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Abstract

This paper describes a methodology for
syntactic knowledge transfer between high-
resource languages to extremely low-resource
languages. The methodology consists in lever-
aging multilingual BERT self-attention model
pretrained on large datasets to develop a
multilingual multi-task model that can pre-
dict Universal Dependencies annotations for
three African low-resource languages. The UD
annotations include universal part-of-speech,
morphological features, lemmas, and depen-
dency trees. In our experiments, we used
multilingual word embeddings and a total of
11 Universal Dependencies treebanks drawn
from three high-resource languages (English,
French, Norwegian) and three low-resource
languages (Bambara, Wolof and Yoruba). We
developed various models to test specific
language combinations involving contempo-
rary contact languages or genetically related
languages. The results of the experiments
show that multilingual models that involve
high-resource languages and low-resource lan-
guages with contemporary contact between
each other can provide better results than
combinations that only include unrelated lan-
guages. As far as genetic relationships are con-
cerned, we could not draw any conclusion re-
garding the impact of language combinations
involving the selected low-resource languages,
namely Wolof and Yoruba.

1 Introduction

Treebanks constitute valuable resources for many
Natural Language Processing (NLP) applications.
They can be used as training and testing data for
a wide range of NLP algorithms as well as to in-
duce robust parsing models (Manning and Schütze,
1999). Unfortunately, developing treebanks in form
of large annotated data used to be a very time- and
resource-consuming task. As a consequence, an-
notated data (in particular the type required for

parsing) is lacking for most languages, especially
for low-resource languages.

To help speed up the treebank development pro-
cess, various supervised learning techniques (Weiss
et al., 2015; Straka and Straková, 2017; Straka,
2018) have been developed in recent past. The su-
pervised monolingual approach based on syntac-
tically annotated corpora has long been the most
common approach to parsing. However, thanks to
recent developments involving feature representa-
tion methods and neural network models, the idea
of combining treebanks for multilingual UD pars-
ing has become a more common approach. Mul-
tilingual modeling constitute a very attractive ap-
proach to circumvent the low-resource limitation,
as it allows one to create models that can parse
the language’s text quite accurately in the absence
of annotated data for the given language. This oc-
curs through syntactic knowledge transfer across
multiple languages. The multilingual approach has
yielded encouraging results for both low-resource
(Guo et al., 2015) as well as for high-resource (Am-
mar et al., 2016) languages.

The idea of combining treebanks for trans-
fer learning was first introduced in Vilares et al.
(2016), which train bilingual parsers on pairs of
UD treebanks, showing similar improvements. Sub-
sequently, in the CoNLL 2018 Shared Task, Smith
et al. (2018) presented the Uppsala system, which
follows the same idea. That system combines tree-
banks of one language or closely related languages
together over 82 treebanks and parses all UD an-
notations in a multi-task pipeline architecture for
a total of 34 models. This approach provides two
main advantages. First, it reduces the number of
models required to parse each language. Second,
it can provide results that are no worse than train-
ing on each treebank individually, and in especially
low-resource cases, significantly improved. In the
same spirit, Kondratyuk and Straka (2019) con-



85

ducted a multilingual multi-task parsing study for
124 Universal Dependencies (Nivre et al., 2016)
treebanks across 75 languages, and demonstrated
that a multilingual model can yield better results
than monolingual models for different languages.

In this paper, we use the approach described by
Kondratyuk and Straka (2019) to produce a cross-
lingual transfer model that can predict UD anno-
tations for three extremely low-resource African
languages by using knowledge from medium- to
high-resource European languages. The UD anno-
tations include universal part-of-speech (UPOS),
morphological features (FEATS), lemmas (LEM),
and dependency trees (DEPS).

The structure of the paper is as follows. Sec-
tion 2 first provides a brief description of the low-
resource languages used as case studies in this re-
search work. Section 3 provides an overview of our
approach, and section 4 details the neural network-
based parsing model. Section 5 describes a series
of experiments conducted on high-resource and
low-resource languages to verify our assumptions.
Section 6 presents an analysis of our results. Sec-
tion 7 concludes the discussion.

2 Languages used as our case studies

The low-resource languages selected for this study
are Bambara, Wolof and Yoruba. Bambara is spo-
ken in Mali, Ivory Coast, Upper Guinea, in the
western part of Burkina Faso and in eastern Sene-
gal. Wolof is spoken in Senegal, in The Gambia
and in Mauritania. Yoruba is spoken in West Africa,
most prominently in Southwestern Nigeria.

These West African languages belong to two
different subgroups of the larger Niger-Congo fam-
ily of languages. Bambara is part of the Mande
subgroup, while Wolof and Yoruba are Atlantic-
Congo languages. While the ultimate genetic unity
of Atlantic-Congo languages is widely accepted,
the internal cladistic structure is not well estab-
lished (Dixon et al., 1997), especially with respect
to the connection of the Mande languages, which
has never been demonstrated. For instance, the
Mande languages lack the noun-class morphol-
ogy that is the primary identifying feature of the
Atlantic-Congo languages. Wolof and Yoruba are
genetically related to each other, but not closely re-
lated to Bambara. Interestingly, while Wolof does
not have much language contact with Yoruba (if
any), it actually may share areal features with Bam-
bara, since their common geographic location al-

lowed for a long history of contact between these
two languages.

Bambara is highly isolating and has a very strict
word order: Subject AUX / TAM (tense-aspect-
mood markers) Object Verb (Creissels, 2007). It
is a tone language, with two tones: high and low.
Wolof is an agglutinative language with an SVO
and head-modifier basic word order (Robert, 2018).
Unlike many other languages of the Niger-Congo
family, Wolof is not a tonal language. Yoruba is a
highly isolating language and the sentence structure
follows Subject Verb Object (Adelani et al., 2021).
In addition, Yoruba is a tonal language with three
tones: low, middle (optional) and high.

The three low-resource languages are fairly well
documented. For Bambara, there exist hundreds of
linguistic papers and few recent reference gram-
mars published about that language (Dumestre,
2003; Vydrin, 2019). There are also some dictionar-
ies available, including the Bamadaba online dictio-
nary1 and a 15k print dictionary (Dumestre, 2011).
Likewise, Wolof has several descriptive grammars
and few dictionaries, e.g. the French-Wolof print
dictionaries (Diouf, 2003; Cisse, 1998) and an on-
line Wolof dictionary.2 Similarly, for Yoruba, there
are many literary texts, newspapers, religious kinds
of literature, and some blogs in the language. There
are also academic papers, print dictionaries, e.g. the
Yoruba-English dictionary by Odoje (2019), and
online dictionary3 published in the language.

Although these languages are well-documented,
until very recently, they did not or still do not really
have a Universal Dependency corpus. Bambara has
a 12k tokens UD treebank (Aplonova and Tyers,
2017). Yoruba has a 8k tokens UD treebank.4 For
these two languages, only test set data are available
(no training data), making them good candidates
for zero-shot learning. Wolof has a 44k tokens UD
treebank (Dione, 2019) that consists of a training, a
development and a test set. As these numbers show,
the sizes of these UD treebanks are extremely small.
This alone does not make them low-resource lan-
guages, but they are poorly equipped with regard to
NLP tools as well. For instance, while Yoruba and
Bambara are documented with huge written cor-
pora,5 these are mostly not achieved for research

1http://cormand.huma-num.fr/bamadaba.html
2https://www.lexilogos.com/wolof_dictionnaire.htm
3https://www.lexilogos.com/english/yoruba_dictionary.htm
4https://universaldependencies.org/

treebanks/yo_ytb/index.html
5For instance, Bambara has an 11 million corpus of writ-

https://universaldependencies.org/treebanks/yo_ytb/index.html
https://universaldependencies.org/treebanks/yo_ytb/index.html
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and NLP purposes. For Wolof, resources and tools
have only very recently begun to emerge, includ-
ing a finite-state morphological analyzer (Dione,
2012), a small treebank (Dione, 2014) and com-
putational grammar/parser (Dione, 2020) based on
the Lexical-Functional Grammar (LFG) framework
(Bresnan, 2001; Dalrymple, 2001). We chose to fo-
cus on three languages due to the availability of
UD treebanks for these languages, even though for
two of these languages only test data are available.

3 Approach

Our approach consists in developing several multi-
lingual parsing models using different language
combinations of medium- to high-resource lan-
guages (English, French, Norwegian) and low-
resource languages (Bambara, Wolof, Yoruba) that
have had some contemporary language contact.
The languages used for training the models have
been selected with the assumption that contempo-
rary contact languages, at least in certain scenarios,
share (structural) similarities with the low-resource
languages in question. English has a long history
of contact with Yoruba, leading to a variety of mor-
phosyntactic changes and lexical borrowings in the
latter language (Ogundepo, 2015). Our expectation
is that the match rate between English and Yoruba
should be somewhat high. Likewise, we expect to
see similar patterns between French and the Bam-
bara and Wolof languages with which it has had
a long contact. For instance, through French in-
fluence there exists two varieties of Wolof: urban
Wolof, used especially in cities, and Kajoor Wolof
(also referred to as ‘pure’ Wolof), which is spoken
mostly in rural areas (Ngom, 2003). In addition,
we include Norwegian as a control language with
no direct contact or genetic relation with any of the
selected low-resource languages.

Recents studies, including (Lim et al., 2018) con-
ducted similar experiments to explore the impact
of using contemporary contact languages or ge-
netically related languages (e.g. Finnish) in multi-
lingual parsing scenarios involving low-resource
languages (e.g. North Saami and Komi-Zyrian).
Their findings showed that specific language com-
binations of contemporary contact languages or
genetically related languages may enable improved
dependency parsing.

ten texts: http://cormand.huma-num.fr/index.
html

4 Method

Parsing approaches can be divided into two
main types: transition-based (Nivre, 2004) vs.
graph-based (McDonald et al., 2005) models. In
transition-based dependency parsing, the parser
starts in an initial configuration and, at each step,
asks a guide to choose between one of several
transitions (actions) into new configurations. The
parser stops if it reaches a terminal configuration,
returning the dependency tree associated with that
configuration. In relatively recent past, transition-
based dependency parsing using neural networks
has enjoyed increasing success, starting with the
fast and accurate parser presented by Chen and
Manning (2014). Subsequently, many other neural
network transition-based models have been devel-
oped using different techniques, including stack
LSTM (Dyer et al., 2015), biaffine attention (Dozat
and Manning, 2016), and recurrent neural networks
(Kuncoro et al., 2017).

The basic idea of graph-based dependency pars-
ing is to produce a dependency tree in form of a
directed graph with some constraints by first gen-
erating all possible candidate dependency graphs
for a given sentence. Subsequently, each tree is
scored and the parser picks the one with the highest
score. During training, the parser induces a model
for scoring an entire dependency graph for a sen-
tence. During parsing, it finds the highest scoring
dependency graph, given the induced model. More
recently, graph-based approaches have shown to
outperform transition-based approaches when it
comes to UD-type corpora, notably with the neu-
ral graph-based parser of Dozat et al. (2017), who
won the CoNLL 2017 UD Shared Task by a wide
margin.

In this study, we chose UDify (Kondratyuk and
Straka, 2019), a neural model which uses the graph-
based biaffine attention parser developed by Dozat
and Manning (2016); Dozat et al. (2017). UDify is
a single multitask model that produces UD anno-
tations (UPOS, FEATS, LEM, DEPS) jointly. In a
first step, UDify generates contextual embeddings
for any input sentence by using the cased6 pre-
trained multilingual BERT network (Devlin et al.,
2018), a self-attention (Vaswani et al., 2017) net-
work of 12 layers, 12 attention heads per layer,
and hidden dimensions of 768. The BERT model
was trained by predicting randomly masked input

6https://github.com/google-
research/bert/blob/master/multilingual.md

http://cormand.huma-num.fr/index.html
http://cormand.huma-num.fr/index.html
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words on the entirety of the top 104 languages
with the largest Wikipedias, including two African
languages: Swahili and Yoruba. BERT segments
texts into (unnormalized) sub-word units using the
wordpiece tokenizer (Wu et al., 2016). In a sec-
ond step, the UDify model integrates task-specific
layer-wise attention similar to ELMo (Peters et al.,
2018). Finally, each UD task is decoded simultane-
ously using softmax classifiers. During training,
various regularization techniques are applied to
the BERT network, including input masking, in-
creased dropout, weight freezing, discriminative
fine-tuning, and layer dropout.

5 Experiments

We conducted a series of experiments on Bam-
bara, Wolof and Yoruba. For these languages, we
tested different language combinations for the
cross-lingual model.

The dataset used in our experiments are provided
in Table 1. This consist of a total of 11 UD v2.3 tree-
banks drawn from three medium- to high-resource
languages (English, French, Norwegian) and three
low-resource languages (Bambara, Wolof, Yoruba).
Table 1 shows the selected treebank(s) used for
each language. For English and French, we used
several treebanks. For Norwegian, we only selected
the Bokmål treebank, leaving out the Nynorsk one
in order to reduce computational expenses.7

The percentage distribution of the individual lan-
guages in our training corpus is shown in Figure
1. As can be seen, ca. 95,5% of the data used in
our experiments are drawn from the high-resource
languages’ treebanks.

Table 2 displays information about the vocabu-
lary of the combined treebanks, including the to-
tal number of tokens, BERT wordpieces, UPOS,
XPOS, UD Features, lemmas and dependency re-
lations (Deps). To tackle the issue related to a bal-
looning vocabulary, we use BERT’s wordpiece tok-
enizer directly for all inputs.

For multilingual training with UDify, the 11 UD
treebanks are concatenated into a single treebank,
similar to McDonald et al. (2011); Kondratyuk and
Straka (2019). This single treebank consists of a
training, a development and a test set. For each
epoch, sample input sentences were drawn ran-
domly from the training data and fed to the neural

7In fact, we have tried to include the Nynorsk treebank
as well, but this led to quite computationally expensive costs
when training the multilingual model.

network in form of mixed batches, i.e. each batch
may contain sentences from any language or tree-
bank. The sentences are shuffled and bundled into
batches of 8 sentences each. We employ a base
learning rate of 1e−3 that is kept constant until we
unfreeze BERT in the second epoch. We then lin-
early warm up the learning rate for the next 1,000
batches. Next, we apply inverse square root learn-
ing rate decay for the remaining epochs. Following
Kondratyuk and Straka (2019), training was done
for a total of 80 epochs (ca. 3 days) on a single
GPU (RTX 2080). The hyperparameters used for
our model are given in Table 3.

6 Results and analysis

For comparison, we show in Table 4 UDify scores
obtained for Bambara and Yoruba as reported by
Kondratyuk and Straka (2019). These scores are ob-
tained by evaluating UDify on 124 treebanks with
the official CoNLL 2018 Shared Task evaluation
script.

The experiments reported by Kondratyuk and
Straka (2019) did not include Wolof, since no UD
treebank was available for that language at that
time. For this purpose, we trained a customized
monolingual UDify model on the Wolof training
data and applied that model on the Wolof test set.
The results of this monolingual training are shown
in Table 5. These scores are used as a baseline to
compare the impact of the monolingual and the
multilingual models.

For multilingual dependency parsing, we run
several experiments in which we keep the settings
described in section 5, excluding only one language
at a time. In an initial experiment, we used all the
treebanks presented in section 5 for which training
data are available. This consists of a total of 9 out
of the 11 UD treebanks.8 Then, the created multi-
lingual model has been used to parse the test data
of the selected low-resource languages. The results
are given in Table 6 and indicate an improvement
of ca. 5% and 4,38% in terms of UAS and LAS,
respectively for Bambara. Likewise, a significant
increase of 11,37% and 12,34% in UAS and LAS,
respectively, has been observed for Yoruba. Also,
for Wolof, we compared the scores displayed in Ta-
ble 5 (i.e. monolingual model) with those presented
in Table 6 (i.e. multilingual model). Such a compar-
ison reveals that parsing quality increases by 2.23%

8Recall that the Bambara and Yoruba treebanks contain
only test data.
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Language Treebank Name # Tokens # Sentences
Bambara Bambara CRB 13.82k 1.03k

English
UD_English_EWT 254.83k 16.62k
UD_English-GUM 80.18k 4.40k
UD_English-ParTUT 49.62k 2.09k

French

UD_French-FTB 556.06k 18.53k
UD_French-ParTUT 27.67k 1.02k
UD_French-Sequoia 68.64k 3.10k
UD_French-Spoken 34.98k 2.79k

Norwegian UD_Norwegian-Bokmaal 310.22k 20.04k
Wolof Wolof WTB 42.83k 2.11k
Yoruba Yoruba YTB 2.67k 0.10k

Table 1: UD treebanks used in the experiments

Figure 1
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TOKEN VOCAB SIZE
Word Form 178,214
BERT Wordpieces 119,547
UPOS 17
XPOS 206
UFeats 1300
Lemmas (tags) 3,834
Deps 86

Table 2: Vocabulary sizes of words and tags over the 11
UD v2.3 treebanks

hyperparameter
Dependency tag dimension 256
Dependency arc dimension 768
Optimizer Adam
β1, β2 0.9, 0.99
Weight decay 0.01
Label Smoothing 0.03
Dropout 0.5
BERT dropout 0.2
Mask probability 0.2
Layer dropout 0.1
Batch size 8
Epochs 80
Base learning rate 1e−3

BERT learning rate 5e−5
Learning rate warmup steps 1000
Gradient clipping 5.0

Table 3: Our model hyperparameters.

Treebank UPOS FEATS LEM UAS LAS
Bambara 30.86 57.96 20.42 30.28 8.60
Yoruba 50.86 78.32 85.56 37.62 19.09

Table 4: The full test results on Bambara and Yoruba
when training UDify on the 124 UD treebanks (Kon-
dratyuk and Straka, 2019).

Language UPOS FEATS LEM UAS LAS
Wolof 87.90 69.97 87.86 73.48 63.84

Table 5: The test results on Wolof when training UDify
on monolingual Wolof data.

and 3.19% in terms of UAS and LAS, respectively.
This provides a good indication that a transfer learn-
ing approach in a multilingual dependency parsing
context seems to have positive impact (at least for
Wolof), outperforming the monolingual model.

To assess the impact of some language combina-

Treebank UPOS FEATS LEM UAS LAS
Bambara 36.29 45.18 23.89 34.28 12.98
Wolof 89.64 75.06 89.95 75.71 67.03
Yoruba 60.73 60.43 93.59 48.99 31.43

Table 6: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 9 UD treebanks
(the Bambara and Yoruba treebanks are only used for
testing).

Treebank UPOS FEATS LEM UAS LAS
Bambara 35.05 44.32 23.84 33.83 12.94
Wolof 90.49 77.25 90.82 76.14 67.86
Yoruba 59.19 60.18 93.21 45.19 28.53

Table 7: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 8 UD treebanks,
excluding the English treebanks.

tions, we run several additional experiments where
we keep the same setting and language data as de-
scribed above, excluding only one language at a
time. Accordingly, we run a similar experiment as
the previous one, excluding the English treebanks
from the training. The results of this experiment
are displayed in Table 7. For Bambara, exclud-
ing the English treebank did cause a very slight
drop of parsing quality. In contrast, for Yoruba, we
could observe a substantial decrease of 3.8% and
2.9% UAS and LAS, respectively. Interestingly, for
Wolof, this actually led to a slight improvement in
UAS (0.43%) and LAS (0.83%).

In the same way, we run a similar experiment
where we exclude only the French treebanks to
assess their impact on the overal results for the se-
lected low-resource African languages. The results
of this experiment are shown in Table 8. For Bam-
bara, this caused a decrease of 3.78% and 2.85%
UAS and LAS, respectively. Parsing quality also
drops for Wolof in terms of UAS (-2.28%) and LAS
(-1.74%). For Yoruba, no real impact on parsing
quality could be observed.

Treebank UPOS FEATS LEM UAS LAS
Bambara 33.89 42.86 23.66 30.50 10.13
Wolof 89.61 82.33 91.53 73.43 65.29
Yoruba 60.32 55.78 91.19 48.69 30.87

Table 8: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 7 UD treebanks,
excluding the French treebanks.

As mentioned above, we used Norwegian as a
control language to verify our assumption with re-
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Treebank UPOS FEATS LEM UAS LAS
Bambara 36.02 45.08 23.87 33.94 11.94
Wolof 90.76 83.55 90.91 75.35 67.25
Yoruba 59.94 58.68 88.30 48.09 30.87

Table 9: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 10 UD treebanks,
excluding the Norwegian treebank.

spect to the impact of using genetic or geographical
relation. Norwegian is selected, as it is a language
with no direct contact or genetic relation with any
of the studied low-resource languages. To verify
our assumption, we run an additional experiment
where we removed the Norwegian data from the
training, keeping the remaining 10 UD treebanks as
before. The results of this experiment are provided
in Table 9. This operation does not seem to have
a substantial impact on parsing quality for any of
the three low-resource languages. For instance, for
both Bambara and Yoruba, a slight drop in UAS
and LAS could be observe, but the decrease is less
than 1% in all these cases. For Wolof, even a slight
improvement could be observed of ca. 0.22% in
LAS only (compared with -0.36% drop in UAS).

In a final experiment, we wanted to test the im-
pact of not using the Wolof data during training.
Thus, we trained a model using the 10 treebanks,
excluding the Wolof UD training set and applied
the model to the three test sets of the studied low-
resource languages (this means that we evaluated
Wolof for zero-shot learning). The results of this
experiment are given in Table 10. Interestingly, for
Bambara, this operation caused a decrease of pars-
ing quality of 3.37% UAS and 1.77% LAS. For
Wolof, as expected, we noted parsing accuracy
dropped drastically by 48.2% UAS and 56.88%
LAS. This large drop in parsing result can be ex-
plained by the fact that the Wolof test set is rel-
atively large (e.g. compared to the test sets for
Bambara and Yoruba). Surprisingly, for Yoruba,
removing the Wolof data in the training had a posi-
tive impact. Parsing quality for Yoruba increased
by ca. 3.75% UAS and 2.37% LAS. At first glance,
this seems to contradict our expectation that ge-
netically related languages may enable improved
dependency parsing, at least for our case study. But
a crucial question to consider is whether the genetic
relationship between these two languages is just a
classification issue and that, from the language char-

Treebank UPOS FEATS LEM UAS LAS
Bambara 29.44 69.08 13.36 30.91 11.21
Wolof 23.02 45.78 65.95 27.51 10.15
Yoruba 67.44 59.26 78.39 52.74 33.80

Table 10: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 10 UD treebanks,
excluding the Wolof training treebank.

acteristics, these two languages are not so closely
related as the classification would suggest. Based
on our data and experiments, we could not draw
any conclusion as to whether the obtained results
emerge from an issue related to the data used or
to the language classification or to something else.
This might need further investigation.

7 Conclusion

In this paper, we have presented a multilingual ap-
proach to parsing that is effective for languages
with few resources and no syntactically annotated
corpora available for training. We have shown that
specific language combinations involving contem-
porary contact languages can provide better results
than combinations that only include unrelated lan-
guages. We should note, however, that for Wolof
and Yoruba, which are supposed to be genetically
related languages, we rather observed a decrease
of parsing results from the Yoruba side when using
the Wolof training data. It remains a question for
further study whether this decrease observed here
are actually attributable to a lack of real genetic
relationship between the language or to the lack of
(large) training data for Yoruba.
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