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Abstract
This paper describes USTC-NELSLIP’s sub-
missions to the IWSLT2021 Simultaneous
Speech Translation task. We proposed a novel
simultaneous translation model, Cross Atten-
tion Augmented Transducer (CAAT), which
extends conventional RNN-T to sequence-to-
sequence tasks without monotonic constraints,
e.g., simultaneous translation. Experiments
on speech-to-text (S2T) and text-to-text (T2T)
simultaneous translation tasks shows CAAT
achieves better quality-latency trade-offs com-
pared to wait-k, one of the previous state-of-
the-art approaches. Based on CAAT architec-
ture and data augmentation, we build S2T and
T2T simultaneous translation systems in this
evaluation campaign. Compared to last year’s
optimal systems, our S2T simultaneous trans-
lation system improves by an average of 11.3
BLEU for all latency regimes, and our T2T si-
multaneous translation system improves by an
average of 4.6 BLEU.

1 Introduction

This paper describes the submission to IWSLT
2021 Simultaneous Speech Translation task by Na-
tional Engineering Laboratory for Speech and Lan-
guage Information Processing (NELSLIP), Univer-
sity of Science and Technology of China, China.

Recent work in text-to-text simultaneous transla-
tion tends to fall into two categories, fixed policy
and flexible policy, represented by wait-k (Ma et al.,
2019) and monotonic attention (Arivazhagan et al.,
2019; Ma et al., 2020b) respectively. The draw-
back of fixed policy is that it may introduce over
latency for some sentences and under latency for
others. Meanwhile, flexible policy often leads to
difficulties in model optimization.

Inspired by RNN-T (Graves, 2012), we aim
to optimize the marginal distribution of all ex-
panded paths in simultaneous translation. How-
ever, we found it’s impossible to calculate the

marginal probability based on conventional Atten-
tion Encoder-Decoder (Sennrich et al., 2016) ar-
chitectures (Transformer (Vaswani et al., 2017) in-
cluded), which is due to the deep coupling between
source contexts and target history contexts. To
solve this problem, we propose a novel architecture,
Cross Attention augmented Transducer (CAAT),
and a latency loss function to ensure CAAT model
works with an appropriate latency. In simultane-
ous translation, policy is integrated into translation
model and learned jointly for CAAT model.

In this work, we build simultaneous translation
systems for both text-to-text (T2T) and speech-
to-text S2T) task. We propose a novel archi-
tecture, Cross Attention Augmented Transducer
(CAAT), which significantly outperforms wait-k
(Ma et al., 2019) baseline in both text-to-text and
speech-to-text simultaneous translation task. Be-
sides, we adopt a variety of data augmentation
methods, back-translation (Edunov et al., 2018),
Self-training (Kim and Rush, 2016) and speech
synthesis with Tacotron2 (Shen et al., 2018). Com-
bining all of these and models ensembling, we
achieved about 11.3 BLEU (in S2T task) and 4.6
BLEU (in T2T task) gains compared to the best
performance last year.

2 Data

2.1 Statistics and Preprocessing

EN→DE Speech Corpora The speech datasets
used in our experiments are shown in Table 1,
where MuST-C, Europarl and CoVoST2 are speech
translation specific (speech, transcription and trans-
lation included), and LibriSpeech, TED-LIUM3
are speech recognition specific (only speech and
transcription). After augmented with speed and
echo perturbation, we use Kaldi (Povey et al., 2011)
to extract 80 dimensional log-mel filter bank fea-
tures, computed with a 25ms window size and a
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10ms window shift, and specAugment (Park et al.,
2019) were performed during training phase.

Corpus Segments Duration(h)

MuST-C 250.9k 448
Europarl 69.5k 155
CoVoST2 854.4k 1090

LibriSpeech 281.2k 960
TED-LIUM3 268.2k 452

Table 1: Statistics of speech corpora.

Text Translation Corpora The bilingual paral-
lel datasets for Englith to German(EN→DE) and
English to Japanese (EN→JA) used are shown in
Table 2, and the monolingual datasets in English,
German and Japanese are shown in Table 3. And
we found the Paracrawl dataset in EN→DE task is
too big to our model training, we randomly select
a subset of 14M sentences from it.

Corpus Sentences

EN→DE

MuST-C(v2) 229.7k
Europarl 1828.5k

Rapid-2019 1531.3k
WIT3-TED 209.5k

Commoncrawl 2399.1k
WikiMatrix 6227.2k
Wikititles 1382.6k
Paracrawl 82638.2k

EN→JA

WIT3-TED 225.0k
JESC 2797.4k
kftt 440.3k

WikiMatrix 3896.0k
Wikititles 706.0k
Paracrawl 10120.0k

Table 2: Statistics of text parallel datasets.

Language Corpus Sentences

EN
Europarl-v10 2295.0k

News-crawl-2019 33600.8k

DE
Europarl-v10 2108.0k

News-crawl-2020 53674.4k

JA
News-crawl-2019 3446.4k
News-crawl-2020 10943.3k

Table 3: Statistics of monolingual datasets.

For EN→DE task, we directly use Sentence-
Piece (Kudo and Richardson, 2018) to generate
a unigram vocabulary of size 32,000 for source
and target language jointly. And for EN→JA task,
sentences in Japanese are firstly participled by
MeCab (Kudo, 2006), and then a unigram vocab-
ulary of size 32,000 is generated for source and
target jointly similar to EN→DE task.

During data preprocessing, the bilingual datasets
are firstly filtered by length less than 1024 and
length ratio of target to source 0.25 < r < 4. In
the second step, with a baseline Transformer model
trained with only bilingual data, we filtered the
mismatched parallel pairs with log-likelihood from
the baseline model, threshold is set to −4.0 for
EN→DE task and −5.0 for EN→JA task. At last
we keep 27.3 million sentence pairs for EN-DE
task and 17.0 sentence pairs for EN→JA task.

2.2 Data Augmentation
For text-to-text machine translation, augmented
data from monolingual corpora in source and target
language are generated by self-training (He et al.,
2019) and back translation (Edunov et al., 2018)
respectively. Statistics of the augmented training
data are shown in Table 4.

Data EN→DE EN→JA

Bilingual data 27.3M 17.0M
+back-translation 34.3M 22.0M
+self-training 41.3M 27.0M

Table 4: Augmented training data for text-to-text trans-
lation.

We further extend these two data augmentation
methods to speech-to-text translation, detailed as:

1. Self-training: Maybe similar to sequence-
level distillation (Kim and Rush, 2016; Ren
et al., 2020; Liu et al., 2019). Transcriptions
of all speech datasets (both speech recogni-
tion and speech translation specific) are sent
to a text translation model to generate text y

′

in target language, the generated y
′

with its
corresponding speech are directly added to
speech translation dataset.

2. Speech Synthesis: We employ Tacotron2
(Shen et al., 2018) with slightly modified by
introducing speaker representations to both en-
coder and decoder as our text-to-speech (TTS)
model architecture, and trained on MuST-
C(v2) speech corpora to generate filter-bank
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speech representations. We randomly select
4M sentence pairs from EN→DE text trans-
lation corpora and generate audio feature by
speech synthesis. The generated filter bank
features and their corresponding target lan-
guage text are used to expand our speech trans-
lation dataset.

The expanded training data are shown in Table 5.
Besides, during the training period for all the
speech translation tasks, we sample the speech data
from the whole corpora with fixed ratio and the
concrete ratio for different dataset is shown in Ta-
ble 6.

Dataset Segements Duration(h)

Raw S2T dataset 1.17M 1693
+self-training 2.90M 4799

+Speech synthesis 7.22M 10424

Table 5: Expanded speech translation dataset with self-
training and speech synthesis.

Dataset Sample Ratio

MuST-C 2
Europarl 1
CoVoST2 1

LibriSpeech 1
TED-LIUM3 2

Speech synthesis 5

Table 6: Sample ratio for different datasets during train-
ing period.

3 Methods and Models

3.1 Cross Attention Augmented Transducer

Let x and y denote the source and target se-
quence, respectively. The policy of simultane-
ous translation is denoted as an action sequence
p ∈ {R,W}|x|+|y| where R denotes the READ
action and W the WRITE action. Another repre-
sentation of policy is extending target sequence
y to length |x| + |y| with blank symbol φ as
ŷ ∈ (v ∪ {φ})|x|+|y|, where v is the vocabulary
of the target language. The mapping from y to sets
of all possible expansion ŷ denotes as H(x,y).

Inspired by RNN-T (Graves, 2012), the loss func-
tion for simultaneous translation can be defined as
the marginal conditional probability and expecta-

tion of latency metric through all possible expanded
paths:

L(x, y) = Lnll(x, y) + Llatency(x, y)

= − log
∑
ŷ

p(ŷ|x) + Eŷl(ŷ)

= − log
∑
ŷ

p(ŷ|x) +
∑
ŷ

Pr(ŷ|y, x)l(ŷ)

(1)

Figure 1: Expanded paths in simultaneous translation.

Where Pr(ŷ|y, x) = p(ŷ|x)∑
ŷ
′∈H(x,y)

p(ŷ′ |x) , and ŷ ∈

H(x, y) is an expansion of target sequence y, and
l(ŷ is the latency of expanded path ŷ.

However, RNN-T is trained and inferenced
based on source-target monotonic constraint,
which means it isn’t suitable for translation
task. And the calculation of marginal probabil-
ity
∑

ŷ∈H(x,y) Pr(ŷ|x) is impossible for Attention
Encoder-Decoder framework due to deep coupling
of source and previous target representation. As
shown in Figure 1, the decoder hidden states for
the red path ŷ1 and the blue path ŷ2 is not equal at
the intersection s12 6= s22. To solve this, we sepa-
rate the source attention mechanism from the target
history representation, which is similar to joiner
and predictor in RNN-T. The novel architecture
can be viewed as a extension version of RNN-T
with attention mechanism augmented joiner, and is
named as Cross Attention Augmented Transducer
(CAAT). Figure 2 is the implementation of RAAT
based on Transformer.

Computation cost of joiner in CAAT is signif-
icantly more expensive than that of RNN-T. The
complexity of joiner is O(|x| · |y|) during train-
ing, which meansO(|x|) times higher than conven-
tional Transformer. We solve this problem by mak-
ing decisions with decision step size d > 1, and
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Figure 2: Architecture of CAAT based on Transformer.

reduce the complexity of joiner from O(|x| · |y|)
to O(|x|·|y|)d . Besides, to further reduce video mem-
ory consumption, we split hidden states into small
pieces before sent into joiner, and recombine it for
back-propagation during training.

As the latency loss is defined as marginal expec-
tation over all expanded paths ŷ, mergeable is also
a requirement to the latency loss definition, which
means latency loss through path ŷ may be defined
as l(ŷ) =

∑|x|+|y|
k=1 l(ŷk) and l(ŷk) is independent

of ŷj′ 6=j . However, both Average Lagging (Ma
et al., 2019) and Differentiable Average Lagging
(Arivazhagan et al., 2019) do not meet this require-
ment. We hence introduce a novel latency function
based on wait-0 as oracle latency as follows:

d(i, j) =
1

|y|
max

(
i− j · |x|

|y|
, 0

)
l(ŷk) =

{
0 if ŷk = φ

d(ik, jk) else

(2)

Where ik =
∑k

k′=1
I(ŷk′ = φ) and jk =∑k

k′=1
I(ŷk′ 6= φ) denote READ and WRITE ac-

tions number before ŷk. The latency for the whole
expanded path ŷ can be defined as

l(ŷ) =

|ŷ|∑
k=1

l(ŷk) (3)

Based on Eq. (3) the expectation of latency loss
through all expanded paths may be defined as :

Llatency(x, y) = Eŷ∈H(x,y)l(ŷ)

=
∑
ŷ

Pr(ŷ|y, x)l(ŷ) (4)

Latency loss and its gradients can be calculated
by the forward-backward algorithm, similar to Se-
quence Criterion Training in ASR (Povey, 2005).

At last, we add the cross entropy loss of offline
translation model as an auxiliary loss to CAAT
model training for two reasons. First we hope the
CAAT model fall back to offline translation in the
worst case; second, CAAT models is carried out
in accordance with offline translation when source
sentence ended. The final loss function for CAAT
training is defined as follows:

L(x, y) = LCAAT (x, y) + λlatencyLlatency(x, y)
+ λCELCE(x, y)

= − log
∑
ŷ

p(ŷ|x)

+ λlatency
∑
ŷ

Pr(ŷ|y, x)d(ŷ)

− λCE

∑
j

log p(yj |x, y<j) (5)

Where λlatency and λCE are scaling factors cor-
responding to the Llatency and LCE . And we set
λ1 = λ2 = 1.0 if not specified.

3.2 Streaming Encoder
Unidirectional Transformer encoder (Arivazhagan
et al., 2019; Ma et al., 2020b) is not effective for
speech data processing, because of the closely re-
lated to right context for speech frame xi. Block
processing (Dong et al., 2019; Wu et al., 2020) is
introduced for online ASR, but they lacks directly
observing to infinite left context.

We process streaming encoder for speech data
by block processing with right context and in-
finite left context. First, input representations
h is divided into overlapped blocks with block
step m and block size m + r. Each block
consists of two parts, the main context mn =[
hm∗n+1, · · · , h(m+1)∗n

]
and the right context

rn =
[
h(m+1)∗n, · · · , h(m+1)∗n+r

]
. The query,

key and value of block bn in self-attention can
be described as follows:

Q = Wq [mn, rn] (6)

K = Wk [m1, · · · ,mn, rn] (7)

V = Wv [m1, · · · ,mn, rn] (8)

By reorganizing input sequence and designed
self-attention mask, training is effective by reusing
conventional transformer encoder layers. And uni-
directional transformer can be regarded as a special



34

case of our method with {m = 1, r = 0}. Note
that the look-ahead window size in our method is
fixed, which ensures increasing transformer layers
won’t affect latency.

3.3 Text-to-Text Simultaneous Translation

We implemented both CAAT in Sec. 3.1 and wait-k
(Ma et al., 2019) systems for text-to-text simulta-
neous translation, both of them are implemented
based on fairseq (Ott et al., 2019).

All of wait-k experiments use the parameter set-
tings based on big transformer (Vaswani et al.,
2017) with unidirectional encoders, which corre-
sponds to a 12-layer encoder and 6-layer decoder
transformer with a embedding size of 1024, a feed
forward network size of 4096, and 16 heads atten-
tion.

Hyper-parameters of our CAAT model architec-
tures are shown in Table 7. CAAT training re-
quires significantly more GPU memory than con-
ventional Transformer (Vaswani et al., 2017), for
the O

(
|x|·|y|

d

)
complexity of joiner module. We

mitigate this problem by reducing joiner hidden
dimension for lower decision step size d.

3.4 Speech-to-Text Simultaneous Translation

3.4.1 End-to-End Systems
The main system of End-to-End Speech-to-Text
simultaneous Translation is based on the aforemen-
tioned CAAT structure. For speech encoder, two
2D convolution blocks are introduced before the
stacked 24 Transformer encoder layers. Each con-
volution block consists of a 3-by-3 convolution
layer with 64 channels and stride size as 2, and a
ReLU activation function. Input speech features are
downsampled 4 times by convolution blocks and
flattened to 1D sequence as input to transformer lay-
ers. Other hyper-parameters are shown in Table 7.
The latency-quality trade-off may be adjusted by
varying the decision step size d and the latency
scaling factor λlatency. We submitted systems with
best performance in each latency region.

3.4.2 Cascaded Systems
The cascaded system consists of two modules, si-
multaneous automatic speech recognition (ASR)
and simultaneous text-to-text Machine Translation
(MT). Both simultaneous ASR and MT system are
built with CAAT proposed in Sec. 3.1. And we
found the cascaded systems outperforms end-to-
end system in medium and high latency region.

3.5 Unsegmented Data Processing

To deal with unsegmented data, we segment the
input text based on sentence ending marks for T2T
track. For S2T task, input speech is simply seg-
mented into utterances with duration of 20 sec-
onds and each segmented piece is directly sent to
our simultaneous translation systems to obtain the
streaming results. We found an abnormally large
average lagging (AL) on IWSLT tst2018 test set
based on existed SimuEval toolkit(Ma et al., 2020a)
and segment strategy, so relevant results are not pre-
sented here. A more reasonable latency criterion
may be needed for unsegmented data in the future.

4 Experiments

4.1 Effectiveness of CAAT

To demonstrate the effectiveness of CAAT architec-
ture, we compare it to wait-k with speculative beam
search (SBS) (Ma et al., 2019; Zheng et al., 2019b),
one of the previous state-of-the-art. The latency-
quality trade-off curves on S2T and T2T tasks are
shown in Figure 3 and Figure 4(a). We can find that
CAAT significantly outperforms wait-k with SBS,
especially in low latency section(AL < 1000ms
for S2T track and AL < 3 for T2T track).

500 1000 1500 2000 2500 3000
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Figure 3: Comparison of CAAT and wait-k with
SBS systems on EN→DE Speech-to-Text simultane-
ous translation.

4.2 Effectiveness of data augmentation

In order to testify the effectiveness of data augmen-
tation, we compare the results of different data aug-
mentation methods based on the offline and simulta-
neous speech translation task. As demonstrated in
Table 8, adding new generated target sentences into
the training corpora by using Self-training gives
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Parameters S2T config T2T config-A T2T config-B

Encoder

layers 24 12 12
attention heads 8 16 16
FFN dimension 2048 4096 4096
embedding size 512 1024 1024

Predictor

attention heads 8 16 16
FFN dimension 2048 4096 4096
embedding size 512 1024 1024

output dimension 512 512 1024

Joiner

attention heads 8 8 16
FFN dimension 1024 2048 4096
embedding size 512 512 1024

/ decision step size {16,64} {4,10,16,32} {10,32}
latency scaling factor {1.0,0.2} {1.0,0.2} 0.2

Table 7: Parameters of CAAT in T2T and end-to-end S2T simultaneous translation. Noted that both predictor and
joiner have 6 layers for T2T and S2T tasks, and the additional two parameters for end-to-end 2T simultaneous
translation, which is the main context and right context described in Sec.3.2, are set m = 32 and r = 16 .

Dataset BLEU

Original speech corpora 21.24
+self-training 28.21

+Speech systhesis 29.72

Table 8: Performance of offline speech translation on
MuST-C(v2) tst-COMMON with different datasets.

a boost of nearly 7 BLEU points and speech syn-
thesis provides the other 1.5 BLEU points increase
on MuST-C(v2) tst-COMMON. As illustrated in
Figure 3, all the data augmentation methods are
employed and provide nearly 3 BLEU points on
average in the simultaneous task at different la-
tency regimes. Note that our data augmentation
methods alleviate the scarcity of parallel datasets
in the End-to-End speech translation task and make
a significant improvement.

4.3 Text-to-Text Simultaneous Translation

EN→DE Task The performances of text-to-text
EN→DE task is shown in Figure 4(a). We can
see that the performance of proposed CAAT is al-
ways better than that of wait-k with SBS and the
best results from ON-TRAC in 2020 (Elbayad
et al., 2020), especially in low latency regime, and
the performance of CAAT with model ensemble
is nearly equivalent to offline result. Moreover, it
can be further noticed from Figure 4(a) that the
model ensemble can also improve the BLUE score

more or less under different latency regimes, and
the increase is quite obvious in low latency regime.
Compared with the best result in 2020, we finally
get improvement by 6.8 and 3.4 BLEU in low and
high latency regime respectively.

En→JA Task Results of Text-to-Text simultane-
ous translation (EN→JA) track are plotted in Fig-
ure 4(b), where the curve naming CAAT bst is best
performances in this track with or without model-
ensembling method. Curves in this sub-figure show
the similar conclusion to the former subsection,
that the result of proposed CAAT significantly out-
performs that of wait-k with SBS. While we can
also find that the gap between CAAT and offline is
more obvious (nearly 0.4 BLEU), this is mainly be-
cause parameters of joiner block for EN→JA track
in high-latency regime is reduced a lot from that
for EN→DE track, due to the unstable EN→JA
training.

4.4 Speech-to-Text Simultaneous Translation

End-to-End System In this section, we discuss
about our final results of End-to-End system based
on CAAT. We tune the decision step size d and
latency scaling factor λlatency to meet different la-
tency regime requirements. For low, medium and
high latency, the corresponding d and λlatency are
set to (16,64,64) and (1.0,1.0,0.2) respectively. We
show our final latency-quality trade-offs in Figure 5.
Combined with our data augmentation methods and
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Figure 4: Latency-quality trade-offs of Text-to-Text simultaneous translation.

new CAAT model structure, it can be seen that our
single model system has already outperformed the
best results of last year in all latency regimes and
provides 9.8 BLEU scores increase on average. En-
sembling different models can further boost the
BLEU scores by roughly 0.5-1.5 points at different
latency regimes.

Cascaded System Under the cascaded setting,
we paired two well-trained ASR and MT systems,
where the WER of ASR system’s performance is
6.30 with 1720.20 AL, and the MT system is fol-
lowed by the config-A in Table 7, whose results
are 34.79 BLEU and 5.93 AL. We found the best
medium and high-latency systems at decision step
size pair (dasr, dmt) with (6, 10) and (12, 10) re-
spectively. Performance of cascaded systems are
shown in Figure 5. Note that under current con-
figuration of ASR and MT systems, we can not
provide valid results that satisfy the requirement of
AL at low latency regime since cascaded system
usually has a larger latency compared to End-to
End system. During the online decoding of the
cascaded system, only after specific tokens are rec-
ognized by the ASR system, the translation model
can further translate them to obtain the final result.
The decoded results from ASR model first has a
delay compared to the actual contents of the audio,
and the two-steps decoding further accumulates the
delay, which contributes to the higher latency com-
pared to the End-to-End system. However, it still
can be seen that cascaded system has significant
advantages over End-to-End system at medium and
high latency regime and it still has a long way to go
for End-to-End system in the simultaneous speech

translation task.
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Figure 5: Latency-quality trade-offs of Speech-to-
Text simultaneous translation on MuST-C(v2) tst-
COMMON.

5 Related Work

Simultaneous Translation Recent work on si-
multaneous translation falls into two categories.
The first category uses a fixed policy for the
READ/WRITE actions and can thus be easily inte-
grated into the training stage, as typified by wait-
k approaches (Ma et al., 2019).The second cate-
gory includes models with a flexible policy learned
and/or adaptive to current context, e.g., by Rein-
forcement Learning (Gu et al., 2017), Supervise
Learning (Zheng et al., 2019a) and so on. A special
sub-category of flexible policy jointly optimizes
policy and translation by monotonic attention cus-
tomized to translation model, e.g., Monotonic Infi-
nite Lookback (MILk) attention (Arivazhagan et al.,
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2019) and Monotonic Multihead Attention (MMA)
(Ma et al., 2020b). We propose a novel method
to optimize policy and translation model jointly,
which is motivated by RNN-T (Graves, 2012) in
online ASR. Unlike RNN-T, the CAAT model re-
moves the monotonic constraint, which is critical
for considering reordering in machine translation
tasks. The optimization of our latency loss is moti-
vated by Sequence Discriminative Training in ASR
(Povey, 2005).

Data Augmentation As described in Sec. 2, the
size of training data for speech translation is sig-
nificantly smaller than that of text-to-text machine
translation, which is the main bottleneck to im-
prove the performance of speech translation. Self-
training, or sequnece-level knowledge distillation
by text-to-text machine translation model, is the
most effective way to utilize the huge ASR train-
ing data (Liu et al., 2019; Pino et al., 2020). On
the other hand, synthesizing data by text-to-speech
(TTS) has been demonstrated to be effective for
low resource speech recognition task (Gokay and
Yalcin, 2019; Ren et al., 2019). To the best of our
knowledge, this is the first work to augment data
by TTS for simultaneous speech-to-text translation
tasks.

6 Conclusion

In this paper, we propose a novel simultane-
ous translation architecture, Cross Attention Aug-
mented Transducer (CAAT), which significantly
outperforms wait-k in both S2T and T2T simulta-
neous translation task. Based on CAAT architec-
ture and data augmentation, we build simultaneous
translation systems on text-to-text and speech-to-
text simultaneous translation tasks. We also build
a cascaded speech-to-text simultaneous translation
system for comparison. Both T2T and S2T systems
achieve significant improvements over last year’s
best-performing systems.
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