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Abstract

This paper explores the topic of transporta-
bility, as a sub-area of generalisability. By
proposing the utilisation of metrics based on
well-established statistics, we are able to esti-
mate the change in performance of NLP mod-
els in new contexts. Defining a new mea-
sure for transportability may allow for bet-
ter estimation of NLP system performance in
new domains, and is crucial when assessing
the performance of NLP systems in new tasks
and domains. Through several instances of
increasing complexity, we demonstrate how
lightweight domain similarity measures can be
used as estimators for the transportability in
NLP applications. The proposed transportabil-
ity measures are evaluated in the context of
Named Entity Recognition and Natural Lan-
guage Inference tasks.

1 Introduction

The empirical evaluation of the quality of NLP
models under a specific task is a fundamental part
of the scientific method of the NLP community.
However, commonly, many proposed models are
found to perform well in the specific context in
which they are evaluated and state-of-the-art claims
are usually found not transportable to similar but
different settings. The current evaluation metrics
may only indicate which algorithm or setup per-
forms best: they are unable to estimate perfor-
mance in a new context, to demonstrate internal
validity, or to verify causality. To offset this, sta-
tistical significance testing is sometimes applied
in conjunction with performance measures (e.g.
F1-score, BLEU) to attempt to establish validity.
However, statistical significance testing has been
shown to be lacking. Dror et al. (2018) reviewed
NLP papers from ACL17 and TACL17 and found
that only a third of these papers use significance
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testing. Further, many papers did not specify the
type of test used, and some even employed an inap-
propriate statistical test.

Performance is measured in NLP tasks primarily
through F1 score or task-specific metrics such as
BLEU. The limited scope of these as performance
evaluation techniques has been shown to have is-
sues. Søgaard et al. (2014) highlights the data selec-
tion bias in NLP system performance. Gorman and
Bedrick (2019) show issues of using standard splits,
as opposed to random splits. We support their state-
ment that “practitioners who wish to firmly estab-
lish that a new system is truly state-of-the-art aug-
ment their evaluations with Bonferroni-corrected
random split hypothesis testing”. In an NLI task,
using SNLI and MultiNLI datasets with a set of
different models, it has been shown that permuta-
tions of training data leads to substantial changes
in performance (Schluter and Varab, 2018).

Further, the lack of transportability for NLP
tasks has been raised by specialists in applied do-
mains. For example, healthcare experts have ex-
pressed their frustration in the limitations of algo-
rithms built in research settings for practical ap-
plications (Demner-Fushman and Elhadad, 2016)
and the reduction of performance “outside of their
development frame” (Maddox and Matheny, 2015).
More generally, “machine learning researchers
have noted current systems lack the ability to rec-
ognize or react to new circumstances they have
not been specifically programmed or trained for”
(Pearl, 2019).

The advantages of “more transportable” ap-
proaches, such as BERT, in terms of their perfor-
mance in multiple different domains, is currently
not expressed (other than the prevalence of such
architectures across a range of state-of-the-art tasks
and domains). To support analysis and investiga-
tion into the insight that could be gained by ex-
amination of these properties, we suggest metrics
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and a method for measuring the transportability of
models to new domains. This has immediate rel-
evance for domain experts, wishing to implement
existing solutions on novel datasets, as well as for
NLP researchers wishing to assemble new dataset,
design new models, or evaluate approaches.

To support this, we propose feature gradient, and
show it to have promise as a way to gain lexical or
semantic insight into factors influencing the perfor-
mance of different architectures in new domains.
This differs from data complexity, being a compar-
ative measure between two datasets. We aim to
start a conversation about evaluation of systems in
a broader setting, and to encourage the creation and
utilisation of new datasets.

This paper focuses on the design and evaluation
of a lightweight transportability measure in the con-
text of the empirical evaluation of NLP models. A
further aim is to provide a category of measures
which can be used to estimate the stability of the
performance of a system across different domains.
An initial transportability measure is built by for-
malising properties of performance stability and
variation under a statistical framework. The pro-
posed model is evaluated in the context of Named
Entity Recognition tasks (NER) and Natural Lan-
guage Inference (NLI) tasks across different do-
mains.

Our contribution is to present a measure that eval-
uates the transportability and robustness of an NLP
model, to evaluate domain similarity measures to
understand and anticipate the transportability of an
NLP model, and to compare state of the art models
across different datasets for NER and NLI.

2 Relevant background and related work

2.1 Terminology

To quote Campbell and Stanley (2015), “External
validity asks the question of generalizability: To
what populations, settings, treatment variables, and
measurement variables can this effect be general-
ized?”. For Pearl and Bareinboim (2014), trans-
portability is how generalisable an experimentally
identified causal effect is to a new population where
only observational studies can be conducted. “How-
ever, there is an important difference, not often
distinguished, between what might be called the
potential (or generic) transferability of a study and
its actual (or specific) transferability to another pol-
icy or practice decision context at another time and
place.” (Walker et al., 2010)

Bareinboim and Pearl (2013) explore transfer of
causal information, culminating in an algorithm for
identifying transportable relations. Transportabil-
ity in this sense does not permit retraining in the
new population, and guides our choices in this pa-
per. Other definitions of transfer learning allow for
training of the model in the new context (Pan and
Yang, 2010), or highlight the distinction between
evidential knowledge and causal assumptions (Sin-
gleton et al., 2014).

2.2 Transportability: Models evaluated
across different datasets

Rezaeinia et al. (2019) consider improving trans-
portability by demonstrating word embeddings’ ac-
curacy degrades over different datasets, and pro-
pose an algorithmic method for improved word em-
beddings by using word2vec, adding gloVe when
missing, and filling any further missing values
with random entries. In a medical tagging task,
Ferrández et al. (2012) used different train/test
datasets, and compared precision and recall with
self-trained vs transported-trained, finding that
some tag-categories performed better than others.
They postulate that degradation differences were
due to the differing prevalence of entities in the
transported training data. Another term from this
domain is “portability”, in the sense that a model
could be successfully used with consideration of
implementation issues such as different data for-
mats and target NLP vocabularies (Carroll et al.,
2012). Blitzer et al. (2007) created a multi-domain
dataset for sentiment analysis, and propose a mea-
sure of domain similarity for sentiment analysis
based on the distance between the probability dis-
tributions in terms of characteristic functions of
linear classifiers.

In image processing, domain transfer is an active
area of research. Pan et al. (2010) propose transfer
component analysis as a method to learn subspaces
which have similar data properties and data distribu-
tions in different domains. They state that domain
adaptation is “a special setting of transfer learning
which aims at transferring shared knowledge across
different but related tasks or domains”. In com-
puter vision, Peng et al. (2019) combine multiple
datasets into a larger dataset DomainNet, and con-
sider multi-source domain adaptation, formalising
for binary classification. They demonstrate multi-
source training improves model accuracy, and pub-
lish baselines for state of the art methods.
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2.3 Generalisability
The language used in literature is not consistent.
Bareinboim and Pearl (2013) highlights that gen-
eralisability goes under different “rubrics” such as
external validity, meta-analysis, overgeneralisation,
quasi-experiments and heterogeneity.

Boulenger et al. (2005) disambiguate terms in
the context of healthcare economics (such as gen-
eralisability, external validity, and transferability),
and created a self-reporting checklist to attempt to
quantify transferability. They define generalisabil-
ity as “the degree to which the results of a study
hold true in other settings”, and “the data, methods
and results of a given study are transferable if (a)
potential users can assess their applicability to their
setting and (b) they are applicable to that setting”.
They advocate a user-centric view of transferabil-
ity, considering specific usability aspects such as
explicit currency conversion rates.

Antonanzas et al. (2009) create a transferability
index at general, specific and global levels. Their
“general index” is comprised of “critical factors”,
which utilise Boulenger et al.’s factors, adding sub-
jective dimensions.

3 Transportability in NLP

3.1 Definitions
To support a rigorous discussion, notational con-
ventions are introduced. Extending the choices of
Pearl and Bareinboim (2011), we denote a domain
D with population Π, governed by feature proba-
bility distribution P , which is data taken from a
particular domain. We denote the source with a 0
subscript.

Definition 1. Generalisability: A system Ψ has
performance p for solving task T0 in domain D0.
Generalisability is how the system Ψ performs for
solving task Ti in domain Dj , relative to the origi-
nal task, without retraining.

Special cases, such as transportability or trans-
ference, have some i, j = 0 in the definition above.

Definition 2. Transportability: A system Ψ has
performance p for solving task T0 in domain D0.
Transportability is the performance of system Ψ for
solving task T0 in a new domain Di, relative to the
original task, without retraining.

Across multiple Di, we have relative perfor-
mance τp(D0,Di), from which we can estab-
lish statistical measures for transportability perfor-
mance and variation.

Source data Π0

Target Contexts DiSource Context D0

Samples

. . .

Performance

Variation τvar

Transportability

Performance τp

Internal

Validity

Target

data Π1

Target

data Π2

Target

data Πn

Figure 1: Schematic representation of the definitions

Transfer learning is a specific way of achieving
transportability (between populations or domains)
or generalisability (including between tasks). Sin-
gleton et al. (2014) state that “transport encom-
passes transfer learning in attempting to use statis-
tical evidence from a source on a target, but dif-
fers by incorporating causal assumptions derived
from a combination of empirical source data and
outside domain knowledge.”. Note that this is dif-
ferent to generalisation in the Machine Learning
sense, which is akin to internal validity (Marsland,
2011). Figure 1 shows the definitions associated
with transportability discussed in this paper.

Table 1 summarises terminology, of how the
target differs from source (Ψ0, T0,D0(Π0)).

Term Ψ T D Π

Cross-validation 0 0 0 i
New modeling i 0 0 0
Transportability 0 0 i i
Transferability 0 0,i i i
Generalisability 0 0,i 0,i 0,i

Table 1: Terminology through variation from a source.
Table body is subscripts.

Chance, bias and confounding are the three
broad categories of “threat to validity”. Broadly,
chance and bias can be assessed by cross-validity,
as it applies a model to the same task in the same
domain on different data population. Confounding,
error in interpretation of what is being measured,
is more difficult to assess. Transportability is con-
cerned with the transfer of learned information,
with particular advances in the transport of causal
knowledge.

Generalisability is the catch-all term for how ex-
ternally valid a result or model is. Any combination
of task, domain and data can be used.
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3.2 Transportability performance

We define transportability performance τp as the
gradient of the change in the performance metric’s
score from one domain to another. This measure
does not take into account the underlying proba-
bility distributions, only the change in resulting
performance measure.

τp(D0,Di) =
p(Ψ, T,Di)
p(Ψ, T,D0)

(1)

The measure uses a ratio in order to allow compari-
son between different systems. To generalise this
measure across different settings, we can take an
average to give Equation 2. Note that this is the
average percentage change in performance, not an
aggregated performance measure.

τp(D0) =
1

n

n∑
i=1

p(Ψ, T,Di)
p(Ψ, T,D0)

(2)

An analogous definition holds for different tasks
over the same domain, τp(T ).

3.3 Performance variation

Performance variation reflects how stable perfor-
mance is across different contexts and can include,
for example, to what extent the sampling method
from the source data effects the performance metric
of the algorithm. Part of this is data representative-
ness, the extent to which the source data represen-
tation also represents the target data.

More formally, performance variation
τs(Ψ, T,D) is the change in performance of
(Ψ, T,D) across different contexts. This is useful
in order to gain specific insight into external
validity and generalisability. Indeed, we can assess
the change in performance between source context
D0 and target context Di. The source context has a
privileged position, in that it is this space which
the “learning” takes place, and the proposed metric
for performance variation to multiple different
domains is based on τp to reflect this. Through
repeated measurement in different contexts, we
can go further.

Definition 3. Performance Variation: For a model
trained on domain D0 and applied on n new do-
mains Di, we define the performance variation as
the coefficient of variation of performance across

this set of domains so that:

τvar(D0) =

(
1+

1

4n

)√∑n
i=1(τp(D0,Di)−τp(D0))2

n−1

τp(D0)
(3)

The 1 + 1
4n term corrects for bias. In order to

be meaningful, the target contexts must to have a
good coverage of different domains. Enumerating
these would be a task of ontological proportions,
but can be pragmatically approximated by using
the available Gold Standard datasets.

We can also assess ability to generalise not just
over different domains, but also different tasks,
provided they can be meaningfully assessed by
the same performance measure. We can consider
n different domain-task combinations, and with
τp =

∑n
i,j=0 τp(Ψ, Ti,Dj)/n, this gives a more

general form for Equation 3, with n large:

τvar =

√∑
i>0,j>0(τp(Ψ,Ti,Dj)−τp)2

n−1

τp
(4)

In the case where different tasks cannot be assessed
by the same measure, we are still able to compare
different systems by looking at how the respective
measures change.

3.3.1 Performance variation properties
For a purely random system, the transportability
should be related to how similar the distributions
of “answers” in the test dataset are. A random sys-
tem should really be transportable by our measures.
Similarly, we can consider trivial systems, such as
identity and constant functions, which are neces-
sarily entirely transportable. That is, for a system
that is an identity function Ψ = I , τp = f(P ), and
τvar(I, T,Di) = τvar(I, T,Dj) = 0, ∀i, j. Note
that we would not expect the same performance of
these functions on different tasks.

A stable system will have τvar(Ψ, T,D0) ≈
τvar(Ψ, T,Di)∀i, reflecting that it is resilient to
the domain on which it is trained.

3.3.2 Factors influencing performance
variation

Through repeated measurement, we can quantify
how F1-score changes with respect to different
measures A (e.g. dataset complexity), ∂F1

∂A , with
other properties held constant.

NLP system performance is dependent on A.
This list may include gold standard feature distribu-
tion (in terms of representativeness of the semantic
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or linguistic phenomena), and task difficulty or sen-
sitivity.

Users of NLP systems would benefit from be-
ing able to estimate the performance of an existing
NLP system on a new domain, without performing
the full implementation. Important for the perfor-
mance of an NLP system, especially for few or zero
shot learning, is having a common set of features
(or phenomena) across domains. We proceed to
propose three measures of increasing complexity,
in order to attempt to understand how “similar” two
domains are.

Lexical feature difference: A measure
grounded on lexical features (i.e. bag of words).
The intuition behind this measure is for treating
the set of lexical features as a representation.
Linguistic space is observed as materialised tokens,
which in turn are in some higher-dimensional
semantic space, which enable interpretation. The
measure considers the overlap of these linguistic
spaces, and indeed the extent to which the
linguistic space is covered by the data. Due to the
simplicity of this measure, correlation between this
and actual transportability performance is likely to
be weaker than other measures but is simpler to
calculate.

Lexical Feature Difference = 1−|Di ∩ D0|
|Di|

, i > 0

(5)
Where |Di| is the number of features in the target
domainDi, and |Di∩D0| is the number of features
overlapping. This measure is then the proportion
of unseen features in the new dataset. If all features
of Di are found in D0, then the feature difference
is 0. If no features of Di are found in D0, then the
feature difference is 1. The feature overlap is task
specific, and therefore appropriate to consider for
transportability, but not generalisability.

In the simplest case, the transported performance
of a bag of words model should be precisely the
lexical feature difference combined with distribu-
tions of the source and target domains. The feature
set can range from binary lexical features to latent
vector spaces. For different models, which target
different aspects of semantic phenomena, different
semantic and syntactic features will matter more.
For this reason, considering a set of measures for
domain complexity is warranted. In the context
of this work, two measures are used over more
complex feature spaces.

NER:

CoNNL-2003

NLI:
SNLI

MultiNLI

SciTail

Stanford NER

SpaCy v2

ELMo

BERT

Figure 2: Overview of the experiments undertaken, in-
dicating the models being applied to each dataset

Cosine distance: Specifically, we use Doc2Vec
(Le and Mikolov, 2014) to embed the documents
from each domain in a 300-dimensional feature-
vector space, normalise, and calculate cosine dis-
tance to compare source and target domains.

Kullback–Leibler divergence: Considering
each domain as a distribution of features, we can
use relative entropy to understand the difference
between the source and target domains. Similar
to cosine distance, we convert the corpus to a
vector using Doc2Vec and normalize. We treat
these values as discrete probability distributions to
calculate the KL divergence.

The usefulness of any of these domain similarity
measures depends on the semantic phenomena and
supporting corpora underlying the system, for ex-
ample if the system requires a large training dataset,
it may be more appropriate to use a measure which
considers the underlying probability distributions
in each feature. In this case, we can restrict to
the case of the same task in order to keep the es-
sential features reasonably consistent across do-
mains. This makes this a measure of transportabil-
ity (rather than generalisability).

There are additional dimensions of transportabil-
ity potentially worthy of further investigation and
quantification: (i) domain similarity (e.g. missing
features), (ii) data efficiency (redundant/repeated
features), (iii) data preparation (initial setup and for-
matting) and (iv) data manipulation required (data
pipeline).

4 Experiments

4.1 Setup

The experiments aim to evaluate the consistency
of the proposed transportability measures in the
context of two standard tasks: named entity recog-
nition and natural language inference. For repro-
ducibility purposes the code and supporting data
are available online1.

We calculated the F1 score of multiple models on

1https://github.com/ai-systems/
transportability

https://github.com/ai-systems/transportability
https://github.com/ai-systems/transportability
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Dataset Model

Stanford SpaCy ELMo

CoNLL-
2003

Train 98.69 99.32 99.97
Dev 93.22 81.56 98.17
Test 88.78 88.11 93.79

Wiki 66.31 52.14 79.4

WNUT
Train 51.63 27.03 36.3
Dev 53.59 32.23 48.8
Test 47.11 26.28 58.1

Table 2: NER F1 scores for different models trained on
CoNLL dataset transported across different corpora

multiple datasets (Figure 2). Note that in general
the applicability of the proposed transportability
measures are not limited to the use of F1 score, but
this is simpler as the same measure applies for both
tasks. All models and datasets are standard. For
NER, the datasets were chosen as they have the
consistent tags: Location, Person and Organisation.
Stanford NER (Finkel et al., 2005) is a CRF classi-
fier, SpaCy v2 is a CNN, ELMo (Peters et al., 2018)
is a vector embedding model which outperforms
GloVe and word2vec. Each of the three models
used are trained on the CoNLL-2003 dataset (Sang
and De Meulder, 2003). We evaluated these models
on CoNLL-2003, Wikipedia NER (Ghaddar and
Langlais, 2017) (Wiki) and WNUT datasets (Bald-
win et al., 2015) for NER in twitter microposts.

For NLI, we chose to use standard datasets.
SNLI (Bowman et al., 2015) is well established
with a limited range of NLI statements, MultiNLI
(Williams et al., 2018) is multigenre with a more di-
verse range of texts, and SciTail (Khot et al., 2018)
is based on scientific exam questions. We applied
BERT (Devlin et al., 2018), a state of the art em-
bedding model, to these datasets.

4.2 Results

NER: Table 2 shows results for the NER task,
trained on CoNLL. Unsurprisingly, all models per-
formed better when the target was in the CoNLL do-
main. The reduced performance on Wiki was more
extreme than expected, particularly for ELMo,
which was expected to be resilient to domain
change (i.e. transportable). Table 6 and Table 4
illustrate the transportability and domain similarity
scores for different NER models respectively.

NLI: Table 3 shows results for the NLI task, us-
ing BERT. We find that, despite the vast training
data, BERT’s performance is substantially higher
when it has been trained on data from that domain.
BERT trained on SciTail performs poorly when
transported to SNLI or MultiNLI. Table 7 and Ta-
ble 5 illustrates the transportability and domain
similarity scores for different NLI corpora.

4.3 Analysis

Every model had τp � 1, meaning they performed
worse on the new domain. This is as expected,
though this would not be true in general.

NER: Examining the F1 scores (88.11 vs. 88.78)
of SpaCy and Stanford they appear almost compa-
rable. However, the latter transports much more ef-
fectively, with τp score difference (0.671 Vs 0.524
when transporting to Wiki) (refer Table 6).

ELMo is one of the state of the art approaches
for NER, as evidenced by the high F1 scores for the
source corpus. However, Stanford NER transports
equally well, and when transported outperforms
ELMo for twitter domain. While the absolute F1
score difference between them is 5, the τp scores
are almost identical, with a difference of 0.003.
In terms of transportability, it is notable that an
approach that employs CRF tagger with linguistic
features outperforms significantly the CNN-based
SpaCy approach and stands in comparison to a
computationally expensive model like ELMo.

Stanford NER also has the lowest τvar. This
indicates this to be the most robust model out of
the three. This conclusion was facilitated by the τp
and τvar measures.

NER for English is assumed to be an accom-
plished task as supported by the traditional F1
scores. By using τp we argue that there is a need
for more robust models, with better transportability
performance.

Figure 3a and Figure 3b illustrates the decrease
in F1 scores as cosine distance and KL divergence
increase. A simple 3 parameter non-linear regres-
sion model on KL Divergence and Cosine distance
is able to predict the F1 score with an mean error of
3.33 and 2.66 respectively. Considering the lexical
difference has similar results (Table 4). This im-
plies that by using these measures we may be able
to anticipate the accuracy of a model in a new do-
main based on easy to compute domain similarity,
which is straightforward to compute.
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Source Dataset
Target Dataset

SNLI Dataset MultiNLI Dataset SciTail Dataset

Train Dev Test Train Dev Train Dev Test

SNLI (Train) 96.81 90.83 90.40 72.51 72.29 54.04 61.34 52.72
Multi NLI (Train) 77.13 79.05 79.31 97.78 83.50 66.52 67.79 67.26
SciTail (Train) 42.68 44.36 44.20 47.49 44.49 99.88 94.78 93.08

Table 3: NLI accuracy scores for BERT model trained on one dataset transported to a different dataset

0 2 4 6 8 10 12 14 16
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20

40
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Cosine Distance ×10−2

F1
Sc
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e

ELMo NER
Stanford NER
SpaCy NER

(a) NER F1 scores Vs Doc2Vec cosine distance
from training (CoNLL) corpus

0 0.5 1 1.5 2 2.5
0
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100

KL Divergence
F1

Sc
or

e

ELMo NER
Stanford NER
SpaCy NER

(b) NER F1 scores Vs KL Divergence from
training (CoNLL) corpus

Figure 3: NER F1 score plotted against different measures of corpus similarity

Dataset Lexical Cosine KL
Diver-
gence

CoNLL
Train 0.000 0.000 0.000
Dev 0.121 0.001 0.345
Test 0.197 0.003 0.463

Wiki 0.290 0.007 0.701

WNUT
Train 0.421 0.134 2.129
Dev 0.511 0.167 1.473
Test 0.481 0.130 1.137

Table 4: Domain similarity scores between the training
corpus (CoNLL-2003) across other NER datasets

NLI: Applying BERT to different domains was
not as resilient to domain transport as we expected.
The average τp is 0.612 over transported domains,
despite these being standard corpora from the do-
mains. We found MultiNLI(Train) to be more trans-
portable than the others, since its performance in
new domains is not much worse than new data
from the same domain. This is as expected, since
MultiNLI has been built to have good domain cov-
erage. Specifically, MultiNLI has τp = 0.744 and
τvar = 8.582, whilst SNLI has τp = 0.646 and
τvar = 15.22 and SciTail has τp = 0.446 and

τvar = 3.921. SciTail transports poorly, and does
so reliably! SNLI transports in between, but vari-
ably, being quite “hit or miss” with different sam-
ples of SciTail. These results suggest a threshold
for τp of perhaps 0.8 as being “appropriate” for
transportability performance. A threshold for τvar
is more difficult to establish and would benefit from
further investigation. Clearly, these measures de-
pend on the domains chosen.

As with NER, we found lexical difference in-
dicative of transported performance, and that for
NLI, accuracy scores decrease with increasing lexi-
cal difference, cosine distance and KL divergence
(Tables 3 and 5, and Figures 4a and 4b). A sim-
ple 3 parameter non-linear regression model on KL
Divergence and Cosine distance is able to predict
the accuracy score with an mean error of 3.98 and
1.95 respectively.

4.4 Discussion

τp and τvar as complementary to traditional
measures. We are not breaking new ground in
terms of evaluation methodology, but the experi-
ments demonstrate that traditional F1 and accuracy
measures do not capture a complete picture. Trans-
portability measure are not only simple enough to
calculate and convey but also evaluates a model
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Dataset Measurement
SNLI MultiNLI SciTail

Train Dev Test Train Dev Train Dev Test

SNLI (Train)
Lexical 0.000 0.003 0.003 0.086 0.088 0.136 0.115 0.119
Cosine 0.000 0.002 0.002 0.008 0.007 0.233 0.242 0.242
KL Divergence 0.000 3.277 4.283 6.489 8.982 16.02 17.50 18.20

MultiNLI
(Train)

Lexical 0.008 0.008 0.008 0.000 0.008 0.063 0.063 0.047
Cosine 0.008 0.018 0.016 0.000 0.002 0.298 0.307 0.306
KL Divergence 11.07 7.613 6.333 0.000 3.342 33.10 35.27 34.69

SciTail
(Train)

Lexical 0.282 0.282 0.282 0.277 0.278 0.000 0.028 0.025
Cosine 0.233 0.230 0.231 0.262 0.298 0.000 0.001 0.002
KL Divergence 11.17 7.04 7.492 5.220 6.682 0.000 1.097 1.424

Table 5: Domain similarity scores between the source training corpus and target corpora
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(a) NLI accuracy Vs Doc2Vec cosine distance from
source corpus

0 10 20 30
0

20

40

60

80

100

KL Divergence

A
cc

ur
ac

y

SNLI
MultiNLI

SciTail

(b) NLI accuracy Vs Lexical Divergence from
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Figure 4: NLI accuracy score plotted against different measures of corpus similarity

Stanford SpaCy ELMo

τp(wiki) 0.671 0.524 0.794
τp(wnut) 0.514 0.287 0.477
τp(wnut & wiki) 0.553 0.346 0.556

τvar 15.051 35.171 32.666

Table 6: Transportability measures for NER models

with regards to generalisability and robustness.

Low cost ways of anticipating performance for
a new task or domain. Most of the state of the
art models are computationally expensive. With the
transportability and domain similarity measures we
are able to predict performance in a new domain
with reasonable accuracy. These similarity mea-
sures are relatively simpler to run.

5 Conclusion

We have presented a model of transportability for
NLP tasks, together with metrics to allow for the

SNLI MultiNLI SciTail

τp 0.646 0.744 0.446
τvar 15.22 8.582 3.921

Table 7: Transportability measures for NLI corpora

quantification in the change in performance. We
have shown that the proposed transportability mea-
sure allows for direct comparison of NLP systems’
performance in new contexts. Further, we demon-
strated domain similiarity as a measure to model
corpus and domain complexity, and predict NLP
system performance in unseen domains. This pa-
per lays the foundations for further work in more
complex transportability measures and estimation
of NLP system performance in new contexts.
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