
Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 103–109
November 10, 2021. ©2021 Association for Computational Linguistics

ISBN 978-1-954085-93-0

103

An Investigation into the Contribution of Locally Aggregated Descriptors
to Figurative Language Identification

Sina Mahdipour Saravani♠ Ritwik Banerjee♣ Indrakshi Ray♠

♠Department of Computer Science, Colorado State University
{sinamps, indrakshi.ray}@colostate.edu

♣Department of Computer Science, Stony Brook University
rbanerjee@cs.stonybrook.edu

Abstract

In natural language understanding, topics that
touch upon figurative language and pragmat-
ics are notably difficult. We probe a novel
use of locally aggregated descriptors – specifi-
cally, an architecture called NeXtVLAD – mo-
tivated by its accomplishments in computer
vision, achieve tremendous success in the
FigLang2020 sarcasm detection task. The re-
ported F1 score of 93.1% is 14% higher than
the next best result. We specifically investi-
gate the extent to which the novel architecture
is responsible for this boost, and find that it
does not provide statistically significant ben-
efits. Deep learning approaches are expen-
sive, and we hope our insights highlighting the
lack of benefits from introducing a resource-
intensive component will aid future research
to distill the effective elements from long and
complex pipelines, thereby providing a boost
to the wider research community.

1 Introduction

Natural language understanding often goes beyond
the syntactic and semantic layers, and perhaps
nowhere is this more palpable than in the use of
figurative language. A better understanding of fig-
urative language use, such as metaphors, irony, or
sarcasm, can not only lead to advances in compu-
tational creativity (Veale, 2011; Kuznetsova et al.,
2013), but also in understanding social media con-
tent, where users often employ such pragmatic
tools as irony or sarcasm (Reyes et al., 2013; Riloff
et al., 2013). This type of figurative language is
difficult to identify, however, at least partly due to
what the influential literary poet and critic William
Empson called “ambiguities” (Empson, 1947) in
the language. In particular, figurative language use
with sarcasm or irony completely decouples – and
even contrasts – the communicator’s intent from the
communicated content (Camp, 2012), rendering
shallow syntactic or semantic features unsuitable.
The poor fit of such features is further exacerbated

in social media posts due to the ubiquity of gram-
matical errors, hashtags, emojis, etc.

The deeper, context-dependent inferential nature
of figurative language, together with the poor fit
of shallow syntactic and semantic features, makes
deep neural networks a natural candidate for down-
stream NLP tasks like sarcasm detection (Ghosh
and Veale, 2016). Unfortunately, with increas-
ing popularity of deep learning, the reliability of
findings in publications that extensively employ
deep learning can be expected, in general, to de-
crease (Pfeiffer and Hoffmann, 2009). In light of
this seminal empirical observation and the general
difficulty of accurately identifying figurative lan-
guage, it is reasonable to not expect outright suc-
cess on a benchmark corpus simply based on the
use of a deep network.

The concerns about reliability, and thus, about
reproducibility, are particularly acute in deep learn-
ing. For instance, Reimers and Gurevych (2017)
demonstrated that the hyperparameter settings have
a significant impact on the final results obtained by
a model. Crane (2018) further showed that other
confounding factors such as variation of GPUs, the
exact version of a framework, the randomness of
a seed value provided to a learning algorithm, and
the interaction between multiple such factors, can
all impact the obtained results.

Beyond reproducibility, however, lies another
pertinent factor: the use of increasingly complex
pipelines where multiple sophisticated components
are glued together for an important downstream
NLP task. In such scenarios, it is not always clear
which components within the complex system may
be responsible for improved outcomes. A sim-
ple change in data preprocessing may lead to a
significant difference in the final result, for exam-
ple (Etaiwi and Naymat, 2017; Camacho-Collados
and Pilehvar, 2018). In publications that introduce
complex NLP pipelines, however, such details have
sometimes been omitted.

mailto:sinamps@colostate.edu
mailto:indrakshi.ray@colostate.edu
mailto:rbanerjee@cs.stonybrook.edu


104

Turn Tweet Label

Context-1 The [govt] just confiscated a
$180 million boat shipment of
cocaine from drug traffickers.

SarcasticContext-2 People think 5 tonnes is not a
load of cocaine.

Response Man! I’ve seen more than that
on a Friday night.

Table 1: A Tweet thread in the FigLang corpus. Sar-
casm being context-dependent, the entire thread serves
as a single sample. The label is based on the final re-
sponse in the thread.

2 Exemplar task and data

Within the limited scope of this paper, our goal is to
specifically investigate the state-of-the-art sarcasm
detection system presented by Lee et al. (2020) –
which reported an F1 score of 93.1%, 14% higher
than the next best result reported to the FigLang
2020 workshop (Ghosh et al., 2020) for the Twitter
track – and to distill a novel deep learning compo-
nent used in their pipeline in order to investigate
its contribution to the final result. Through a com-
prehensive series of experiments, we find that this
novel architecture (discussed in Sections 3 and 4)
does not lead to any significant improvement. The
improvement may thus be attributed to components
other than deep learning, such as augmenting the
corpus by using additional data. Investigating the
other components, however, is not in the scope of
the work being presented here.

The task is to determine if the final response in
a thread (i.e., a sequence of Tweets where each
post is in response to its previous post) is sarcastic.
One such thread is shown in Table 1. All our ex-
periments are conducted on the Twitter corpus of
the FigLang 2020 sarcasm detection task (Ghosh
et al., 2020), which comprises 5, 000 threads in the
training set and 1, 800 in the test set. Additional
properties of this corpus are shown in Table 2.

3 Background

The architecture we investigate has recently been
used in downstream NLP tasks, motivated by its
success in computer vision. Its origins, however,
can be traced back to NLP research, when Sivic
and Zisserman (2003) borrowed from the bag-of-
words approach used in text retrieval. Since then, a
significant body of work in computer vision has de-
veloped this approach further. The core idea being

Variable Dataset Mean Median Std

Tweet length
(num. tokens)

Train 140.00 128.00 51.57
Validation 137.00 125.00 51.17
Test 143.00 138.00 48.56

Thread length
(num. tweets)

Train 4.85 4.00 3.20
Validation 4.93 4.00 3.29
Test 4.16 3.00 1.95

Table 2: Overview of the FigLang corpus, showing the
overall statistics for the size of individual Tweets (using
the BERT tokenizer) and the size of Tweet threads.

the treatment of an image as a document, and low-
dimensional features1 extracted from them forming
the visual vocabulary, thus enabling a vector rep-
resentation of each image, subsequently used in
classification or ranking tasks.

A key advancement came in the form of Vector
of Locally Aggregated Descriptors (VLAD), intro-
duced by Jégou et al. (2010). In this work, too,
low-dimensional features were extracted from im-
ages, but K clusters of the features were created,
and only the difference of each feature from the
cluster center was recorded. Instead of a single
N -dimensional feature vector, each image would
thus be represented by a K ×N matrix.

The non-differentiable hard cluster assignment,
however, renders it unsuitable for training a neural
network. NetVLAD (Arandjelovic et al., 2016) re-
solves this by using the softmax function, whose
parameters can be learned during training. Since
the cluster assignments of a feature are not known
prior to training, their approach requires K N -
dimensional difference vectors to encode each fea-
ture. This increase in the number of parameters
impedes model optimization, and may lead to over-
fitting – drawbacks discussed and subsequently ad-
dressed by NeXtVLAD (Lin et al., 2018) by intro-
ducing a step prior to the soft cluster assignments.
In this step, the input is expanded to λN size by a
fully-connected layer, and then decomposed into
G groups of lower-dimensional vectors. Further,
a sigmoid function with range [0, 1] is used to as-
sign attention scores to the groups for each vector.
The process effectively provides a G

λ reduction in
the number of parameters, by aggregating lower-
dimensional vectors. From a linear algebra perspec-
tive, this can be interpreted as representing the data
using subspace projections of the original vector.

1The literature on image processing often uses the term
“descriptor”, but to stay in tune with the terminology in NLP
research, we continue to use the term “feature”.



105

G x K x 1

...

C
on

te
xt

 1

E M
E 3

E 2
E 1

. .
 .

T M
T 3

T 2
T 1

. .
 .

Tr

Tr

Tr

Tr

Tr

Tr

Tr

Tr

LSTM

LSTM

LSTM

LSTM

. .
 .

LSTM

LSTM

LSTM

LSTM

. .
 .

H
M

H
3

H
2

H
1

. .
 .

Cluster Centroids

Fully Connected
for Assignment

...

VLAD Vectors

. .
 .

. .
 .

...

Th
re

ad
 R

ep
re

se
nt

at
io

n

Fully
Connected

BERT BiLSTM NeXtVLAD ClassifierInput

M
 x

 N

M
 x

 N

G
 x

 K
 x

 λ
N

/G

K x λN/G

G x 1 x λN/G G x K x λN/G

K 
x 

λN
/G

1 
x 

Kλ
N

/G

1 
x 

Kλ
N

/G

Reshape and
Expansion (Fully

Connected)

Fully Connected
for Attention

G x 1

C
on

te
xt

 2
R

es
po

ns
e

SEP

SEP

. .
 .

1 x N

Figure 1: The architecture for sarcasm detection, where M is the number of tokens from the input text, N is the
dimension of the BERT representation, and G is the number of groups into which the input is split after expansion.

4 Architecture for sarcasm detection

For an analogous use of NeXtVLAD in NLP, the to-
ken representation vectors take the place of the fea-
ture vectors used in computer vision literature. In
particular, for sarcasm detection using the FigLang
corpus, one entire thread needs to be represented by
aK×N matrix. To achieve this, the context and re-
sponse Tweets (as shown in Table 1) from a single
thread are concatenated, with a special [SEP] token
separating them. This token is known to BERT,
and used in its next sentence prediction task. Here,
the token is used to separate different posts within
a thread. After concatenation, the pretrained BERT
model is used to obtain a vector representation of
each token. Then, it is passed through a BiLSTM
layer before being fed to the NeXtVLAD compo-
nent. At this point, NeXtVLAD, as a parametric in-
telligent pooling and aggregation layer, represents
the whole Tweet thread as aK×N matrix, which is
finally flattened and fed to two dense layers with a
softmax function to assign the predicted label. This
architecture, based on the explanation provided by
Lee et al. (2020), is presented in Figure 1.

Consider M input tokens, each represented by a
vector of size N produced by the language model
and further tuned by the BiLSTM layer (e.g., N =
1024 for BERTLarge). We denote these tokens by
xt, t ∈ {1, ...,M}. Each xt is expanded to ẋt
with shape (1, λN) and reshaped to x̃t with shape
(G, 1, λNG ). Then, the (1) soft assignment of x̃gt to
the cluster k, and (2) the attention over groups, are
computed as

αgk(ẋt) =
ew

T
gkẋt+bgk∑K

s=1 e
wT

gkẋt+bgk
(1)

and αg(ẋt) = σ(wTg ẋt + bg). (2)

The locally aggregated feature vectors (i.e., the
VLAD vectors) are generated by computing the
product of the attention, assignment, and the differ-
ence from the cluster center

vgtki = αg(ẋt)αgk(ẋt)(x̃
g
ti − cki).

Finally, the entire thread is represented by

rki =
∑
t,g

vgtki.

In the above equations, t, g, k, and i iterate over
tokens, groups, clusters, and vector elements re-
spectively, while w and b denote the weight and
bias parameters of the linear transformations in the
fully-connected layers.

5 Experiments and Results

We delve into several modifications of the model,
as well as various hyperparameter settings, in or-
der to investigate how much effect the NeXtVLAD
component has on the sarcasm detection task. Our
experiments initially use the same training configu-
ration as Lee et al. (2020), before exploring further.

Since Lee et al. (2020) employ additional un-
published data, an exact reproduction of the experi-
ments is not possible. Moreover, the partition of the
corpus into training and validation set is left unspec-
ified. Thus, their results reported on the validation
set are not truly comparable. Some hyperparame-
ter settings, like the number of epochs for training,
are also omitted from their report. However, the
primary aim of this work is not to focus on repro-
duction of the results, but to determine what role
the NeXtVLAD component played in the excellent
final F1 score of 93.1%.



106

Validation set results Test set results

Model Precision Recall F-1 Accuracy Precision Recall F-1 Accuracy

BERTLarge-Cased 0.75 0.84 0.80 0.79 0.71 0.78 0.74 0.73
BERTLarge-Cased + BiLSTM + NeXtVLAD 0.74 0.84 0.79 0.78 0.71 0.77 0.74 0.72
BERTLarge-Cased + NeXtVLAD 0.71 0.82 0.76 0.74 0.69 0.77 0.73 0.71
BERTLarge-Cased + BiLSTM 0.76 0.82 0.79 0.79 0.71 0.74 0.72 0.72
BERTLarge-Cased + KimCNN + NeXtVLAD 0.74 0.84 0.79 0.78 0.72 0.82 0.77 0.75
BERTLarge-Cased + OurCNN + NeXtVLAD 0.77 0.71 0.74 0.76 0.69 0.79 0.74 0.72

CTBERTv2 0.76 0.83 0.80 0.79 0.72 0.76 0.74 0.73
CTBERTv2 + BiLSTM + NeXtVLAD 0.72 0.85 0.78 0.77 0.71 0.79 0.75 0.73

BERTLarge-Cased (DE) 0.81 0.85 0.83 0.82 0.72 0.73 0.73 0.72
BERTLarge-Cased + BiLSTM + NeXtVLAD (DE) 0.79 0.84 0.82 0.81 0.73 0.74 0.74 0.73

BERTLarge-Uncased (DE) 0.79 0.83 0.81 0.81 0.73 0.73 0.73 0.73
BERTLarge-Uncased + BiLSTM + NeXtVLAD (DE) 0.79 0.87 0.82 0.82 0.73 0.79 0.76 0.75

CTBERTv2 (DE) 0.78 0.83 0.80 0.80 0.75 0.77 0.76 0.75
CTBERTv2 + BiLSTM + NeXtVLAD (DE) 0.81 0.83 0.82 0.82 0.77 0.77 0.77 0.77

BERTLarge-Cased (DE, LA) 0.79 0.84 0.81 0.87 0.73 0.75 0.74 0.82
BERTLarge-Cased + BiLSTM + NeXtVLAD (DE, LA) 0.67 0.60 0.63 0.77 0.63 0.52 0.57 0.74

Ensemble of 3 [CTBERTv2 + BiLSTM + NeXtVLAD] (DE) 0.62 0.61 0.61 0.62 0.60 0.54 0.57 0.59

Table 3: Sarcasm detection results. Precision, recall, and F1 are shown for “sarcasm”, while the accuracy is aver-
aged over both classes. Experiments with dataset expansion (DE) and label augmentation (LA) are also included.
The model identical to Lee et al. (2020) (minus data augmentation and modification) is shown in bold italics.

The performance of different configurations are
shown in Table 3. Our results are shown for the
original FigLang test set as well as the one-fifth
validation set we separated from training2. All the
models have been trained for 8 epochs with a batch
size of 4. We train the models for different number
of epochs ranging from 3 to 30. Lee et al. (2020)
mention the use of early stopping for their number
of training epochs, which aims to prevent overfit-
ting by monitoring the model performance on a
held-out set at the end of each epoch, and stopping
the training when performance starts to degrade.
Their work, however, leaves out two hyperparame-
ter values required for replication: patience, which
controls the number of consecutive times it is ac-
ceptable for a model to not improve, and delta, the
minimum threshold for differential improvement.

Without these, we follow Fomin et al. (2020)
and apply early stopping with patience and delta
set to 2 and 0, respectively. With early stopping, the
number of optimal epochs varied, but even while
setting the random states manually to make the con-
figuration as deterministic as possible, repeated ex-
periments showed optimal training to always vary
between 5 to 12 epochs (a subset of the more com-
prehensive experiments we conducted, checking
from 3 to 30 epochs). In our experiments, the
BERTlarge-cased + BiLSTM + NeXtVLAD model
is identical to Lee et al. (2020) (without their data
augmentation and modification). The hyperparam-

2Our code and the choice of validation set are available at
github.com/sinamps/nextvlad-for-nlp

eters for this model are provided in Table 4. Since
this model achieves the best F1 score on the valida-
tion set with 8 training epochs, we fix the number
of training epochs to be 8 for the other models as
well.

In order to replicate the ensemble model dis-
cussed by Lee et al. (2020), threads with more than
one context are used to create extra samples by
removing the furthest context, one at a time, until
only one context remains. In the experiments us-
ing this data expansion (DE), the thread in Table
1, for instance, gives rise to one additional sam-
ple, with only context 2 and the response. Then, a
separate model is trained for each context length,
and majority voting assigns the final label. We also
conduct a series of experiments where the response
Tweet is removed from each thread, and the remain-
ing thread is considered non-sarcastic. These are
indicated in Table 3 by LA (label augmentation).

To explore further, we record the performance
for all training epochs on the validation set. Table 5
shows the accuracy for epochs 2 to 8, for the model
proposed by Lee et al. (2020) (the first configura-
tion in Table 3). We compute the accuracy and
F1 score for up to 30 training epochs. A compari-
son of the best scores from the models that employ
NeXtVLAD with the ones that do not, we find no
statistically significant improvement.

We also include additional experiments that re-
place BiLSTM with convolution layers. We use
KimCNN (Kim, 2014) as well as a custom CNN
(simply called OurCNN in Table 3) with filters

https://github.com/sinamps/nextvlad-for-nlp


107

Hyperparameter Value

K 128
G 8
λ (expansion) 4
M 512
N 1024
Context Gating’s dropout rate 0.5
BiLSTM’s dropout rate 0.25
# of epochs 8
Batch size 4
Initial learning rate 10−6

Table 4: The general hyperparameters for our
implementation of BERTLarge-Cased + BiLSTM +
NeXtVLAD.

that always cover one response token with various
number of context tokens. Appendix A provides a
discussion of our custom CNN. These variations,
too, however, do not outperform the baseline results
obtained through BERT alone.

5.1 Discussion
In image/video processing, a large number of low-
dimensional descriptors extracted from the original
high-dimensional image (such as SIFT vectors of
size 128) are fed to NeXtVLAD. In NLP appli-
cations, however, the token vectors have a much
higher dimension. It is possible that this is why
the subspace representation does not provide any
advantage over the original vector representation.
Another possibility is that unlike images or videos,
sub-vector representations of tokens do not form
meaningful units in natural language tasks, and
thus, the low-dimensional split actually hurts the
learner. Our experiments also show that the use
of domain-specific models like CTBERT (Müller
et al., 2020) offer comparable performance, but
reach their best results in fewer epochs of training.

We feel that it is important to distinguish the
components of a complex NLP pipeline that con-
tribute to improvements in downstream tasks, from
other components in the pipeline. While stopping
short of providing explainability to a deep learning
system, this type of investigation can, at the very
least, provide attribution to specific components
of NLP pipelines. In other words, it can help us
identify which parts of a pipeline are primarily re-
sponsible for improvements in a downstream task.

Such attributions can help us build compara-
ble systems that are significantly less resource-
intensive. In our experiments, we were able to
train models based on the BERTLarge architecture
with a 2-layer fully-connected classification head

Accuracy for each epoch

Model 2 3 4 5 6 7 8

w/o NeXtVLAD 0.73 0.77 0.78 0.78 0.78 0.78 0.79
w NeXtVLAD 0.51 0.49 0.49 0.76 0.77 0.77 0.78

Table 5: The validation set accuracy for training epochs
2 to 8 of the first model configuration from Table 3 (the
first and second rows from Table 3).

with a batch size of 2 and sequence length of 512
on a single 12 GB GPU (NVidia GeForce GTX
Titan X). But, with the addition of BiLSTM and
NeXtVLAD, the same configuration was only able
to fit a batch size of 1. For all the model configu-
rations discussed in this paper, BERTLarge-Cased +
BiLSTM + NeXtVLAD required two 24 GB GPUs
(Nvidia RTX 3090) to fit a batch size of 4.

6 Conclusion

We investigate the extent to which NeXtVLAD
contributes to improved results in a recent sar-
casm detection task, and find that it offers little
in terms of additional benefits. Our conjecture
at this point is, thus, that the 14% improvement
achieved by Lee et al. (2020) must entirely be due
to the natural language augmentation techniques
used. Our work also indicates that local aggregators
like NeXtVLAD are unlikely to offer significant
benefits to tasks related to figurative language iden-
tification, but more empirical work is needed to
confirm this hypothesis.

We hope that our insights can help future re-
search in this direction by making it easier to chan-
nel their efforts into aspects of a pipeline that have
tangible and attributable benefits to the final down-
stream NLP task.

Acknowledgements

This work was supported in part by funds from U.S.
National Science Foundation (NSF) under award
number CNS 2027750, CNS 1822118, and SES
1834597, and from NIST, Statnett, Cyber Risk Re-
search, AMI, and ARL.

References
Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas

Pajdla, and Josef Sivic. 2016. NetVLAD: CNN ar-
chitecture for weakly supervised place recognition.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5297–
5307. Institute of Electrical and Electronics Engi-
neers.

https://openaccess.thecvf.com/content_cvpr_2016/papers/Arandjelovic_NetVLAD_CNN_Architecture_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Arandjelovic_NetVLAD_CNN_Architecture_CVPR_2016_paper.pdf


108

Jose Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. On the Role of Text Preprocessing in
Neural Network Architectures: An Evaluation Study
on Text Categorization and Sentiment Analysis. In
Proceedings of the Workshop BlackboxNLP: Ana-
lyzing and Interpreting Neural Networks for NLP,
pages 40–46. Association for Computational Lin-
guistics.

Elisabeth Camp. 2012. Sarcasm, Pretense, and The Se-
mantics/Pragmatics Distinction. Noûs, 46(4):587–
634.

Matt Crane. 2018. Questionable Answers in Question
Answering Research: Reproducibility and Variabil-
ity of Published Results. Transactions of the Associ-
ation for Computational Linguistics, 6:241–252.

William Empson. 1947. Seven Types of Ambiguity, 2nd
edition. Chatto and Windus, London.

Wael Etaiwi and Ghazi Naymat. 2017. The Impact
of applying Different Preprocessing Steps on Re-
view Spam Detection. Procedia Computer Science,
113:273–279.

V. Fomin, J. Anmol, S. Desroziers, J. Kriss, and A. Te-
jani. 2020. High-level library to help with training
neural networks in PyTorch. https://github.
com/pytorch/ignite.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
Sarcasm using Neural Network. In Proceedings
of the Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169. Association for Computational Lin-
guistics.

Debanjan Ghosh, Avijit Vajpayee, and Smaranda Mure-
san. 2020. A Report on the 2020 Sarcasm Detection
Shared Task. In Proceedings of the Workshop on
Figurative Language Processing, pages 1–11. Asso-
ciation for Computational Linguistics.

Hervé Jégou, Matthijs Douze, Cordelia Schmid, and
Patrick Pérez. 2010. Aggregating Local Descrip-
tors into a Compact Image Representation. In Pro-
ceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages
3304–3311. Institute of Electrical and Electronics
Engineers.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1746–1751. Association for Com-
putational Linguistics.

Polina Kuznetsova, Jianfu Chen, and Yejin Choi. 2013.
Understanding and Quantifying Creativity in Lexi-
cal Composition. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1246–1258. Association for Compu-
tational Linguistics.

Hankyol Lee, Youngjae Yu, and Gunhee Kim. 2020.
Augmenting Data for Sarcasm Detection with Un-
labeled Conversation Context. In Proceedings of
the Workshop on Figurative Language Processing,
pages 12–17. Association for Computational Lin-
guistics.

Rongcheng Lin, Jing Xiao, and Jianping Fan. 2018.
NeXtVLAD: An Efficient Neural Network to Ag-
gregate Frame-level Features for Large-scale Video
Classification. In Proceedings of the European Con-
ference on Computer Vision Workshops, pages 206–
218. Springer.

Martin Müller, Marcel Salathé, and Per E Kummervold.
2020. COVID-Twitter-BERT: A Natural Language
Processing Model to Analyse COVID-19 Content on
Twitter. arXiv preprint arXiv:2005.07503.

Thomas Pfeiffer and Robert Hoffmann. 2009. Large-
Scale Assessment of the Effect of Popularity on the
Reliability of Research. PLoS One, 4(6):e5996.

Nils Reimers and Iryna Gurevych. 2017. Opti-
mal Hyperparameters for Deep LSTM-Networks
for Sequence Labeling Tasks. arXiv preprint
arXiv:1707.06799.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A multidimensional approach for detecting irony in
Twitter. In Language Resources and Evaluation,
volume 47, pages 239–268. Springer Nature.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra
De Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as Contrast between a Positive Sentiment
and Negative Situation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 704–714. Association for Compu-
tational Linguistics.

Josef Sivic and Andrew Zisserman. 2003. Video
Google: A Text Retrieval Approach to Object
Matching in Videos. In Proceedings of the IEEE
International Conference on Computer Vision, vol-
ume 2, pages 1470–1477. Institute of Electrical and
Electronics Engineers.

Tony Veale. 2011. Creative Language Retrieval: A Ro-
bust Hybrid of Information Retrieval and Linguistic
Creativity. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 278–287. Asso-
ciation for Computational Linguistics.

A Appendix

To reduce the differences in the shape (i.e., dimen-
sions) and quantity of features fed to NeXtVLAD
in Computer Vision and NLP, we designed a cus-
tom Convolutional Neural Network (CNN) to trans-
form features into probably a more suitable space.
In this section, we present the details of this custom

https://aclanthology.org/W18-5406.pdf
https://aclanthology.org/W18-5406.pdf
https://aclanthology.org/W18-5406.pdf
https://github.com/pytorch/ignite
https://github.com/pytorch/ignite
https://aclanthology.org/W16-0425.pdf
https://aclanthology.org/W16-0425.pdf
https://doi.org/10.18653/v1/2020.figlang-1.1
https://doi.org/10.18653/v1/2020.figlang-1.1
https://ieeexplore.ieee.org/document/5540039
https://ieeexplore.ieee.org/document/5540039
https://aclanthology.org/D14-1181.pdf
https://aclanthology.org/D14-1181.pdf
https://aclanthology.org/D13-1124
https://aclanthology.org/D13-1124
https://aclanthology.org/2020.figlang-1.2.pdf
https://aclanthology.org/2020.figlang-1.2.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11132/Lin_NeXtVLAD_An_Efficient_Neural_Network_to_Aggregate_Frame-level_Features_for_ECCVW_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11132/Lin_NeXtVLAD_An_Efficient_Neural_Network_to_Aggregate_Frame-level_Features_for_ECCVW_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11132/Lin_NeXtVLAD_An_Efficient_Neural_Network_to_Aggregate_Frame-level_Features_for_ECCVW_2018_paper.pdf
https://arxiv.org/pdf/2005.07503v1.pdf
https://arxiv.org/pdf/2005.07503v1.pdf
https://arxiv.org/pdf/2005.07503v1.pdf
https://arxiv.org/pdf/1707.06799.pdf
https://arxiv.org/pdf/1707.06799.pdf
https://arxiv.org/pdf/1707.06799.pdf
https://link.springer.com/article/10.1007/s10579-012-9196-x
https://link.springer.com/article/10.1007/s10579-012-9196-x
https://aclanthology.org/D13-1066
https://aclanthology.org/D13-1066
https://ieeexplore.ieee.org/document/1238663
https://ieeexplore.ieee.org/document/1238663
https://ieeexplore.ieee.org/document/1238663
https://aclanthology.org/P11-1029
https://aclanthology.org/P11-1029
https://aclanthology.org/P11-1029


109

Context Token 1

Context Token 2

Context Token 3

Context Token M

dim = N (1024)

Response Token 1

Response Token 2

Response Token M'

dim = N (1024)

a 3 x N kernel

M'

M (w/ input padding)

. .
 .

. .
 .

Figure 2: The custom CNN architecture for sarcasm detection in Twitter. M is the number of context tokens. M’ is
the number of response tokens. N is the token representation dimension.

CNN for extracting features for the NeXtVLAD
layer. Figure 2 depicts the architecture of our CNN.
First, we concatenate all the context Tweets and
pass them to BERT to get the token representations
and store them in a M ×N matrix. The response
Tweet also goes through the same process and is
represented in a M ′ ×N matrix. N is the dimen-
sion of the token representation vectors and M and
M ′ denote the number of tokens in the contexts
and response respectively. Each row in these matri-
ces contains the vector representation of one token.
Similar to KimCNN (Kim, 2014), we set the width
of the kernel to the dimension of the token repre-
sentation vector (N). But, distinct from KimCNN,
our kernels are always applied to local areas from
two distinct input matrices.

In our architecture, kernels only slide vertically
to move over different tokens. To demonstrate, con-
sider the kernel of size 3 in Figure 2. The first two
rows of this kernel cover the first two tokens of
the context matrix and the last row covers the first
token in the response matrix. The inner product is
computed and yields the first element in the first
output vector. Then, the blue portion of the kernel
slides downward and the computation repeats to
yield the second element of the first output vector.
When this sliding window reaches the end of the
context matrix, the first output vector is complete.
Now, the gray portion of the kernel slides down-

ward on the response matrix and all previous steps
repeat to generate the next output vector. This set of
operations with F different kernels and by applying
appropriate zero padding to the input, yields an out-
put of shape (F,M ′,M) which is (64, 100, 512) in
our implementation. This output is rearranged and
reshaped to shape (M ′ ×M,F ), which is much
more similar to image/video features in shape and
quantity. This is fed to NeXtVLAD in our sarcasm
detection architecture. We use 64 kernels in our
experiments with size 2, 3, 4, and 5 (16 kernels
of each size; size only refers to the height of the
kernel, since the width is fixed). In our implemen-
tation, the values are set as F = 64, M = 512, and
M ′ = 100.


