
Proceedings of the 14th International Conference on Computational Semantics, pages 184–201
June 17–18, 2021. ©2021 Association for Computational Linguistics

184

A Transition-based Parser for Unscoped Episodic Logical Forms

Gene Louis Kim♥, Viet Duong♦, Xin Lu♠, and Lenhart Schubert♣
University of Rochester

Department of Computer Science
{gkim21♥,schubert♣}@cs.rochester.edu
{vduong♦,xlu32♠}@u.rochester.edu

Abstract
“Episodic Logic: Unscoped Logical Form”
(EL-ULF) is a semantic representation cap-
turing predicate-argument structure as well
as more challenging aspects of language
within the Episodic Logic formalism. We
present the first learned approach for parsing
sentences into ULFs, using a growing set
of annotated examples. The results provide
a strong baseline for future improvement.
Our method learns a sequence-to-sequence
model for predicting the transition action
sequence within a modified cache transition
system. We evaluate the efficacy of type
grammar-based constraints, a word-to-symbol
lexicon, and transition system state fea-
tures in this task. Our system is available
at https://github.com/genelkim/

ulf-transition-parser. We also present
the first official annotated ULF dataset at
https://www.cs.rochester.edu/u/

gkim21/ulf/resources/.

1 Introduction

EL-ULF was recently introduced as a semantic
representation that accurately captures linguistic
semantic structure within an expressive logical for-
malism, while staying close to the surface language,
facilitating annotation of a dataset that can be used
to train a parser (Kim and Schubert, 2019). The
goal is to overcome the limitations of fragile rule-
based systems, such as the Episodic Logic (EL)
parser used for gloss axiomatization (Kim and
Schubert, 2016) and domain-specific ULF parsers
used for schema generation and dialogue sys-
tems (Lawley et al., 2019; Platonov et al., 2020).
EL’s rich model-theoretic semantics enables de-
ductive inference, uncertain inference, and natural
logic-like inference (Morbini and Schubert, 2009;
Schubert and Hwang, 2000; Schubert, 2014); and
the unscoped version, EL-ULF, supports Natural
Logic-like monotonic inferences (Kim et al., 2020)

(i.pro ((pres want.v)
(to (dance.v

(adv-a (in.p (my.d ((mod-n new.a)
(plur shoe.n)))))))))

Figure 1: An example ULF for the sentence, “I want to
dance in my new shoes”.

and inferences based on some classes of entail-
ments, presuppositions, and implicatures which are
common in discourse (Kim et al., 2019). The lack
of robust parsers have prevented large scale exper-
iments using these powerful representations. We
will refer to EL-ULF as simply ULF in the rest of
this paper.

In this paper we present the first system that
learns to parse ULFs of English sentences from
an annotated dataset, and provide the first official
release of the annotated ULF corpus, whereon our
system is trained. We evaluate the parser using
SEMBLEU (Song and Gildea, 2019) and a mod-
ified version of SMATCH (Cai and Knight, 2013),
establishing a baseline for future work.

An initial effort in learning a parser produc-
ing a representation as rich as ULF is bound to
face a data sparsity issue.1 Thus a major goal in
our choice of a transition-system-based parser has
been to reduce the search space of the model. We
investigate three additional methods of tackling
this issue: (1) constraining actions in the decod-
ing phase based on faithfulness to the ULF type
system, (2) using a lexicon to limit the possible
word-aligned symbols that the parser can generate,
and (3) defining learnable features of the transition
system state.

2 Unscoped Logical Form

Episodic Logic is an extension of first-order
logic (FOL) that closely matches the form and ex-

1The training set in our initial release is only 1,378 sen-
tences.

https://github.com/genelkim/ulf-transition-parser
https://github.com/genelkim/ulf-transition-parser
https://www.cs.rochester.edu/u/gkim21/ulf/resources/
https://www.cs.rochester.edu/u/gkim21/ulf/resources/

185

pressivity of natural language, using reifying op-
erators to enrich the domain of basic individuals
and situations with propositions and kinds, keeping
the logic first-order. It also uses other type-shifters,
e.g., for mapping predicates to modifiers, and al-
lows for generalized quantifiers (Schubert, 2000).
ULF fully specifies the semantic type structure of
EL by marking the types of the atoms and all of
the predicate-argument relationships while leaving
operator scope, anaphora, and word sense unre-
solved (Kim and Schubert, 2019). ULF is the crit-
ical first step to parsing full-fledged EL formulas.
Types are marked on ULF atoms with a suffixed
tag resembling the part-of-speech (e.g., .v, .n, .pro,
.d for verbs, nouns, pronouns, and determiners, re-
spectively). Names are instead marked with pipes
(e.g. |John|) and a closed set of logical and macro
operators have unique types and are left without a
type marking. Each suffix denotes a set of possible
semantic denotations, e.g. .pro always denotes an
entity and .v denotes an n-ary predicate where n
can vary. The symbol without the suffix or pipes is
called the stem.

Type shifters in ULF maintain coherence of the
semantic type compositions. For example, the type
shifter adv-a maps a predicate into a verbal predi-
cate modifier as in the prepositional phrase “in my
new shoes” in Figure 1, as opposed to its predica-
tive use “A spider is in my new shoes”.

The syntactic structure is closely reflected in
ULF even under syntactic movement through the
use of rewriting macros which explicitly mark these
occurrences and upon expansion make the exact se-
mantic argument structure available. Also, further
resembling syntactic structure, ULFs are trees. The
operators in operator-argument relations of ULF
can be in first or second position, disambiguated
by the types of the participating expressions. This
further reduces the amount of word reordering be-
tween English and ULFs. The EL type system only
allows function application for combining types,
〈A,B〉, A → B, much like Montagovian seman-
tics (Montague, 1970), but without type-raising.

3 Background

Currently, there is semantic parsing research occur-
ring on multiple representational fronts, which is
showcased by the cross-framework meaning rep-
resentation parsing task (Oepen et al., 2019). The
key differentiating factor of ULF from other mean-
ing representations is the model-theoretic expres-

sive capacity. To highlight this, here are a few
limitations of notable representations: AMR (Ba-
narescu et al., 2013a) neglects issues such as ar-
ticles, tense, and nonintersective modification in
favor of a canonicalized form that abstracts away
from the surface structure; Minimal Recursion Se-
mantics (Copestake et al., 2005) captures meta-
level semantics for which inference systems can-
not be built directly based on model-theoretic no-
tions of truth and entailment; and extant seman-
tic parsers for DRSs generate FOL-equivalent LFs,
thus precludes proper treatment of phenomena such
as generalized quantifiers, modification, and reifica-
tion. Due to space limitations, we refer to Kim and
Schubert (2019) for an in-depth description and
motivation of ULF, including comparisons to other
representations. We also refer to Schubert (2015)
which places EL—the antecedent of ULF—in a
broad context.

Our ULF parser development draws inspiration
from the body of semantic parsing research on
graph-based formalism of natural language, in par-
ticular, the recent advances in AMR parsing (Peng
et al., 2018; Zhang et al., 2019a). The core or-
ganization of our parser is based on Peng et al.
(2018), which uses a sequence-to-sequence model
to predict the transition action sequence for a cache
transition system with transition system features
and hard attention alignment.

There are many transition-based parsers that
were developed for parsing meaning representa-
tions (Zhang et al., 2016; Buys and Blunsom, 2017;
Damonte et al., 2017; Hershcovich et al., 2017).
These are mainly based on what’s called an arc-
eager parsing method, termed by Abney and John-
son (1991). Arc-eager parsing greedily adds edges
between nodes before full constituents are formed,
which keeps the partial graph as connected as possi-
ble during the parsing process (Nivre, 2004). They
modify arc-eager parsing in various ways to gen-
eralize to the graph structures. Our transition sys-
tem can be considered a modification of bottom-
up arc-standard parsing due to restrictions on arc
formation. While this leads to a longer action se-
quence for parsing, the parser’s access to complete
constituents allows promotion-based symbol gener-
ation for unary operators such as type shifters and
standard bottom-up type analysis for constrained
parsing.

186

Figure 2: State transition diagram of the node genera-
tive transition system. Nodes in the figure are phases
and edges are actions. An unlabeled edge means that
this state transition occurs no matter what action is
taken in that phase. The transition system starts in the
GEN phase.

4 Our Transition System

Our transition system is a modification of the cache
transition system (Gildea et al., 2018) which has
been shown to be effective in AMR parsing (Peng
et al., 2018). The distinctive aspect of our ver-
sion is that the transition system generates nodes
that are derived, but distinct, from the input se-
quence. We call it a node generative transition sys-
tem. This eliminates the two-stage parsing frame-
work of Peng et al. (2018). Our transition system
also restricts the parses to be bottom-up to enable
node generation and decoding constraints by the
available constituents since ULF has an bottom-up
compositional type system. The transition parser
configuration is

C = (σ, η, β,Gp) (1)

where σ is the stack, η is the cache, β is the buffer,
andGp is the partial graph. The parser is initialized
with ([],[$, . . . , $],[w1, . . . , wn],∅), that is an empty
stack, the cache with null values ($), the buffer with
the input sequence of words, where each word is a
token, lemma, POS tuple, wi = (ti, li, pi), and an
empty partial graph, Gp = (Vp, Ep), where Vp is
ordered. A vertex, vi = (si, ai) ∈ V , is a pair of
a ULF symbol si, and its alignment ai—the index
of the word from which si was produced. We will
refer to the leftmost element in β as wnext.

While the size of the cache is a hyperparameter
that can be set for the cache transition parser, we
restrict the cache size to 2 in order to keep the or-
acle simple despite the newly added actions. This
means that only tree structures can be parsed. In
describing the transition system, we differentiate

between phases and actions. Phases are classes
of states in the transition system and the actions
move between states. Figure 2 shows the full state
transition diagram and shows how the phases dic-
tate which actions can be taken and how actions
move between phases. Actions may take variables
to specify how to move into the next phase. Phases
also determine which features go into the deter-
mining the next action. We will write phases in
small caps (e.g. GEN) and actions in bold (e.g.
TokenGen) for clarity.

The GEN and PROMOTE phases are novel to
our transition system. The GEN phase generates
graph vertices that are transformations of the buffer
values. This allows us to put words of the input
sentence in β instead of a pre-computed ULF atom
sequence. The PROMOTE phase enables context-
sensitive symbol generation. It generates unaligned
symbols in the context of an existing constituent in
the partial graph. (Use of logical operators without
word alignments only makes sense with respect
to something for the operators to act on.) We now
describe each of the actions in the transition system.
The following are parser actions that were almost
directly inherited from the vanilla cache transition
parser.

• PushIndex(i) pushes (i, v) onto σ, where v is
the vertex currently at index i of η. Then it moves
the vertex generated by the prior GEN phase to
index i in η.

• Arc(i, d, l) forms an arc with label l in direction
d (i.e. left or right) between the vertex at index i
of the cache and the rightmost vertex in the cache.
The NoArc action is used if no arc is made.

• Pop pops (i, v) from σ where i is the index of η
which v came from. v is placed at index i of η
and shifts the appropriate elements to the right.

We introduce two sets, Sp and Ss, which define the
vocabulary of the two unaligned symbol generation
actions: PromoteSym and SymGen, respectively.
Sp consists of logical and macro operators that
do not align with English words. Ss consists of
symbols that could not be aligned in the training
set and are not members of Sp.

4.1 Promotion-based Symbol Generation
PROMOTE includes a subordinate PROMOTEARC

phase for modularizing the parsing decision. The
following parsing actions are in this phase.

• PromoteSym(sp) generates a promotion symbol,

187

Stack Cache Buffer Edges Actions taken
[] [$, $] [Do, you, want, to, see, me, ?] ∅ —
[$0] [$, do.aux-s] [you, want, to, see, me, ?] ∅ Lemma(aux-s); Push(0)
[$0] [$, pres] [you, want, to, see, me, ?] E1 NoArc; PSym(pres); PArc(arg0)
[$0] [$, χ0] [you, want, to, see, me, ?] E2 NoArc; PSym(χ0); PArc(ι)
[$0, $0] [χ0, you.pro] [want, to, see, me, ?] E2 NoArc; NoP; Lemma(pro); Push(0)
[$0] [$, χ0] [want, to, see, me, ?] E3 Arc(0, R, arg0); NoP; Pop
[$0, $0] [χ0, want.v] [to, see, me, ?] E3 NoArc; NoP; Lemma(v); Push(0)
[$0, $0, χ0

0] [want.v, to] [see, me, ?] E3 NoArc; NoP; Lemma(∅); Push(0)
[$0, $0, χ0

0, want.v0] [to, see.v] [me, ?] E3 NoArc; NoP; Lemma(v); Push(0)
[$0, $0, χ0

0, want.v0, to0] [see.v, me.pro] [?] E3 NoArc; NoP; Token(pro); Push(0)
[$0, $0, χ0

0, want.v0] [to, see.v] [?] E4 Arc(0, R, arg0); NoP; Pop
[$0, $0, χ0

0] [want.v, to] [?] E5 Arc(0, R, arg0); NoP; Pop
[$0, $0] [χ0, want.v] [?] E6 Arc(0, R, arg0); NoP; Pop
[$0] [$, χ0] [?] E7 Arc(0, R, arg1); NoP; Pop
[$0] [$, χ1] [?] E8 NoArc; PSym(χ1); PArc(ι)
[$0, $0] [χ1, ?] [] E8 NoArc; NoP; Lemma(∅); Push(0)
[$0] [$, χ1] [] E9 Arc(0, R, arg0); NoP; Pop
[] [$, $] [] E9 NoArc; NoP; Pop

Figure 3: Example run of the transition system running on the sentence “Do you want to see me?” from
our parser. The left four columns show the parser configuration after taking the actions shown in the
rightmost column. We make the following modifications for brevity. When a WordGen action takes
place, it is always followed by one of Name, Lemma, or Token and then a Suffix(e) action. Thus we
omit the WordGen and Suffix actions and transfer the argument of Suffix to the Name, Lemma, or To-
ken action. “Promote” is abbreviated as “P” (e.g., PromoteSym as PSym) and PushIdx as Push. Stack
item indices (i, v) are written as vi instead. χ and ι stand for COMPLEX and INSTANCE which are
the special node and edge labels, respectively, for constructing non-atomic ULF operators in penman for-
mat. Edge labels arg0 and arg1 simply indicate the argument position in ULF. En = {ei | 0 ≤ i < n}
where e0 = (do.aux-s

arg0←−−− pres), e1 = (pres ι←− χ0), e2 = (χ0
arg0−−−→ you), e3 = (see.v

arg0−−−→ me.pro),

e4 = (to
arg0−−−→ see.v), e5 = (want.v

arg0−−−→ to), e6 = (χ0
arg0−−−→ want.v), e7 = (χ0

ι←− χ1), e8 = (χ1
arg0−−−→ ?).

sp ∈ Sp, appends the vertex (sp,NONE) to Vp,
and proceeds to the PROMOTEARC phase.

• NoPromote skips the PROMOTE phase and pro-
ceeds to the POP phase.

• PromoteArc(l) makes an arc from the last added
vertex, vp, to the vertex at the rightmost position
of the cache, vηr , by adding (vp, vηr , l) to Ep. vp
then takes the place of vηr in the cache and vηr
is no longer accessible by the transition system.
The system proceeds to the ARC phase.

4.2 Sequential Symbol Generation
We replace the Shift action with the GEN phase to
generate ULF atoms based on the tokenized text
input. This phase allows the parser to generate a
symbol using wnext as a foundation, or generate an
arbitrary symbol that is not aligned to any word
in β. GEN includes subordinate phases WORD-
GEN, LEMMAGEN, TOKENGEN, and NAMEGEN

for modularizing the decision process.

• WordGen proceeds to WORDGEN phase, in
which the following actions are available.
1. Name proceeds to the NAMEGEN phase.
2. Lemma proceeds to the LEMMAGEN phase.

3. Token proceeds to the TOKENGEN phase.
• Suffix(e) is the only action available in the

NAMEGEN, LEMMAGEN, and TOKENGEN

phases. It generates a symbol s consisting of
a stem and suffix extension e from wnext. In the
NAMEGEN phase, the stem is tnext with surround-
ing pipes; in the TOKENGEN phase, the stem is
tnext; and in the LEMMAGEN phase, the stem is
lnext. (s, i) where i is the index of wnext is added
to Vp and we move forward one word in β. The
system proceeds to the PUSH phase.

• SymGen(s) adds an unaligned symbol
(s,NONE) to Vp and proceeds to the PUSH

phase.
• SkipWord skips word in β and returns to the

GEN phase.
• MergeBuf takes wnext and merges it with the

word after itwnext+1. This is stored at the front of
the buffer as a pair (vβ, vβ+1). This forms a sin-
gle stem with a space delimiter in the NAMEGEN

phase and an underscore delimiter in the LEM-
MAGEN and TOKENGEN phases. The system
returns to the GEN phase. This is used to handle
multi-word expressions (e.g. “had better”).

188

The transition system begins in the GEN phase.

4.3 Oracle Extraction Algorithm
In order to train a model of the parser actions, we
need to extract the desired action sequences from
gold graphs. We modify the oracle extraction al-
gorithm for the vanilla cache transition parser, de-
scribed by Gildea et al. (2018). The oracle starts
with a gold graphGg = (Vg, Eg) and maintains the
partial graphGp = (Vp, Ep) of the parsing process,
where Vg is sequenced by the preorder traversal of
Gg. The oracle maintains snext, the symbol in the
foremost vertex of Vg that has not yet been added to
Gp. The oracle begins with a transition system con-
figuration, C, initialized with the input sequence,
w1, ..., wn.

The oracle is also provided with an approximate
alignment, A = {(wi, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤
m}, between the input sequence, wi:n, to the nodes
in the gold graph, Vg, |Vg| = m, which is generated
with a greedy matching algorithm. The matching
algorithm uses a manually-tuned similarity heuris-
tic built on the superficial similarity of English
words, POS, and word order to the stems, suffixes,
and preorder positions of the corresponding ULF
atoms. A complete description of the alignment
algorithm is in appendix B. This alignment is not
necessary to maintain correctness of the oracle, but
it is used to cut the losses when the input words be-
come out of sync with the gold graph vertex order.2

Steps 5-7 of the GEN phase uses the alignments
to identify whether the buffer or the vertex order
is ahead of the other and appropriately sync them
back together.

The oracle uses the following procedure, bro-
ken down by parsing phase, to extract the action
sequence to build the Gp = Gg with C and A.

• GEN phase: Let b = Stem(snext), e =
Suffix(snext), n = IsName(snext).3

1. If n and tnext = b, NameGen(e)
2. If not n and tnext =i b, TokenGen(e)
3. If not n and lnext =i b, LemmaGen(e)
4. MergeBuf if
n and Pre(Concat(tnext, “ ”, tnext+1), b) or

2When the words become out-of-sync with the gold graph
the oracle must rely on SymGen to generate the graph nodes.
Since SymGen requires selecting the correct value out the
entire vocabulary of ULF atoms, it is much more difficult to
predict correctly than NameGen, TokenGen, and LemmaGen
which require only selecting the correct type tag.

3= is string match, =i is case-insensitive string match, Pre
determines whether its first argument is a prefix of the second
and Prei is the case-insensitive counterpart.

not n and Prei(Concat(lnext, “ ”, lnext+1), b)
or
not n and Prei(Concat(tnext, “ ”, tnext+1), b)

5. If (wi, vnext) ∈ A for wi before wnext or
vnext ∈ Ss, then SymGen(vnext)

6. If (wnext, vj) ∈ A for vj which comes after
vnext or vj ∈ Vp, then SkipWord.

7. Otherwise, SymGen(vnext)
Step 5-7 allow the oracle to handle the generation
of symbols that are not in word order, by skip-
ping any words that come earlier than the symbol
order; and generating symbols that cannot be
aligned with SymGen for any reason.

• PUSH phase: The push phase of the vanilla
cache transition parser’s oracle—viz., choosing
the cache position whose closest edge into β is
farthest away—is extended to account not only
for direct edges, but also for paths that include
only unaligned-symbols.4

• ARC phase: The vanilla cache transition sys-
tem’s rule of generating the ARC action for
any edge, e ∈ Eg ∧ e /∈ Ep between the
rightmost cache position and the other posi-
tions, is extended to also require the child
vertex to be fully formed. That is, for
the vertex vchild, |descendants(vchild, Gg)| =
|descendants(vchild, Gp)|. This enforces bottom-
up parsing, which is necessary for both the
promotion-based symbol generation and type
composition constraint.

• PROMOTE phase: If the vertex in
the rightmost cache position, vηr , is
fully formed (|descendants(vηr , Gg)| =
|descendants(vηr , Gp)|) and has a parent node in
the PROMOTE lexicon (label(parent(vηr , Gg)) ∈
Sp), then the parser generates the action
sequence PromoteSym(parent(vr, Gg)), Pro-
moteArc(lp) where lp is the label for the
edge from the parent of vηr to vηr in Gg
(EdgeLabel(parent(vηr , Gg), vηr , Gg)).

5 Model

Our model has three basic components: (1) a word
sequence encoder, (2) a ULF atom sequence en-
coder, and (3) an action decoder, all of which are

4The motivation for this is that if only unaligned symbols
exist in the path, the full path can be made without changing
the relative status of any other node in the transition system.
Let v1 and v2 be the end points of the path. With v1 in the
cache and the word aligned to v2, wv2 = wnext, SymGen
and PROMOTE can generate all nodes in the path without
interacting with the rest of the transition system.

189

Figure 4: The model consists of a sentence-encoding BiLSTM, a symbol-encoding LSTM, and an action-decoding
LSTM. New symbols generated in the GEN and PROMOTE phases of the transition system are appended to the
symbol sequence. The transition system supplies hard attention pointers that select the relevant word and symbol
embeddings. These are concatenated with the transition state feature vector and supplied as input to the action
decoder, which predicts the next action that updates the transition system.

LSTMs. During decoding, the transition system
configuration, C, is updated with decoded actions
and used to organize the action decoder inputs us-
ing the sequence encoders. The system models the
following probability

P (a1:q|w1:n) =

q∏
t=1

P (at|a1:t−1, w1:n; θ) (2)

where a1:q is the action sequence, w1:n is the input
sequence, and θ is the set of model parameters.
Figure 4 is a diagram of the full model structure.

5.1 Word and Symbol Sequence Encoders

The input word embedding sequence w1:n is en-
coded by a stacked bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) with Lw layers. Each
word embedding sequence is a concatenation of em-
beddings of GloVe (Pennington et al., 2014), lem-
mas, part-of-speech (POS) and named entity (NER)
tags, RoBERTa (Liu et al., 2019), and features
learned by a character-level convolutional neural
network (CharCNN, Kim et al., 2016). As ULF
symbols are generated during the parsing process,
the symbol embedding sequence s1:m, which is
the concatenation of a symbol-level learned embed-
ding and the CharCNN feature vector over the sym-
bol string, is encoded by a stacked unidirectional
LSTM of Ls layers.

5.2 Hard Attention
Peng et al. (2018) found that for AMR parsing with
cache transition systems, a hard attention mecha-
nism, tracking the next buffer node position and
its aligned word, works better than a soft attention
mechanism for selecting the embedding used dur-
ing decoding. We take this idea and modify the
tracking mechanism to find the most relevant word,
wi, and symbol, sj , for each phase.

• ARC and PROMOTE*: The symbol sj in the right-
most cache position and aligned word wi.

• PUSH: The symbol sj generated in the previous
action and aligned word wi.

• Otherwise: The last generated symbol sj and the
word wi in the leftmost β position.

This selects the output sequences hLw
wi

and hLs
sj

from the encoders for the action decoder.

5.3 Transition State Features
Similar to Peng et al. (2018), we extract features
from the current transition state configuration, C,
to feed into the decoder as additional input in the
form of learned embeddings

ef (C) = [ef1(C); ef2(C); ...; efl(C)] (3)

where efk(C) (k = 1, ..., l) is the k-th feature em-
bedding, with l total features. Our features, which
are heavily inspired by Peng et al. (2018), are as
follows.

190

• Phase: An indicator of the phase in the transition
system.

• POP, GEN features: Token features5 of the right-
most cache position and the leftmost buffer posi-
tion; the number of rightward dependency edges
from the cache position word and the first three
of their labels; and the number of outgoing ULF
arcs from the cache position and their first three
labels.

• ARC, PROMOTE features: For the two cache po-
sitions, their token features and the word, sym-
bol6, and dependency distance between them;
furthermore, their first three outgoing and single
incoming dependency arc labels and their first
two outgoing and single incoming ULF arc la-
bels.

• PROMOTEARC features: Same as the PROMOTE

features but for the rightmost cache position use
the node/symbol generated in the preceding Pro-
moteSym action.

• PUSH features: Token features for the leftmost
buffer position and all cache positions.

5.4 Action Encoder/Decoder
The action sequence is encoded by a stacked uni-
directional LSTM with La layers where the action
input embeddings, ha1:q are concatenations of the
word and symbol encodings.

hak = [hLw
wi

;hLs
sj ; ef (C)] (4)

The state features hLa
ak

are then decoded into pre-
diction weights with a linear transformation and
ReLU non-linearity.

6 Parsing

The model is trained on the cross-entropy loss of
the model probability (2) using the oracle action
sequence. Both training and decoding are limited
to a maximum action length of 800. For the training
set the oracle has an average action length of 134
actions and a maximum action length of 1477.

6.1 Constrained Decoding
We investigate two methods of constraining the
decoding process with prior knowledge of ULF to
overcome the challenge of using a small dataset.
These automatic methods filter out clearly incorrect

5The token features are the ULF symbol and the word,
lemma, POS, and NER tags of the aligned index of the input.

6Symbol distance is based on the order in which the sym-
bols are generated by the parser.

choices at the cost of some decoding speed and
further tailor the parser to ULFs.

ULF Lexicon To improve symbol generation,
we introduce a lexicon with possible ULF atoms
for each word. Nouns, verbs, adjectives, adverbs,
and preposition entries are automatically converted
from the Alvey lexicon (Carroll and Grover, 1989)
with some manual editing. Pronouns, determiners,
and conjunctions entries are extracted from Wik-
tionary7 category lists. Auxiliary verbs entries are
manually built from our ULF annotation guidelines.
When generating a word-aligned symbol the stem
is searched in the lexicon. If the string is present in
the lexicon, only corresponding symbols in the lex-
icon are allowed to be generated. Since the lexicon
is not completely comprehensive, this constraint
may lead to some additional errors.

Type Composition The type system constraint
adds a list of types, Tv, to accompany |Vp| (the
vertices of the partial graph), which stores the ULF
type of each vertex. When a vertex, v, is added
to Gp, its ULF type, tv is added to Tv. This ULF
type system is generalized with placeholders for
macros and each stage in processing them. When
the parser predicts an arc action during decoding,
the types source, ts, and target, tt nodes are run
through a type composition function. If the types
can compose, tc = (ts.tt), tc 6= ∅, the type of the
source node is replaced with tc. Otherwise, the
resulting C is not added to the search beam.

7 Experiments

We ran our experiments on a hand-annotated
dataset of ULFs totaling 1,738 sentences (1,378
train, 180 dev, 180 test). The dataset is a mixture of
sentences from crowd-sourced translations, news
text, a question dataset, and novels. The distri-
bution of sentences leans towards more questions,
requests, clause-taking verbs, and counterfactuals
because a portion of the dataset comes from the
dataset used by Kim et al. (2019) for generating
inferences from ULFs of those constructions.

The data is split by segmenting the dataset into
10 sentence segments and distributing them in a
round-robin fashion, with the training set receiving
eight chunks in each round. This splitting method
is designed to allow document-level topics to dis-
tribute into splits while limiting any performance
inflation of the dev and test results that can result

7https://en.wiktionary.org/

https://en.wiktionary.org/

191

when localized word-choice and grammatical pat-
terns are distributed into all splits.

Kim and Schubert (2019) found that interannota-
tor agreement (IA) on ULFs using the EL-SMATCH

metric (Kim and Schubert, 2016) is 0.79.8 We add
a second pass to further reduce variability in our
annotations.9 Further details about the dataset are
available in appendix A and the complete annota-
tion guidelines are available as part of the dataset.

ULF-AMR In order to use parsing and evalu-
ation methods developed for AMR parsing (Ba-
narescu et al., 2013a), we rewrite ULFs in penman
format (Kasper, 1989) by introducing a node for
each ULF atom and generating left-to-right arcs in
the order that they appear (:ARG0, :ARG1, etc.),
assuming the leftmost constituent is the parent. In
order to handle non-atomic operators in penman
format which only allows atomic nodes, we intro-
duce a COMPLEX node with an :INSTANCE edge
to mark the identity of the non-atomic operator.

Setup We evaluate the model with SEM-
BLEU (Song and Gildea, 2019), a metric for pars-
ing accuracy of AMRs (Banarescu et al., 2013b).
This metric extends BLEU (Papineni et al., 2002)
to node- and edge-labeled graphs. We also mea-
sure EL-SMATCH, a generalization of SMATCH to
graphs with non-atomic nodes, for analysis of the
model since it has F1, precision, and recall compo-
nents.

The tokens, lemmas, POS tags, NER tags, and
dependencies are all extracted using the Stanford
CoreNLP toolkit (Manning et al., 2014). In all
experiments the model was trained for 25 epochs.
Starting at the 12th epoch we measured the SEM-
BLEU performance on the dev split with beam
size 3. Hyperparameters were tuned manually on
the dev split performance of a smaller, prelimi-
nary version of the annotation corpus. We use
RoBERTa-Base embeddings with frozen parame-
ters, 300 dimensional GloVe embeddings, and 100
dimensional ti, li, pi, action, and symbol embed-
dings. The word encoder is 3 layers. The symbol
encoder and action decoder are 2 layers. Experi-
ments were run on a single NVIDIA Tesla K80 or
GeForce RTX 2070 GPU. Training the full model

8cf. AMR is reported to have about 0.8 IA using the
SMATCH metric (Tsialos, 2015)

9We did not measure IAA on our dataset and take the prior
report as an lower-end estimate given the similarity of our
annotations methods and our additional review phase. Our
annotation process was collaborative and result in a single
annotation per sentence so IAA cannot be measured.

Figure 5: Ablation tests with standard deviation error
bars of 5 runs of different random seeds.

takes about 6 hours. The full tables of results and
default parameters are available in appendix D.

7.1 Results

Ablations In our ablation tests, the model from
the training epoch with the highest dev set SEM-
BLEU score is evaluated on the test split with beam
size 3.10 The results are shown in Figure 5.

CharCNN and RoBERTa are the least important
components—to the point that we cannot conclude
that they are of any benefit to the model due to the
large overlap in the performance of models with
and without them. The GloVe, POS, and feature
embeddings are more important. The importance
of POS is not surprising given the tight correspon-
dence between POS tags and ULF type tags.

Model SEMBLEU EL-SMATCH

(Zhang et al., 2019a) 12.3 34.3
(Cai and Lam, 2020) 34.2 52.6
Our best model 47.4 59.8

Table 1: Comparison to AMR parsers.

Comparison to Baselines We compare our
parser performance against two AMR parsers with
minimal AMR-specific assumptions. The ma-
jor recent efforts by the research community in
AMR parsing make these parsers strong baselines.
Specifically, we compare against the sequence-to-
graph (STOG) parser (Zhang et al., 2019a) and Cai
and Lam’s (2020) graph-sequence iterative infer-
ence (GS) parser.11 The ULF dataset is prepro-
cessed for these parsers by stripping pipes from
names to support the use of a copy mechanism
and splitting node labels with spaces into multiple
nodes to make the labels compatible with their data

10Our initial experiments re-evaluated the top-5 choices
with a beam size of 10, but we found that the performance
consistently degraded and abandoned this step.

11We do not compare our model against the existing rule-
based ULF parsers since they are domain specific and cannot
handle the range of sentences that appear in our dataset.

192

pipelines. Table 1 shows the results.12 The STOG
parser fares poorly on both metrics. A review of
the results revealed that the parser struggles with
node prediction in particular. This is likely the re-
sult of the dataset size not properly supporting the
parser’s latent alignment mechanism.13 The GS
parser performs better than the STOG parser by a
large margin, but is still far from our parser’s per-
formance. The GS parser also struggles with node
prediction, but is more successful in maintaining
the correct edges in spite of incorrect node labels.

Investigating the dev set results reveals that our
parser is quite successful in node generation, since
by design the node generation process reflects the
design of ULF atoms. Despite the theoretical capac-
ity to generate node labels without a corresponding
uttered word or phrase, our parser only does this
for common logical operators such as reifiers and
modifier constructors. The GS parser on the other
hand, is relatively successful on node labels with-
out uttered correspondences, correctly generating
the elided “you” in imperatives and the logical op-
erators ! and multi-sent which indicate imperatives
and multi-sentence annotations, respectively. Our
parser also manages to correctly generate a variety
of verb phrase constructions, but fails to recog-
nize reified infinitives as arguments of less frequent
clausal verbs such as “neglect”, “attach”, etc. (as
opposed to “have”, “tell”) and instead interprets
“to” as either an argument-marking prepositions or
reification of an already reified verb. Examples of
parses and a discussion of specific errors are omit-
ted here due to space constraints and provided in
appendix E.

Constrained Decoding When evaluating decod-
ing constraints, we select the model by re-running
the five best performing epochs with constraints.
When using the type composition constraint, we
additionally increase the beam size to 10 so that
the parser has backup options when its top choices
are filtered out. Table 2 presents these results. We
see a increase in precision for +Lex, but a greater
loss in recall. +Type reduces performance on all
metrics. Due to the bottom-up parsing procedure,
a filtering of choices can cascade into fragmented

12Our parser gets the exact ULF for 6 out of the 180 sen-
tences (3.3%). They were all yes-no questions which tend to
be a bit shorter than informative declarative sentences (e.g.

“Can’t you do something?”).
13The STOG parser is improved by (Zhang et al., 2019b)

with about 1 point of improvement on SMATCH. Unfortu-
nately, the code for this parser is not released to the public.

SEMBLEU EL-SMATCH

F1 Precision Recall

Full 47.4 59.8 60.7 59.0
+Lex 46.2 57.5 61.5 54.1
+Type 40.0 55.8 59.1 52.8

Table 2: Statistics of model performances with con-
straints added—the average of 5 runs.

parses. The outputs for an arbitrarily selected run
of the model has on average 2.9 fragments per sen-
tence when decoding with the type constraint and
1.4 without. This and the relative performance on
the precision metric suggest that constraints im-
prove individual parsing choices, but are too strict,
leading to fragmented parses.

Dependence on Length To investigate the per-
formance dependence on the problem size, we par-
tition the test set into quartiles by oracle action
length. The 0 seed of our full model has SEM-
BLEU scores of 52, 47, 48, and 31 on the quar-
tiles of increasing length. As expected, the parser
performs better on shorter tasks. The parser per-
formance is relatively stable until the last quartile.
This is likely due to a long-tail of sentence lengths
in our dataset. This last quartile includes sentences
with oracle action length ranging from 148 to 1474.

8 Conclusion

We presented the first annotated ULF dataset and
the first parser trained on such a dataset. We
showed that our parser is a strong baseline, out-
performing existing semantic parsers from a simi-
lar task. Surprisingly, our experiments showed that
even in this low-resource setting, constrained de-
coding with a lexicon or a type system does more
harm than good. However, the symbol generation
method and features designed for ULFs result in a
performance lead over using an AMR parser with
minimal representational assumptions.

We hope that releasing this dataset will spur
other efforts into improving ULF parsing. This
of course includes expanding the dataset, using our
comprehensive annotation guidelines and tools; but
we see many additional avenues of improvement.
The type grammar opens up many promising pos-
sibilities: sampling of silver data (in conjunction
with ULF to English generation (Kim et al., 2019)),
use as a weighted constraint, or direct incorporation
into a model to avoid the pitfalls we observed in
our simple approach to semantic type enforcement.

193

9 Acknowledgments

This work was supported by NSF EAGER grant
NSF IIS-1908595, DARPA CwC subcontract
W911NF-15-1-0542, and a Sproull Graduate Fel-
lowship from the University of Rochester. We are
grateful to the anonymous reviewers for their help-
ful feedback.

References
Steven P Abney and Mark Johnson. 1991. Mem-

ory requirements and local ambiguities of parsing
strategies. Journal of Psycholinguistic Research,
20(3):233–250.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013a. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 178–186.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013b. Abstract Meaning Representa-
tion for sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperabil-
ity with Discourse, pages 178–186, Sofia, Bulgaria.
Association for Computational Linguistics.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1215–1226, Vancouver, Canada. Association
for Computational Linguistics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. As-
sociation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

J. Carroll and C. Grover. 1989. The derivation
of a large computational lexicon of english from
LDOCE. In Boguraev B. and Briscoe E., editors,
Computational Lexicography for Natural Language
Processing, pages 117–134. Longman, Harlow, UK.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal Recursion Semantics:
An introduction. Research on Language and Com-
putation, 3(2):281–332.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Mean-
ing Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Daniel Gildea, Giorgio Satta, and Xiaochang Peng.
2018. Cache transition systems for graph parsing.
Computational Linguistics, 44(1):85–118.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127–
1138, Vancouver, Canada. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Robert T. Kasper. 1989. A flexible interface for
linking applications to Penman’s sentence genera-
tor. In Speech and Natural Language: Proceedings
of a Workshop Held at Philadelphia, Pennsylvania,
February 21-23, 1989.

Gene Kim, Benjamin Kane, Viet Duong, Muskaan
Mendiratta, Graeme McGuire, Sophie Sackstein,
Georgiy Platonov, and Lenhart Schubert. 2019. Gen-
erating discourse inferences from unscoped episodic
logical formulas. In Proceedings of the First Inter-
national Workshop on Designing Meaning Represen-
tations, pages 56–65, Florence, Italy. Association
for Computational Linguistics.

Gene Kim and Lenhart Schubert. 2016. High-fidelity
lexical axiom construction from verb glosses. In
Proceedings of the Fifth Joint Conference on Lexical
and Computational Semantics, pages 34–44, Berlin,
Germany. Association for Computational Linguis-
tics.

Gene Louis Kim, Mandar Juvekar, and Lenhart Schu-
bert. 2020. Monotonic inference for underspeci-
fied episodic logic. In Proceedings of the 1st Work-
shop on Natural Logic Meets Machine Learning
(NALOMA). Association for Computational Linguis-
tics.

Gene Louis Kim and Lenhart Schubert. 2019. A type-
coherent, expressive representation as an initial step
to language understanding. In Proceedings of the
13th International Conference on Computational Se-
mantics - Long Papers, pages 13–30, Gothenburg,
Sweden. Association for Computational Linguistics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/E17-1051
https://www.aclweb.org/anthology/E17-1051
https://doi.org/10.1162/COLI_a_00308
https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/P17-1104
https://www.aclweb.org/anthology/H89-1022
https://www.aclweb.org/anthology/H89-1022
https://www.aclweb.org/anthology/H89-1022
https://doi.org/10.18653/v1/W19-3306
https://doi.org/10.18653/v1/W19-3306
https://doi.org/10.18653/v1/W19-3306
https://doi.org/10.18653/v1/S16-2004
https://doi.org/10.18653/v1/S16-2004
https://doi.org/10.18653/v1/W19-0402
https://doi.org/10.18653/v1/W19-0402
https://doi.org/10.18653/v1/W19-0402

194

Lane Lawley, Gene Louis Kim, and Lenhart Schubert.
2019. Towards natural language story understand-
ing with rich logical schemas. In Proceedings of the
Sixth Workshop on Natural Language and Computer
Science, pages 11–22, Gothenburg, Sweden. Associ-
ation for Computational Linguistics.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Richard Montague. 1970. Universal grammar. Theo-
ria, 36(3):373–398.

Fabrizio Morbini and Lenhart Schubert. 2009. Evalu-
ation of Epilog: A reasoner for Episodic Logic. In
Proceedings of the Ninth International Symposium
on Logical Formalizations of Commonsense Reason-
ing, Toronto, Canada.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the workshop
on incremental parsing: Bringing engineering and
cognition together, pages 50–57.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdenka
Uresova. 2019. MRP 2019: Cross-framework mean-
ing representation parsing. In Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning, pages 1–27, Hong Kong. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Xiaochang Peng, Linfeng Song, Daniel Gildea, and
Giorgio Satta. 2018. Sequence-to-sequence models
for cache transition systems. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1842–1852, Melbourne, Australia. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Georgiy Platonov, Lenhart Schubert, Benjamin Kane,
and Aaron Gindi. 2020. A spoken dialogue system
for spatial question answering in a physical blocks
world. In Proceedings of the 21th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 128–131, 1st virtual meeting. Associa-
tion for Computational Linguistics.

Lenhart Schubert. 2014. From treebank parses to
Episodic Logic and commonsense inference. In Pro-
ceedings of the ACL 2014 Workshop on Semantic
Parsing, pages 55–60, Baltimore, MD. Association
for Computational Linguistics.

Lenhart Schubert. 2015. Semantic representation. In
Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI’15, pages 4132–
4138. AAAI Press.

Lenhart K. Schubert. 2000. The situations we talk
about. In Jack Minker, editor, Logic-based Artifi-
cial Intelligence, pages 407–439. Kluwer Academic
Publishers, Norwell, MA, USA.

Lenhart K. Schubert and Chung Hee Hwang. 2000.
Episodic Logic meets Little Red Riding Hood: A
comprehensive natural representation for language
understanding. In Lucja M. Iwańska and Stuart C.
Shapiro, editors, Natural Language Processing and
Knowledge Representation, pages 111–174. MIT
Press, Cambridge, MA, USA.

Linfeng Song and Daniel Gildea. 2019. SemBleu: A
robust metric for AMR parsing evaluation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4547–
4552, Florence, Italy. Association for Computational
Linguistics.

Aristeidis Tsialos. 2015. Abstract meaning rep-
resentation for sembanking. Available at
www.inf.ed.ac.uk/teaching/courses/
tnlp/2014/Aristeidis.pdf, accessed Decem-
ber 8, 2018.

Florian Wolf. 2005. Coherence in natural language :
data structures and applications. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Dept. of Brain
and Cognitive Sciences.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Transition-based neural word segmentation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 421–431, Berlin, Germany. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/W19-1102
https://doi.org/10.18653/v1/W19-1102
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.18653/v1/K19-2001
https://doi.org/10.18653/v1/K19-2001
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P18-1171
https://doi.org/10.18653/v1/P18-1171
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/2020.sigdial-1.16
https://www.aclweb.org/anthology/2020.sigdial-1.16
https://www.aclweb.org/anthology/2020.sigdial-1.16
http://dl.acm.org/citation.cfm?id=2888116.2888296
https://doi.org/10.18653/v1/P19-1446
https://doi.org/10.18653/v1/P19-1446
www.inf.ed.ac.uk/teaching/courses/tnlp/2014/Aristeidis.pdf
www.inf.ed.ac.uk/teaching/courses/tnlp/2014/Aristeidis.pdf
https://dspace.mit.edu/handle/1721.1/28854
https://dspace.mit.edu/handle/1721.1/28854
https://doi.org/10.18653/v1/P16-1040

195

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

A Dataset Details

We chose a variety of text sources for construct-
ing this dataset to reduce genre-effects and pro-
vide good coverage of all the phenomena we are
investigating. Some of these datasets include an-
notations, which we use only to identify sentence
and token boundaries. The dataset includes 1,738
sentences, with a mean, median, min, and max
sentence lengths of 10.275, 8, 2, and 128 words,
respectively.

A.1 Data Sources

• Tatoeba

The Tatoeba dataset14 consists of crowd-sourced
translations from a community-based educational
platform. People can request the translation of
a sentence from one language to another on the
website and other members will provide the trans-
lation. Due to this pedagogical structure, the sen-
tences are fluent, simple, and highly-varied. The
English portion downloaded on May 18, 2017
contains 687,274 sentences.

• Discourse Graphbank

The Discourse Graphbank (Wolf, 2005) is a
discourse annotation corpus created from 135
newswire and WSJ texts. We use the discourse
annotations to perform sentence delimiting. This
dataset is on the order of several thousand sen-
tences.

• Project Gutenberg

Project Gutenberg15 is an online repository of
texts with expired copyright. We downloaded the
top 100 most popular books from the 30 days
prior to February 26, 2018. We then ignored
books that have non-standard writing styles: po-
ems, plays, archaic texts, instructional books,
textbooks, and dictionaries. This collection totals
to 578,650 sentences.

• UIUC Question Classification

The UIUC Question Classification dataset (Li
and Roth, 2002) consists of questions from the
TREC question answering competition. It covers
a wide range of question structures on a wide
variety of topics, but focuses on factoid questions.
This dataset consists of 15,452 questions.

14https://tatoeba.org/eng/
15https://www.gutenberg.org

https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://tatoeba.org/eng/
https://www.gutenberg.org

196

Most of the dataset is annotated by random selec-
tion of a single or some contiguous sequence of
sentences by annotators. However, part of the an-
notated dataset comes from inference experiments
run by Kim et al. (2019) regarding questions, re-
quests, counterfactuals, and clause-taking verbs.
Therefore, the dataset has a bias towards having
these phenomena at a higher frequency than ex-
pected from a random selection of English text.

A key issue regarding the dataset is its diffi-
culty. We primarily quantify this with the AMR
parser baseline, the sequence-to-graph (STOG)
parser (Zhang et al., 2019a), in the main text, which
performs quite poorly on this dataset. Its perfor-
mance indicates that the patterns in this dataset
are too varied for a modern parsing model to learn
without built in ULF-specific biases. Although,
part of this is due to the size of the dataset, if the
dataset consisted only of short and highly-similar
sentences, we would expect a modern neural model,
such as the AMR baseline, to be able to learn suc-
cessful parsing strategy for it.

This reflects the design of the dataset construc-
tion. Although the dataset indeed includes many
short sentences, especially from the Tatoeba and
UIUC Question Classification datasets, the sen-
tences cover a wide range of styles and topics. The
Tatoeba dataset is built from a crowd-sourced trans-
lation community, so the sentences are not limited
in genre and style and has a bias toward sentences
that give people trouble when learning a second lan-
guage. We consider this to be valuable for a parsing
dataset since, while the sentences from Tatoeba are
usually short, they vary widely in topic and tend
to focus on tricky phenomena that give language-
learners—and likely parsers—trouble. Sentences
from the Discourse Graphbank (news text) and
Project Gutenberg (novels) further widen the scope
of genres and styles in the dataset. This should
make it difficult for a parsing model to overfit to
dataset distribution. The dataset also has a consid-
erable representation of longer sentences (∼10%
of the dataset is >20 words) including dozens of
sentences exceeding 40 words, reaching up to 128
words.

A.2 Annotation Interface & Interannotator
Agreement

We use the same annotation interface as Kim and
Schubert (2019), which includes (1) syntax and
bracket highlighting, (2) a sanity checker based on

the underlying type grammar, and (3) uncertainty
marking to trigger a review by a second annotator.
The complete English-to-ULF annotation guideline
is attached as a supplementary document.

Kim and Schubert (2019) reports interannotator
agreement (IA) of ULF annotations using this an-
notation procedure. In summary, they found that
agreement among sentences that are marked as cer-
tain are 0.79 on average and can be up-to 0.88 when
we filter for well-trained annotators. For compari-
son, AMR annotations have been reported to have
annotator vs consensus IA of 0.83 for newswire
text and 0.79 for webtext using the smatch met-
ric (Tsialos, 2015).

In order to mitigate the issue of low agreement
of some annotators in the IA study, each annotation
in our dataset was reviewed by a second annotator
and corrected if necessary. There was an open dis-
cussion among annotators to clear up uncertainty
and handle tricky cases during both the original
annotation and the reviewing process so the actual
dataset annotations are more consistent than the
test of IA agreement (which had completely inde-
pendent annotations) would suggest.

A.3 Dataset Splits

The data split is done by segmenting the dataset
into 10 sentence segments and distributing them
in a round-robin fashion, with the training set re-
ceiving eight chunks in each round. This splitting
method is designed to allow document-level topics
to distribute into splits while limiting any perfor-
mance inflation of the dev and test results that can
result when localized word-choice and grammati-
cal patterns are distributed into all splits.

The Tatoeba dataset further exacerbates the issue
of localized word-choice and grammatical patterns
since multiple sentences using the same phrase
or grammatical construction often appear back-to-
back. We suspect that this is because the Tatoeba
dataset is ordered chronologically and users often
submit multiple similar sentences in order to help
understand a particular phrase or grammatical pat-
tern in a language that they are learning.

B Full ULF Alignment Details

The ULF-English alignment system takes into ac-
count the similarity of the English word to the ULF
atom without the type extension, the similarity of
the type extension with the POS tag, and the rela-
tive distance of the word and symbol in question.

197

Given a sentence s = w1:n, which is tokenized,
t1:n, lemmatized, l1:n, and POS tagged, p1:n, a
set of symbols that are never aligned Su, and a
list of ULF atoms a1:m, which can be broken up
into the base stems, b1:m, and suffix extensions,
e1:m, in order of appearance in the formula (i.e.
DFS preorder traversal), the word/atom similarity
is defined using the following formulas.

Sim(w, a) = max(Olap(t, b),Olap(l, b))

+ 0.5 ∗ (Olap(p, e) + (1− |RL(w, n)− RL(a,m)|))

where token overlap, Olap, is defined as

Olap(x, y) =
2 ∗ |MaxSharedSubstr(x, y)|

|x|+ |y|

and relative location RL is defined as

RL(x, n) =
IndexOf(x)

n

Next, in order of Sim(w, a), we consider each
word-atom pair, (wi, ai), 1 ≤ i ≤ n until
Sim(w, a) < MinSim, where MinSim is set to 1.0,
based on cursory results. We further disregard any
alignments that include an atom which shouldn’t
be aligned (ai s.t. ai ∈ Su). We assume that
spans of words align to connected subgraphs, so
we cannot accept all word-atom pairs. An word-
atom pair, (wi, ai), is accepted into the set of token
alignments, At, if and only if the following condi-
tions are met:

1. wi has no alignments or ai is connected to an
atom, a′, that is already aligned to wi.

2. ai is not in any other alignment or wi is adja-
cent to another, w′ which is already aligned to
ai.

The token-level (word-atom) alignment, At, is
then converted to connected (span-subgraph) align-
ment, A. This is done with the following algorithm:

1. For every atom ai in one of the aligned pairs
ofAt, merge all of the words aligned to ai into
a single span, si. During the initial alignment,
we ensured that these words would form a
span.

2. Merge all overlapping spans into single spans
and collect the set of atoms that are aligned to
each of these spans into a subgraph.16 These
collected subgraphs will be connected because
we ensured that for any word the nodes that it
is aligned to forms a connected subgraph.

16This can be done inO(n logn) time by sorting the spans,
then doing a single pass of merging overlapping elements.

C RoBERTa Handling Details

Except for RoBERTa, all other embeddings are
fetched from their corresponding learned embed-
ding lookup tables. RoBERTa uses OpenAI GPT-
2 tokenizer for the input sequence and segments
words into subwords prior to generating embed-
dings, which means one input word may corre-
spond to multiple hidden states of RoBERTa. In
order to accurately use these hidden states to rep-
resent each word, we apply an average pooling
function to the outputs of RoBERTa according to
the alignments between the original and GPT-2
tokenized sequences.

D Full Tables

Tables of the full set of raw results and parame-
ters are presented in this section. Table 3 shows
the ablations on the model without decoding con-
straints. This is the basis of Figure 5 in the main
text. Table 4 shows the performance change with
the lexicon constraint and Table 5 shows the per-
formance change with the composition constraint.
These tables are the basis of Table 2 in the main
text. Our experiments with the lexicon constraint
were more extensive since the type constraint takes
considerably longer to run due to requiring a larger
beam size and more computational overhead. Ta-
ble 7 presents all of the model parameters in our
experiments.

E Parse Examples

Figure 6 shows six parse examples of our parser
and the GS parser in reference to the gold standard.
Generally, we find that our parser does much better
on node generation for nodes that correspond to an
input word. For example, the GS parser on example
1 uses (plur *s) for the word “speech” and iron.n
for the words “silver” and “silence”. This isn’t to
say that our parser doesn’t make mistakes. But the
mistakes are not as open-ended. For example, our
parser mistakenly annotates “silver” as a noun in
example 1 when in fact it should be an adjective
(compared against “golden”). The GS parser seems
to pick the closest word in its vocabulary, which
is generated from the training set and closed. This
leads to strange annotations like iron.n for the word
“silence”. If there is nothing close available, then
it can derail the entire parse. In example 4, the GS
parser is unable to find a node label for the word
“device” which derails the parse to generate (mod-n

198

Ablation SEMBLEU EL-SMATCH
F1 Precision Recall

Dev Test Dev Test Dev Test Dev Test
Full 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7
-RoBERTa 45.5± 2.4 47.2± 1.7 58.3± 1.4 59.3± 1.0 59.1± 1.6 60.5± 1.1 57.5± 1.2 58.3± 0.9
-CharCNN 46.4± 1.0 46.9± 0.7 58.8± 0.8 59.3± 0.4 59.4± 1.3 60.1± 0.5 58.1± 0.6 58.5± 0.5
-ef (C) Feats 47.0± 1.2 46.6± 1.2 58.6± 0.5 58.8± 1.1 60.4± 1.2 60.2± 1.1 56.9± 0.4 57.4± 1.2
-POS 43.8± 1.7 45.1± 1.2 56.9± 1.1 58.3± 1.1 56.8± 1.0 58.7± 1.1 56.9± 1.2 57.9± 1.2
-GloVe 43.2± 1.8 44.3± 1.2 56.6± 1.0 57.1± 0.9 56.9± 2.7 58.3± 2.2 56.4± 1.7 56.1± 2.2

Table 3: Ablation results without decoding constraints, mean and standard deviation of 5 runs.

Ablation SEMBLEU EL-SMATCH
F1 Precision Recall

Dev Test Dev Test Dev Test Dev Test
Full 47.3± 0.6 46.2± 0.3 56.3± 0.7 57.5± 0.8 60.2± 0.5 61.5± 1.2 52.9± 0.9 54.1± 1.5
∆x̄ -1.2 -2.3 +0.8 -4.9
-RoBERTa 46.6± 1.3 46.9± 0.6 56.1± 0.6 57.8± 0.4 60.0± 0.7 60.5± 0.9 52.6± 0.6 55.3± 0.5
-CharCNN 45.8± 2.3 45.5± 2.5 56.1± 1.4 56.9± 1.1 59.3± 2.4 59.6± 1.8 53.3± 1.1 54.5± 1.5
-ef (C) Feats 45.9± 1.5 45.6± 0.9 56.5± 0.6 57.0± 0.5 62.0± 0.8 61.4± 0.6 52.0± 1.1 53.3± 0.5
-POS 44.1± 2.0 44.5± 0.9 55.3± 0.2 56.6± 0.7 58.5± 2.2 60.4± 0.8 52.6± 2.3 53.2± 1.4
-GloVe 46.1± 1.1 45.4± 1.4 55.9± 0.9 57.0± 0.6 59.5± 1.5 60.3± 0.8 52.7± 1.0 54.0± 0.7

Table 4: Ablation results with the lexicon constraint, mean and standard deviation of 5 runs. ∆x̄ is the difference
in the mean score between the test set results of the model with the lexicon constraint and without, i.e. Table 3.
We only list this for the full model, but the pattern of higher precision but lower scores on other metrics generally
holds for the other variants as well.

Ablation SEMBLEU EL-SMATCH
F1 Precision Recall

Dev Test Dev Test Dev Test Dev Test
Full 38.3± 2.3 40.0± 1.4 54.2± 1.2 55.8± 1.2 57.6± 1.0 59.1± 1.2 51.1± 1.5 52.8± 1.4
∆x̄ -7.4 -4.0 -1.6 -6.2

Table 5: Ablation results with the type composition constraint, mean and standard deviation of 5 runs. ∆x̄ is the
difference in the mean score between the test set results of the model with the type constraint and without, i.e.
Table 3. We only ran the full model for this test because this constraint takes much longer to run.

Model Fragments/Sentence
α τ

Full 1.4 2.9
-CharCNN 1.1 3.5
-ef (C) Feats 1.4 3.9
-POS 1.5 3.2
x̄ 1.4 3.4

Table 6: Fragments per sentence on the test set decoding results for a subset of the ablated lexicon-constrained
models (Table 4). α is the original model and τ is with the type composition constraint.

199

(mod-n man.n) (mod-n man.n iron.n) mod-n mod-n)
for the text span “device is attached firmly to the
ceiling”.

This isn’t to say that the GS parser always per-
forms worse than our parser. When it comes
to words that are elided ({you}.pro in exam-
ple 4), nodes generated from multiple words
(had better.aux-s in example 3), or logical sym-
bols unassociated with a particular word (multi-
sent in example 6), the GS parser consistently per-
forms better than our parser. Our parser has no
special mechanism for these handling these cases
and prefers to avoid generating node labels without
an anchoring word.

A common mistake by our parser seems to be
nested reifiers, which is not possible in the EL type
system (e.g. (to (ka come.v)) in example 5 and (to
(ka (show.v ..))) in example 6). Other common
mistakes that could be fixed by type coherence
enforcement is mistakenly shifting a term into a
modifier (e.g. (adv-a (to ...)) in example 6). In the
EL type system only predicates can be shifted into
modifiers.

200

GloVe.840B.300d embeddings
dim 300
RoBERTa embeddings
source RoBERTa-Base
dim 768
POS tag embeddings
dim 100
Lemma embeddings
dim 100
CharCNN
num filters 100
ngram filter sizes [3]
Action embeddings
dim 100
Transition system feature embeddings
dim 25
Word encoder
hidden size 256
num layers 3
Symbol encoder
hidden size 128
num layers 2
Action decoder
hidden size 256
num layers 2
MLP decoder
hidden size 256
activation function ReLU
num layers 1
Optimizer
type ADAM
learning rate 0.001
max grad norm 5.0
dropout 0.33
num epochs 25
Beam size
without type composition filtering 3
with type composition filtering 10
Vocabulary
word encoder vocab size 9200
symbol encoder vocab size 7300
Batch size 32

Table 7: Default model parameters.

201

1. “Speech is silver but silence is golden.”

Gold: (((k speech.n) ((pres be.v) silver.a)) but.cc ((k silence.n) ((pres be.v) golden.a)))

Ours: (((k speech.n) ((pres be.v) silver.n)) (k silence.n) ((pres be.v) golden.a))

GS: (((k (plur *s)) ((pres be.v) (= (k iron.n)))) but.cc ((k iron.n) ((pres be.v) =)))

2. “You neglected to tell me to buy bread.”

Gold: (you.pro ((past neglect.v) (to (tell.v me.pro (to (buy.v (k bread.n)))))))

Ours: (you.pro ((past neglect.v) (adv-e (to (tell.v me.pro (to (buy.v (k bread.n)))))))

GS: (you.pro ((past fail.v) (to (tell.v me.pro {ref}.pro))))

3. “You’d better knuckle down to work.”

Gold: (you.pro ((pres had better.aux-s) (knuckle.v down.adv-a (to work.v))))

Ours: (you.pro ((pres would.aux-s) (knuckle.v down.a (adv-a (to.p work.v)))))

GS: (you.pro ((pres had better.aux-s) (go.v (to.p-arg (k work.n)) (adv-a (to.p (ka work.v))))))

4. “Make sure that the device is attached firmly to the ceiling.”

Gold: ({you}.pro ((pres make.v) sure.a
(that ((the.d device.n)

((pres (pasv attach.v)) firmly.adv-a (to.p-arg (the.d ceiling.n)))))))

Ours: (((pres make.v) sure.a that.pro (tht
((the.d device.n) ((pres be.v) (k (n+preds attach.v (to.p-arg ceiling.n))))))))

GS: (({you}.pro ((pres make.v) (sure.a
(that (the.d (mod-n (mod-n man.n) (mod-n man.n iron.n) mod-n mod-n)))))) !)

5. “Can’t I persuade you to come?”

Gold: (((pres can.aux-v) not i.pro (persuade.v you.pro (to come.v)) ?)

Ours: (sub ((pres can.aux-v) not i.pro (persuade.v you.pro (to (ka come.v)) ?)))

GS: (((pres can.aux-v) not i.pro (come.v (to come.v) you.pro)) ?)

6. “Look carefully. I’m going to show you how it’s done.”

Gold: (multi-sent (({you}.pro ((pres look.v) carefully.adv-a)) !)
(i.pro ((pres be-going-to.aux-v)

(show.v you.pro (ans-to (sub how.pq (it.pro ((pres (pasv do.v)) *h))))))))

Ours: (((pres look.v) carefully.adv-a)
(tht (i.pro ((pres be.v) (go.v

(adv-a (to (ka (show.v you.pro (sub how.pq (it.pro ((pres be.v) do.n))))))))))))

GS: (multi-sent (({you}.pro ((pres be.v) you.pro fine.a)) !)
(i.pro ((pres be.aux-v) (go.v (to (do.v you.pro *h))))))

Figure 6: Several parse examples comparing behavior of our parser with the stronger baseline, the GS parser. For
each example, the top is the gold parse, the center is our parser, and the bottom is the GS (Cai and Lam, 2020)
parser. Errors are written in red. If something from the gold parse is omitted, a red highlighted block marks the
location.

