.8 27.8 62.8 33.1 55.6
11 + resegmentation 28.0 63.3 27.3 62.8 31.1 57.1
12 Transformer 29.7 62.5 28.6 62.1 30.7 57.3
13 + fine-tuning 29.5 62.7 28.6 62.4 31.0 57.1

Ensemble
14 AppTek 2020 submission 28.0 63.2 27.4 63.3 30.4 57.8
15 lines 10(2x), 13(2x) 30.4 61.7 29.6 60.2 33.8 54.5

Table 2: Offline speech translation results measured in BLEU [%] and TER [%].

ment over time. As intended, fine-tuning using the
in-domain data brings a significant gain. The MT
model in line 3 and the Transformer-based ASR
model from Table 1 make up the cascade system
that outperforms our last year’s submission, which
ranked first on tst2020 using given segmentation.
However, note that this year’s cascade system is a
single-shot try without careful model choice and
fine-tuning. This result indicates fast progress of
the speech translation task. As discussed in Section
3.3.2, passing ASR posteriors into the MT model,
we further fine-tune the cascade model on the direct
ST data. Therefore, the posterior model guarantees
better or equal performance compared to the cas-
cade system. Line 7 shows its competitiveness.

Regarding direct ST, we observe that the pure
Transformer model (line 12) performs on par with
the model with the LSTM-based encoder (line 9).
Our main goal has been to employ different model
choices to potentially capture different knowledge.
These models already use synthetic data. The di-
rect model with the LSTM encoder uses pretraining
of components, while all pretraining experiments
on the Transformer model degrade the translation
quality. The reason might be partly attributed to
the fact that we use a deep encoder (12 layers with
size 512) and a large decoder (6 layers with model

size 1024) with 3 to 6 layers of adaptors in be-
tween. The training deals with a more complex
error propagation, causing a sub-optimal solution
for the entire optimization problem. Again, fine-
tuning helps both models in terms of the translation
quality, in particular on tst-COMMON. Using the
resegmeted MuST-C training data (line 11) leads
to degradation; however, we have observed that
this model generates less noise and fewer repeated
phrases.

Finally, we ensemble 4 models (two checkpoints
each from lines 10 and 13) constituting our primary
submission for the 2021 IWSLT evaluation. In
comparison to the 2020 submission, improvements
of more than 2% in BLEU can be observed for both
single and ensemble models.

4 Simultaneous Speech Translation

For the IWSLT 2021 simultaneous speech trans-
lation English→German tracks, we continue ex-
ploring our last year’s alignment-based approach
(Wilken et al., 2020), which uses a cascade of a
streaming ASR system and an MT model.

4.1 Simultaneous MT Model

This section gives a short summary of (Wilken
et al., 2020). Our simultaneous MT method is
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based on the observation that latency in transla-
tion is mainly caused by word order differences
between the source and target language. For exam-
ple, an interpreter might have to wait for a verb at
the end of a source sentence if it appears earlier in
the target language. We therefore extract such word
reordering information from statistical word align-
ments (generated using the Eflomal tool (Östling
and Tiedemann, 2016)) by splitting sentence pairs
into bilingual chunks such that word reordering
happens only within chunk boundaries.

For the MT model, we use the LSTM-based at-
tention model (Bahdanau et al., 2015). We make
the following changes to support streaming decod-
ing: 1. We only use a forward encoder.1 2. We add
a binary softmax on top of the encoder trained to
predict source chunk boundaries as extracted from
the word alignment. Importantly, we add a delayD
to the boundaries such that a detection at position
j corresponds to a chunk boundary after position
j−D. The future context available this way greatly
increases the prediction accuracy. 3. We add an-
other softmax on top of the decoder to predict the
target-side chunk boundaries. They are needed as a
stopping criterion in beam search. 4. We mask the
attention energies such that when generating the
k-th target chunk only the source words encoding
in the chunks 1 to k can be accessed.

Inference happens by reading source words until
a chunk boundary is predicted. Then the decoder is
run using beam search until all hypotheses have pre-
dicted chunk end. During this, all source positions
of the current sentence read so far are considered
by the attention mechanism. Finally, the first best
hypothesis is output and the process starts over.

4.2 Random Dropping of Chunk Boundaries

One evident limitation of our IWSLT 2020 sys-
tems (Bahar et al., 2020; Wilken et al., 2020) has
been that we could not provide a range of different
quality-latency trade-offs. This is because basing
translation policy on hard word alignments leads to
a fixed ”operation point” whose average lagging is
solely determined by the amount of differences in
word order between the source and target language.

To overcome this, we make the observation that
two subsequent chunks can be merged without
violating the monotonicity constraint. This cor-
responds to skipping a chunk boundary at infer-
ence time and waiting for further context, at the

1Although we experiment with a BiLSTM encoder in
streaming, we are unable to achieve an improved performance.

cost of higher latency. The number of skipped
chunk boundaries can be controlled by adjusting
the threshold probability tb which is used to make
the source chunk boundary decision. In (Wilken
et al., 2020), we have found that a threshold tb
different than 0.5 hurts MT performance because
the decoder strongly adapts to the chunks seen in
training, such that longer merged chunks are not
translated well.

To solve this issue, we simulate higher detec-
tion thresholds tb at training time by dropping each
chunk boundary in the data randomly with a proba-
bility of pdrop. In fact, we create several duplicates
of the training data applying different values of
pdrop and shuffle them. This way the model learns
to translate (merged) chunks with a wide variety
of lengths, in the extreme case of pdrop = 1 even
full sentences. This goes in the direction of gen-
eral data augmentation by extracting prefix-pairs as
done by Dalvi et al. (2018); Niehues et al. (2018).
Importantly, we still train the source chunk predic-
tion softmax on all boundaries to not distort the
estimated probabilities.

4.3 Streaming ASR

As the ASR component, we use the same hy-
brid LSTM/HMM model (Bourlard and Wellekens,
1989) as in last year’s submission (Bahar et al.,
2020). The acoustic model consists of four BiL-
STM layers with 512 units and is trained with the
cross-entropy loss on triphone states. A count-
based n-gram look-ahead language model is used.
The streaming recognizer implements a version of
chunked processing (Chen and Huo, 2016; Zeyer
et al., 2016), where the acoustic model processes
the input audio in fixed-length overlapping win-
dows. The initial state of the backward LSTM is
initialized for each window, while – as opposed
to last year’s system – the forward LSTM state is
propagated among different windows. This state
carry-over improves general recognition quality
and allows us to use smaller window sizes WASR

to achieve lower latencies.

4.4 Sentence Segmentation

This year’s simultaneous MT track also requires
supporting unsegmented input. To split the unseg-
mented source word stream into suitable translation
units, we employ two different methods for the text
and speech input condition.
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4.4.1 Text Input
For the text-to-text translation task, the input con-
tains punctuation marks that can be used for reli-
able sentence segmentation. We heuristically insert
sentence ends whenever the following conditions
are fulfilled:

1. the current token ends in sentence final punctu-
ation (. ? ! ;), or punctuation plus quote (."
?" !" ;"), yet is not contained in a closed
list of abbreviations (Mrs. Dr. etc., ...);

2. the first character of the next word is not lower-
cased.

Those heuristics are sufficient to recover the orig-
inal sentence boundaries of the MuST-C dev set
with a precision of 96% and a recall of 82%, where
most of the remaining differences can be attributed
to lines with multiple sentences in the original seg-
mentation. The described method uses one future
word as context and therefore does not introduce ad-
ditional delay into the system compared to awaiting
a sentence end token. We enable this kind of sen-
tence splitting also in the case of segmented input
as we find that splitting lines with multiple sen-
tences slightly increases translation performance.

4.4.2 Speech Input
For the speech-to-text translation task, sentence
segmentation is a much harder problem. Our
streaming ASR system does not require segmenta-
tion of the input; however, its output is lower-cased
and punctuation-free text.

In the literature, the problem of segmenting
ASR output into sentences has been approached
using count-based language models (Stolcke and
Shriberg, 1996), conditional random fields (Liu
et al., 2005), and other classical models. Recently,
recurrent neural networks have been applied, either
in the form of language models (Wang et al., 2016)
or sequence labeling (Iranzo-Sánchez et al., 2020).
These methods either are meant for offline segmen-
tation or require a fixed context of future words,
thus increasing the overall latency of the system.

Wang et al. (2019) predict sentence boundaries
with a various number of future words as context
within the same model, allowing for dynamic seg-
mentation decisions at inference time depending
on the necessary context. We adopt the proposed
model, which is a 3-layer LSTM with a hidden
size of 512, generating softmax distributions over
the labels y(k), k ∈ {0, . . . ,m}, where m is the

maximum context length. For each timestep t, y(k)t

represents a sentence boundary at position t − k,
i.e. k words in the past. y(0) represents the case of
no boundary. To generate training examples, each
sentence is extended with the first m words of the
next sentence, and those words are labelled with
y(1) to y(m).

However, we make a crucial change on how the
model is applied: instead of outputting words only
after a sentence end decision2, we output words
as soon as the model is confident that they still
belong to the current sentence. For this purpose,
we reinterpret the threshold vector θ(k) such that
p(y

(k)
t ) > θ(k) detects a possible instead of a defi-

nite sentence boundary at position t− k. The idea
is that as long as no incoming word is considered a
possible sentence end, all words can be passed on to
MT without any delay. Only if p(y(1)) > θ(1), the
current word is buffered, and we wait for the second
word of context to make a more informed decision.
If for k = 2 the boundary is still possible, a third
word is read, and so on. A final sentence end deci-
sion is only made at the maximum context length
(k = m). In this case, a sentence end token is emit-
ted and the inference is restarted using the buffered
words. If during the process p(y(k)) < θ(k) for
any k, the word buffer is flushed, except for words
still needed for pending decisions at later positions.
Note that false negative decisions are not corrected
later using more context because the corresponding
words in the output stream have already been read
and possibly translated by the MT system.

4.5 Simultaneous MT Experiments
4.5.1 MT Model Training
We use the data described in Section 2.1 to train
the simultaneous MT models. For the text input
condition, no ASR-like preprocessing is applied
as the input is natural text. SentencePiece vocab-
ularies of size 30K are used for source and target.
We create copies of the training data with dropped
chunk boundaries (Section 4.2) with probabilities
of pdrop = 0.0, 0.2, 0.5 and 1.0. 6 encoder and
2 decoder layers with a hidden size of 1000 are
used, the word embedding size is 620. The chunk
boundary delay is set to D = 2. Dropout and la-
bel smoothing is used as for the offline MT model.
Adam optimizer is used with an initial learning
rate of 0.001, decreased by factor 0.9 after 10 sub-
epochs of non-decreasing dev set perplexity. Train-

2This is only appropriate in their scenario of an offline MT
system as the next step in the pipeline.
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ing takes 150 and 138 sub-epochs of 1M lines each
for text and speech input, respectively.

4.5.2 Latency/Quality Trade-Off Parameters
As described in Section 4.2, we can vary the bound-
ary prediction threshold probability tb to set dif-
ferent latency/quality trade-offs at inference time.
In our experiments, we observe that the longer
a chunk gets the less confident the model is in
predicting its boundary, leading in some cases
to very large chunks and thus high latency. To
counteract this effect, we introduce another meta-
variable ∆tb which defines a decrement of the
threshold per source subword in the chunk, making
the current threshold t′b at a given chunk length
l: t′b = tb − ∆tb · (l − 1). This usually leads to
chunks of reasonable length, while also setting a
theoretical limit of l ≤ dtb/∆tbe+ 1.

For the speech input condition, we vary the ASR
window size WASR of the acoustic model in the
ASR system between 250ms, 500ms and 1000ms.

Finally, we apply length normalization by di-
viding the model scores by Iα, I being the chunk
translation length in subwords, and tune α to values
≤ 1 for low latency trade-offs as we notice the MT
model tends to overtranslate in this range.

4.5.3 Fine-tuning
We fine-tune all simultaneous MT models on in-
domain data described in Section 2. We also add a
copy of MuST-C where the transcriptions produced
by our hybrid ASR system are used as source to
make MT somewhat robust against ASR errors.

Furthermore, we create low latency systems
by fine-tuning as above, but changing the chunk
boundary prediction delay D from 2 to 1. This
way the latency of the MT component is pushed
to a minimum; however, at the cost of reduced
translation quality caused by unreliable chunking
decisions with a context of only one future word.

4.5.4 Sentence Segmenter
We train the sentence segmenter for unsegmented
audio input (Section 4.4.2) on the English source
side of the MT training data to which we ap-
ply ASR-like preprocessing and subword splitting.
Note that the sentence splitting of the MT data it-
self is not perfect, and a better data selection might
have improved results.

We set the maximum length of the future con-
text to m = 3 as the baseline results in Wang
et al. (2019) indicate no major improvement for
longer contexts. Adam is used with a learning rate

WASR (ms) dev tst-HE tst-COMMON

250 11.7 11.1 12.4
500 10.7 10.3 10.8

1000 10.4 9.7 10.4

Table 3: WER [%] of streaming hybrid ASR on
MuST-C test sets for various window sizes WASR

of 0.001, reduced by factor 0.8 after 3 epochs of
non-improved dev set perplexity. Training takes 27
sub-epochs of 690K sentences each. For inference,
we set the threshold vector to θ = (0.05, 0.1, 0.5)
by analysing the amount of false negatives depend-
ing on θ(k) for k = 1, 2 and by determining a good
recall/precision trade-off for k = 3. The resulting
segmenter has a recall of 61.4% and a precision
of 64.1% on the original tst-COMMON sentence
boundaries. Words are buffered for only 0.4 posi-
tions on average.

4.5.5 Simultaneous MT Results

The simultaneous MT systems are evaluated with
the SimulEval tool (Ma et al., 2020). The BLEU

and Average Lagging (AL) (Ma et al., 2019) met-
rics are used to score the different latency/quality
trade-offs. Beam size 12 is used in all cases.

Figure 1 shows the results for the text input con-
dition for MuST-C tst-HE and tst-COMMON. The
filled data points correspond to the main text-input
MT model. The points without fill show the re-
sults after low-latency fine-tuning with D = 1.
The different trade-offs are achieved by varying
the boundary threshold tb from 0.3 to 0.9 using
various decrements ∆tb. The full list of trade-off
parameters is given in the appendix, Table 6. With
the low-latency system an AL value of 2 words is
achieved; however, at the cost of low BLEU scores
of 22.2 and 25.1 on tst-HE and tst-COMMON, re-
spectively. A reasonable operation point could for
example be at an AL of 4, where BLEU scores
of around 29.8 and 31.6 are achieved. For higher
latency values, translation quality increases less
rapidly, peaking at 31.0 and 33.1 BLEU for the two
test sets. On tst-COMMON, a bump in the graph
can be observed between 4 and 6 AL. This corre-
lates with a problem of too short translations of up
to 3% less words than the reference in this range.
Below 4 AL, we are able to tune the hypothesis
lengths via the length normalization exponent α.
But above 4 AL, the optimal α is already 1, and
setting α > 1 does not yield improvements.

Figure 2 shows the results for the speech input
condition. The trade-offs are achieved using sim-



59

1 2 3 4 5 6 7 8 9 10 11 12

22

23

24

25

26

27

28

29

30

31

Average Lagging (AL)

B
LE

U

D=1 (low-latency fine-tuning)

D=2

(a) tst-HE

1 2 3 4 5 6 7 8 9 10 11 12

25

26

27

28

29

30

31

32

33

Average Lagging (AL)

B
LE

U

D=1 (low-latency fine-tuning)

D=2

(b) tst-COMMON

Figure 1: Results for English→German text-to-text simultaneous translation
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Figure 2: Results for English→German speech-to-text simultaneous translation

ilar parameters as for the text input (Table 7 in
the appendix shows the full list). Additionally, we
vary the ASR window size: for the 7 data points
with lowest latency WASR = 250ms is used, for
the highest 3 WASR = 1000ms. The remaining
points use a value of 500ms. The word error rates
for different WASR are shown in Table 3. On tst-
COMMON, the general shape of the curve is sim-
ilar to text input. The lowest obtained AL is 1.8s.
For high latencies, BLEU saturates at 26.8. On tst-
HE, quality improves less rapidly with increased
latency and even decreases slightly for AL values
> 5s. This indicates that the trade-off parameters,
which have been tuned on dev, do not translate
perfectly to other test sets in all cases. When com-
paring text and speech input results for high latency
values, we conclude that recognition errors in the
ASR system lead to a drop in translation quality by
about 5-6% absolute in terms of BLEU.

Figure 2 also shows results for unsegmented in-
put3. Since no official scoring conditions have been
defined, we therefore create partly unsegmented
test sets ourselves by concatenating every 10 subse-

3For tst-COMMON we skip the 3 points with highest la-
tency for better visibility of the other points.

quent sentences of the test sets. The AL scores are
taken as-is from SimulEval, the BLEU scores were
computed using the mwerSegmenter tool. (Scoring
the segmented results with mwerSegmenter leads
to unaltered scores.) In general, the missing seg-
mentation seems to lead to a drop of 2-3% BLEU.
For tst-HE, unsegmented input leads to better re-
sults in the low latency range which is unrealistic
and indicates that the AL values computed for sin-
gle and multiple sentences are not comparable. In
future work, we will analyze the scoring of the
unsegmented case further and use trade-off param-
eters which are tuned for this case.

5 Final Results

In comparison to last year’s submission (Bahar
et al., 2020), the result of offline speech transla-
tion models have improved. The official results on
the tst2020 and tst2021 test sets are shown in Ta-
ble 4, as evaluated by the IWSLT 2021 organizers.
This year, there are two references along with the
BLEU score using both of them together. Ref1 is
the original one from the TED website, while Ref2
has been created to simulate shorter translations as
used in subtitles.
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Our end-to-end direct (an ensemble of 4 models),
cascade (a single model) and posterior (a single
model) systems correspond to the lines 15, 6 and 7
of Table 2, respectively. We observe that the pro-
vided reference segmentation negatively affects the
ST quality regardless of the systems themselves. In
contrast, the segmentation obtained by our segmen-
tation model provides segments which apparently
are more sentence-like including less noise and
thus can be better translated. We note that our end-
to-end direct primary and contrastive systems have
the identical model parameters with an ensemble
of 4 models while they utilize different speech seg-
mentations. In the direct contrastive system, we
apply our last year’s segmentation which seems to
be slightly better than that of this year. Similar to
the MuST-C tst-COMMON set in Table 2, the di-
rect model outperforms the cascaded-wise systems
on tst2020 whereas it is behind on tst2021 with
automatic segmentation. On the condition with ref-
erence segmentation, the difference between our
cascade and direct models is lower where both sys-
tems almost preform the same. More results can be
found in (Anastasopoulos et al., 2021).

System
TED TED

tst2020 tst2021
Ref1 Ref2 both

reference segmentation
direct (submission 2020) 20.5 - - -
direct 22.2 20.2 17.1 28.7
cascade 21.4 20.7 17.1 28.6
posterior 20.6 20.1 16.8 28.3

automatic segmentation
direct (submission 2020) 23.5 - - -
direct primary 24.5 22.6 18.3 31.0
direct contrastive 25.1 22.8 18.9 32.0
cascade 24.0 23.3 19.2 32.1
posterior† 23.1 21.9 18.1 30.4

Table 4: AppTek IWSLT 2021 submission for offline
speech translation measured by BLEU [%]. †: our cas-
cade primary system at the time of submission.

Table 5 shows the official results for our simul-
taneous speech translation submission. The classi-
fication into different latency regimes is done by
the organizers based on results on tst-COMMON.
Due to dropping chunk boundaries in training, this
year we are able to provide systems in all latency
regimes, except for the speech track where a low-
latency system (AL < 1s) is not possible to achieve
with our cascade approach where the individual
components already have a relatively high minimal

latency regime BLEU [%] AL
text-to-text
low 22.8 3.1
mid 25.7 6.2
high 26.6 12.0

speech-to-text
mid 16.6 2.0s
high 21.0 4.0s

Table 5: AppTek IWSLT 2021 official simultaneous
speech translation results on the blind text and speech
input test sets.

latency.

6 Conclusion

This work summarizes the results of AppTek’s par-
ticipation in the IWSLT 2021 evaluation campaign
for the offline and simultaneous speech translation
tasks. Compared to AppTek’s systems at IWSLT
2020, the cascade and direct systems present an
improvement of 0.9% and 2.6% in BLEU and TER,
respectively, averaging over 3 test sets. This shows
that we further decreased the gap in MT quality
between the cascade and direct models. We have
also explored the posterior model, which enables
generating translations along with transcripts. This
is particularly important for applications when both
sequences have to be displayed to users.

For the simultaneous translation systems, this
year we are able to provide configurations in a wide
latency range, starting at AL values of 2 words and
1.8s for text and speech input, respectively. For
speech input, a maximal translation quality of 25.8
BLEU is achieved on tst-HE, 3% BLEU improve-
ment compared to the previous system at a similar
latency. By using future context of variable length
we are able to do reliable sentence segmentation
of ASR output designed to introduce minimal addi-
tional delay to the system.
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A Appendix

trade-off id D tb ∆tb α

1’ 1 0.3 0.006 0.3
2’ 1 0.4 0.008 0.6
3’ 1 0.5 0.012 0.8
4’ 1 0.6 0.012 1.0

1 2 0.3 0.006 0.3
2 2 0.4 0.008 0.4
3 2 0.5 0.012 0.6
4 2 0.6 0.012 0.8
5 2 0.6 0.008 0.8
6 2 0.7 0.012 1.0
7 2 0.9 0.032 1.0
8 2 0.9 0.027 1.0
9 2 0.9 0.023 1.0
10 2 0.9 0.017 1.0
11 2 0.9 0.012 1.0
12 2 0.9 0.008 1.0

Table 6: Trade-off parameters for submitted text in-
put simultaneous MT systems, sorted from low to high
latency. D = 1 refers to low latency fine-tuning
described in Section 4.5.3. Other parameters are ex-
plained in Section 4.5.2.

trade-off id D WASR (ms) tb ∆tb α

1’ 1 250 0.3 0.006 0.3
2’ 1 250 0.4 0.008 0.6
3’ 1 250 0.5 0.012 0.8

1 2 250 0.3 0.006 0.3
2 2 250 0.4 0.008 0.6
3 2 250 0.5 0.012 0.8
4 2 250 0.6 0.012 1.0
5 2 500 0.4 0.008 0.6
6 2 500 0.5 0.012 0.8
7 2 500 0.6 0.012 1.0
8 2 500 0.6 0.008 1.0
9 2 500 0.9 0.032 1.0
10 2 500 0.9 0.027 1.0
11 2 500 0.9 0.023 1.0
12 2 500 0.9 0.017 1.0
13 2 500 0.9 0.012 1.0
14 2 1000 0.9 0.017 1.0
15 2 1000 0.9 0.012 1.0
16 2 1000 0.9 0.008 1.0

Table 7: Trade-off parameters for submitted speech
input simultaneous MT systems, sorted from low to
high latency. D = 1 refers to low latency fine-tuning
described in Section 4.5.3. Other parameters are ex-
plained in Section 4.5.2.
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Figure 3: Results for English→German text-to-text si-
multaneous translation on MuST-C dev
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Figure 4: Results for English→German speech-to-text
simultaneous translation on MuST-C dev


