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Abstract
Despite its proven efficiency in other fields,
data augmentation is less popular in the con-
text of natural language processing (NLP) due
to its complexity and limited results. A recent
study (Longpre et al., 2020) showed for exam-
ple that task-agnostic data augmentations fail
to consistently boost the performance of pre-
trained transformers even in low data regimes.
In this paper, we investigate whether data-
driven augmentation scheduling and the inte-
gration of a wider set of transformations can
lead to improved performance where fixed and
limited policies were unsuccessful. Our results
suggest that, while this approach can help train
better models in some settings, the improve-
ments are unsubstantial. This negative result
is meant to help researchers better understand
the limitations of data augmentation for NLP.

1 Introduction

In recent years, data augmentation has become an
integral part of many successful deep learning sys-
tems, especially in the fields of computer vision
and speech processing (Krizhevsky et al., 2012;
Jaitly and Hinton, 2013; Hannun et al., 2014; Ko
et al., 2015). Traditionally, data augmentation ap-
proaches take the form of label-preserving trans-
forms that can be applied to the training datasets
to expand their size and diversity. The idea of
generating synthetic samples that share the same
underlying distribution as the original data is of-
ten considered a pragmatic solution to the short-
age of annotated data, and has been shown to re-
duce overfitting and improve generalisation perfor-
mance (Shorten and Khoshgoftaar, 2019). How-
ever, despite a sound theoretical foundation (Dao
et al., 2019), this paradigm has not yet translated to
consistent and substantial improvement in natural
language processing (NLP) (Longpre et al., 2020).

The inability of NLP models to consistently ben-
efit from data augmentations can be partially at-
tributed to the general difficulty of finding a good

combination of transforms and determining their
respective set of optimal hyperparameters (Ratner
et al., 2017), a problem that is exacerbated in the
context of text data. Indeed, since the complexity
of language makes text highly sensitive to any trans-
formations, data augmentations are often tailored
to a specific task or dataset and are only shown to
be successful in specific settings.

In this work, we investigate whether auto-
matically searching for an optimal augmentation
schedule from a wide range of transformations can
alleviate some of the shortcomings encountered
when applying data augmentations to NLP. This
endeavour follows the recent success of automated
augmentation strategies in computer vision (Cubuk
et al., 2019; Ho et al., 2019; Cubuk et al., 2020). In
doing so, we extend the efforts to understand the
limits of data augmentation in NLP.

2 Related Work

Although there exist recent surveys (Feng et al.,
2021; Shorten et al., 2021) that offer a comprehen-
sive review of related work, they do not provide a
comparative analysis of the different data augmen-
tation approaches and of their effect on learning
performance. In general, the literature lacks gen-
eral comparative studies that encompass the variety
of tasks and datasets in NLP. Indeed, most of the
existing text data augmentation studies either focus
on a single approach in a specific setting or com-
pare a small set of techniques on a specific task
and dataset (Giridhara. et al., 2019; Marivate and
Sefara, 2020). In addition, many of these compar-
isons have been conducted before the widespread
adoption of contextualized representations.

Recently, Longpre et al. (2020) showed that, de-
spite careful calibration, data augmentation yielded
little to no improvement when applied to pretrained
transformers even in low data regimes. While their
comparative analysis is conducted on various clas-
sification tasks, it focuses on a limited set of aug-
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mentation strategies that are applied independently
and whose hyperparameters are optimized via a
random search.

To further assess the effectiveness of data aug-
mentation on pretrained transformers, we investi-
gate in this work the paradigm of learning data
augmentation strategies from data in the context
NLP. The idea is to leverage the training data to
automatically discover an optimal combination of
augmentations and their hyperparameters at each
epoch of the fine-tuning. First, we define a search
space that consists of a variety of transformations
before relying on the training data to learn an opti-
mal schedule of probabilities and magnitudes for
each augmentation. This schedule is later used to
boost performance during fine-tuning.

In the following section, we present a variety of
data augmentations and, for each category of trans-
formations, we highlight a subset of augmentations
that is representative of the category and that will
constitute our search space.

3 Data Augmentation in NLP

In this study, we focus on transformative meth-
ods which apply a label-preserving transformation
to existing data—rather than generative methods
which create entirely new instances using genera-
tive models. Indeed their simplicity of use and their
low computational cost make them good candidates
for a wide deployment (Xu et al., 2016). In the
last decade, we witnessed a widespread adoption of
continuous vector representations of words, which
can be easily fed to deep neural network architec-
tures. As a result, transforms have been developed
not only at the lexical level (i.e., words) but also at
the latent semantic level (i.e., embeddings). This
distinction is emphasized throughout this section.

Word Replacement A commonly used form of
data augmentation in NLP is word replacement. At
the lexical level, the most common approach con-
sists in randomly replacing words with their syn-
onyms (Zhang et al., 2015; Mueller and Thyagara-
jan, 2016; Vosoughi et al., 2016). Some variants
include replacement based on other lexical rela-
tionships such as hypernymy (Navigli and Velardi,
2003) or simply words from the vocabulary (Wang
et al., 2018; Cheng et al., 2018). Another popular
approach consists in using a language model (LM)
for replacement (Kolomiyets et al., 2011; Fadaee
et al., 2017; Ratner et al., 2017). Because these
transformations do not ensure the preservation of

the sample class, Kobayashi (2018) suggested con-
ditioning a bidirectional LM on the labels, an idea
later revisited by Wu et al. (2019) who replaced
the LM with a conditional BERT (Bidirectional
Encoder Representations from Transformers).

At the latent semantic level, word replacement
amounts to randomly replacing its embedding
with some other vector. For instance, Wang and
Yang (2015) choose the k-nearest-neighbour in the
embedding vocabulary as a replacement for each
word. Similar strategies were later adopted by Vi-
jayaraghavan et al. (2016) and Zhang et al. (2019).

In this study, as replacement methods, we select
both synonym and hypernym replacement as well
as contextual augmentation at the word level and
nearest neighbour at the embedding level.

Noising A simple yet effective form of augmen-
tation that is often applied to images and audio
samples is data noising. Not surprisingly, this type
of data augmentation can also be found in NLP
despite the discrete nature of text data.

In its simplest form, data noising when applied
to text consists in inserting, swapping or deleting
words at random (Wei and Zou, 2019). More gener-
ally, the process of ignoring a fraction of the input
words is often referred to as word dropout (Iyyer
et al., 2015) and can take multiple forms (Dai and
Le, 2015; Zhang et al., 2016; Bowman et al., 2016;
Xie et al., 2017; Li et al., 2017).

Sometimes, word replacement can also be
thought of as a form of noising. For instance, re-
placing words at random with other words from
the vocabulary introduces noise into the data (Xie
et al., 2017; Cheng et al., 2018).

In contrast, at the distributed representation
level, this type of augmentation often takes the
form of added noise to the embeddings. Possi-
ble noising schemes include Gaussian noise (Ku-
mar et al., 2016; Cheng et al., 2018), uniform
noise (Kim et al., 2019), Bernoulli noise and ad-
versarial noise (Zhang and Yang, 2018). Typically,
noising is applied to every word embedding, but it
can also be applied only to selected ones (Kim et al.,
2019). Alternatively, as with word dropout, noise
can be incorporated into the training by discarding,
across all words, some embedding dimensions with
a predefined probability (Dai and Le, 2015).

Noising strategies used in this study are based
on random deletion, random swap and random
insertion at the sentence level as well as Gaussian
noise and uniform noise at the feature level.
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Back-translation Back-translation provides a
way for neural machine translation (NMT) sys-
tems to leverage monolingual data to increase the
amount of parallel data (Sennrich et al., 2016;
Edunov et al., 2018; Fadaee and Monz, 2018). Sim-
ilarly, back-translation can be applied twice in a
row (i.e., from English to another language and
back to English) to generate new data points with-
out the need for parallel corpora and can therefore
find applications as a task-agnostic augmentation
in other tasks such as text classification (Luque
and Pérez, 2018; Aroyehun and Gelbukh, 2018),
paraphrase generation (Mallinson et al., 2017) and
question answering (Yu et al., 2018).

Here, we consider a wide range of intermedi-
ate languages to include back-translation into our
search space

4 Automated Data Augmentation in NLP

In NLP, little effort has been put into developing
strategies that can, given a task and a dataset, learn
an optimal subset of data augmentation operations
and their hyperparameters (Shorten et al., 2021).
Yet, this idea has been very successful in computer
vision (Cubuk et al., 2019; Ho et al., 2019; Cubuk
et al., 2020). For instance, in the context of im-
age classification, Cubuk et al. (2019) have pro-
posed AutoAugment a procedure that automatically
searches for optimal augmentation policies using
reinforcement learning. Later, Population-Based
Augmentation (PBA) (Ho et al., 2019)—an algo-
rithm that views the data augmentation selection
and calibration problem as a hyperparameter search
and can thus leverage the Population-Based Train-
ing (PBT) method (Jaderberg et al., 2017) to find
an optimal transformation schedule in an efficient
way—was introduced as a more cost-effective yet
competitive alternative to AutoAugment. Finally,
Cubuk et al. (2020) introduced the RandAugment
method which tackles some of the issues arising
from these previous works.

In this study, we adapt the PBA framework to
NLP in an attempt to learn an optimal schedule
of data augmentation operations with optimized
hyperparameters.

4.1 Population-Based Augmentation

Given a hyperparameter search space that consists
of data augmentation operations along with their
probability level (i.e., likelihood of being applied)
and their magnitude level (i.e., strength with which

they are applied), PBA works as follows: during
a pre-defined number of epochs, k child models
of identical architecture are trained in parallel for
the task at hand on a given dataset. Periodically,
the training is interrupted, all models are evaluated
on a validation set and an "exploit-and-explore"
procedure takes place. First, the worst-performing
models (bottom 25%) copy the weights and hy-
perparameters of the best-performing models (top
25%) (exploit), then the hyperparameters are either
slightly perturbed or uniformly resampled from all
possible values (explore). At that point, training
can continue. At the end of the training, a data
augmentation policy schedule is extracted from
the hyperparameters of the best performing child
model. The obtained schedule can then be used to
train from scratch a different model on the same
task and the same dataset.

5 Experiments

Our implementation builds on the original PBA
codes (Ho et al., 2019). We make the NLP adapta-
tion of this framework publicly available1.

5.1 Datasets

Two of the datasets suggested by Longpre
et al. (2020) in their comparative analysis are used
to conduct our experiments: SST-2 (Socher et al.,
2013) and MNLI (Williams et al., 2018). The for-
mer is a corpus of movie reviews used for sen-
timent analysis (single sentence, binary classifi-
cation), whereas the latter is a natural language
inference corpus (two sentences, multi-class clas-
sification). Accuracy and mis-matched accuracy
respectively are used for evaluation. We take
N = {1500, 2000, 3000, 9000} samples from the
original train sets to constitute our train-validation
sets. As test sets, we use the full original validation
sets which—unlike the original test sets—contain
publicly available ground-truths.

5.2 Hyperparameter Space

The hyperparameter space consists of 10 data aug-
mentation operations highlighted in the previous
section with associated probability and magnitude.
For most replacement methods, the magnitude level
can be thought of as a percentage of tokens on
which the transformation is applied and, for noising
transforms, it corresponds to the amount of nois-
ing. In the context of back-translation, however,

1https://github.com/chopardda/LDAS-NLP
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.

NO AUGM
SCHEDULE

DIFFERENCE

ACCURACY [%]

N = 1500 2000 3000 FULL

88.22 ±0.69 88.11 ±0.41 88.76 ±0.46 90.49 ±0.49
88.64 ±0.47 88.60 ±0.68 89.56 ±0.40 90.91 ±0.43

+0.42 ±0.00 +0.49 ±0.00 +0.80 ±0.00 +0.42 ±0.00

(a) SST-2 test dataset.

.

NO AUGM
SCHEDULE

DIFFERENCE

MIS-MATCHED ACCURACY [%]

N = 1500 2000 3000 FULL

65.73 ±1.12 67.60 ±2.21 69.67 ±0.79 74.26 ±0.35
64.78 ±1.20 66.21 ±0.77 68.71 ±0.49 73.95 ±0.47

-0.95 ±0.00 -1.39 ±0.00 -0.96 ±0.00 -0.31 ±0.00

(b) MNLI test dataset.

Table 1: Performance on SST-2 and MNLI. The model is trained 10 times independently either without augmenta-
tion or with the augmentation schedule yielded by the search. Since a single search is conducted per value of N ,
the reported standard deviation measures the robustness of the training procedure for a single schedule. (For more
details about the robustness of the augmentation search, see Section 6.1.)

magnitude relates to the quality of the translation
according to BLEU-3 scores (Aiken, 2019). Details
concerning the implementation of these augmenta-
tions as well as how exactly magnitude is defined
for each one of them can be found in Appendix A.1.

5.3 Search

The search is conducted on 48 epochs using around
20% of the N data points for training and the rest
for validation. Both the child models and the final
model follow the original uncased BERT base ar-
chitecture suggested by Devlin et al. (2019). The
learning rate is chosen so as to slow down the fine-
tuning without affecting the performance. Further
details are provided in Appendix A.2.

6 Results

The main results can be found in Table 1a and
Table 1b. The first row corresponds to the perfor-
mance on the test set when training the model on all
N samples without any augmentation. The second
row in the table contains the result of the evalua-
tion on the test set of the model trained on all N
samples using the discovered schedules (i.e., for
each data size, the schedule of the child model with
the highest validation accuracy at the end of the
search is used to train the final model). The same
slowed-down learning rate and the same extended
number of epochs are used across all experiments
to allow for a fair comparison.

Overall, the improvements yielded by the opti-
mized data augmentation schedules are inconsistent

and unsubstantial (below 0.8%). Even though the
incorporation of transforms has a small positive im-
pact on the SST-2 dataset, it has the opposite effect
on MNLI (i.e., the scores plummet by as much as
1.39%). A possible reason for these poor results
might be due to the difference in settings between
our experiments and the ones in the PBA study.
Indeed, our search is conducted on 48 epochs as
opposed to the 160 to 200 epochs suggested for im-
age classification tasks and the exploit-and-explore
procedure takes place after each epoch rather than
after every 3 epochs. In addition, the size of the
training datasets is very different. The size of our
largest experiment is roughly the same as the size
of the smallest dataset in (Ho et al., 2019).

Surprisingly, our data-driven search seems un-
able to reproduce the performance boost reported
by Longpre et al. (2020) on the MNLI dataset, even
though the augmentations considered in their work
are part of our search space. This might be ex-
plained by the way augmentations are applied. In
our study, we transform each training sample by
applying up to 2 transformations in a row with
probability p and magnitude m. In contrast, Long-
pre et al. add N × τ augmented samples to the
training set with τ ∈{0.5, 1, 1.5, 2}, meaning that
the original examples are provided along with their
augmented counterparts at each iteration.

6.1 Search Robustness

Given the stochastic nature of the searching pro-
cess, the discovered schedule is bound to differ
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from one run to another. So far, we have run a
single search for each experiment setting. In this
section, we investigate whether the limited effect of
automatic augmentation on the model performance
may be caused by the stochasticity of the search.
To that end, we run 10 independent searches on the
SST-2 dataset withN=1500 and use each of the 10
discovered schedules to train a separate model. All
the network hyperparameters are kept the same
as in the previous section. Overall, the standard
deviation over 10 independent schedules is 0.55%,
which indicates that the performance of the training
is robust across searches. Thus, the poor results ob-
served in the previous section cannot be explained
by the variability of schedules.

However, a closer look at these 10 individual
schedules reveals that the chosen augmentation hy-
perparameters are very different from one run to
another and that the search does not seems to favour
any particular set of augmentation transforms. This
may indicate that, in this setting, data augmenta-
tion acts more as a regulariser rather than a way
to learn invariance properties and that, as a result,
any kind of augmentation transform has a similar
effect on performance. In view of these findings,
it would be interesting to explore whether relying
on a greater number of child models during the
search could potentially yield less disparate sched-
ules and improve the overall quality of the search.
For the interested reader, the various schedules are
displayed in Appendix A.5.

6.2 Validation size

As mentioned earlier, the limited impact of auto-
matic data augmentation scheduling in our settings
might be due to the small number of samples avail-
able for each experiment. In particular, one of the
drawbacks of PBA is that a large portion of train-
ing data (approximately 80% as suggested by Ho
et al. (2019)) has to be set aside to form a validation
set that is used during the search to find optimal hy-
perparameters. For example, at N=1500 only 250
examples are used to learn the network weights dur-
ing the search while the remaining 1250 samples
are used for hyperparameter selection. As a result
of this discrepancy, the selected data augmentation
might be relevant when only 250 data points are
available for training but less effective when learn-
ing with 1500 samples as is ultimately the case. In
this section, we investigate whether the poor results
observed in Table 1 can be attributed to the ratio

TRAIN/VAL

ACCURACY

250/1250 750/750 1250/250

88.64 ±0.47 88.64 ±0.62 88.76 ±0.59

Table 2: Performance on the SST-2 test set of the
model trained on N=1500 samples with the schedule
discovered using different proportions of validation and
training sets. For each split ratio, the model is trained
10 times using the schedule yielded by a single search.
The mean accuracy and standard deviation are reported.

chosen to split the available data into a train and a
validation set. To that end, we run the search on
the SST-2 dataset using different ratios to divide
the N=1500 samples at hand. The results reported
in Table 2 suggest that using different proportions
of train and validation examples does not affect the
effectiveness of the augmentation schedule in this
setting. In fact, the performance remains the same
even though the model is trained with schedules
that were optimized using very different split ratios.
This might be explained by the fact that both the
train and the validation sets are too small to find
optimal augmentation hyperparameters irrespective
of the chosen split ratio. Alternatively, it is possi-
ble that the chosen dataset can simply not benefit
from augmentation because of its nature. To verify
this hypothesis, it would be interesting to extend
this analysis to a wider range of datasets, including
actual low-resource datasets.

7 Conclusion

The results suggest that augmentation schedules
and data-driven parameter search do not provide
a consistent and straightforward way to improve
the performance of NLP models that use pretrained
transformers. There are a few possible explana-
tions for this phenomenon. First, the overall setup
of the PBA approach (e.g., the need for large vali-
dation sets) might not be well suited for low-data
regimes in NLP. A second but more likely reason
is that transformers are already pre-trained on huge
datasets and their representations may already be
invariant to many of the transformations that are
encoded into the data augmentation. A systematic
investigation into the latter hypothesis is required,
which, if proven, would show that data augmenta-
tion may be redundant when opting to use trans-
formers to implement NLP solutions. A final rea-
son might be that the search space we consider only
contains transformative data augmentation tech-
niques and omits generative ones, even though the
latter have started to show some promising results.
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A Appendix

A.1 Hyperparameter Search Space
As a reminder we consider the following 11 data
augmentation methods:

• Synonym replacement
• Hypernym replacement
• Nearest neighbour
• Contextual augmentation
• Random insertion of a vocabulary word
• Random insertion of synonym
• Random deletion
• Random swap
• Gaussian noising
• Uniform noising
• Back-translation

The search space consists of augmentation oper-
ations with associated probability and magnitude.
More specifically, this can be represented as a vec-
tor of 11 tuples (oi, pi,mi) (i.e., one tuple for each
transform). During the training, up to two data
augmentation operations oi are drawn uniformly at
random for each training sample and applied with
probability pi and magnitude mi. As suggested
by Ho et al. (2019), we set the number of opera-
tions to 0, 1 and 2 with probabilities 0.2, 0.3 and
0.5 respectively. The operations are applied in the
same order in which they are drawn. However,
the two embedding-level noising operations (i.e.,
Gaussian noising and uniform noising) are always
applied after the other augmentations since they
must be applied in the middle of the graph, after
the representation layers, whereas the other aug-
mentations are applied directly on the input of the
neural network.

To allow for a smooth parametrisation of the
search space with large coverage, probabilities and
magnitudes can take any values between 0 and 1:
p,m ∈ [0, 1]. This is different from the original
PBA algorithm where the parameters are limited
to discrete values. The magnitude level, which
represents the intensity with which each operation
should be applied, is scaled down differently to fit
the different operations. Maximal magnitude val-
ues are chosen so as to allow for a wide enough
array of impactful values and their specific values
for each augmentation are indicated in the corre-
sponding paragraphs.

All transformation operations are detailed below,
including implementation, and the ones that are

applied directly on the input rather than on the
embeddings are illustrated in Table 3.

Synonym Replacement The implementation
follows the one suggested by the authors of the
easy data augmentation (EDA) techniques (Wei and
Zou, 2019) and uses the provided codes. First, the
number of words that are replaced with one of their
synonyms is determined as ni = bm̂i ∗ |si|c, with
m̂ the magnitude level scaled down between 0 and
0.25. Then stop-words are removed from the sam-
ple. While the number of words replaced is lower
than ni, one word is selected uniformly at random
among the words that have not been replaced yet
and is replaced with one of its synonyms. Syn-
onyms are retrieved with WordNet (Miller, 1998).
Note that since many words have multiple mean-
ings, it is not rare that the chosen synonym carries
a different meaning than the original word.

Hypernym Replacement The process for hyper-
nym replacement is identical to that of synonym
replacement in all respect except that hypernyms
instead of synonyms are extracted using WordNet.

Nearest Neighbour At the beginning of each
search (and at the beginning of the final training),
we feed every training sample into the pretrained
BERT and use the contextualized representation of
each token to build a k-d tree. Note that this pro-
cess is one-time only and is tailored to the train set.
When applied to sample si, the nearest-neighbour
operation first tokenizes the sample into WordPiece
tokens using the BERT tokenizer before comput-
ing the number of tokens that will be replaced as
follows: ni = bm̂i · |si|e. Here, |si| corresponds to
the number of WordPiece tokens in sample si and
m̂i = 0.25 ·mi is the scaled-down level of magni-
tude, which has a maximum value of 0.25 so that
at most 25% of the tokens are replaced. Then, ni
WordPiece tokens at drawn uniformly at random.
For each one of them, the 10 tokens with the near-
est embeddings (in the context of sample si) are
retrieved and one of them is selected for replace-
ment using a geometric distribution with parameter
q = 0.5. A geometric distribution ensures that the
nearest neighbours have a higher chance to be se-
lected as a replacement than the more distant ones.
The implementation is based on the one provided
by Dale (2020).

Contextual Augmentation The contextual aug-
mentation transform replaces words by these pre-
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original sample (m = 0) m = 0.5 m = 1

Synonym Replace-
ment

a pretentious and ulti-
mately empty examina-
tion of a sick and evil
woman

a pretentious and ul-
timately empty exami-
nation of a sick and
malefic woman

a ostentatious and ul-
timately empty inter-
rogatory of a retch and
evil woman

Hypernym Re-
placement

just another disjointed
, fairly predictable psy-
chological thriller

just another disjointed
, fairly predictable psy-
chological adventure
story

just another part , fairly
predictable psychologi-
cal heroic tale

Nearest Neigh-
bour

tormented by his her-
itage , using his story-
telling ability to honor
the many faceless vic-
tims

tormented by his her-
itage , using his story-
telling ability to honor
the many faceless emo-
tions

tormented by his fate ,
using his cinematic abil-
ity to honor the many
unexplainable victims

Contextual Aug-
mentation

small - budget thin - budget barely running budget

Random Insertion
(vocabulary)

actually manages to
bring something new
into the mix

actually manages johns
to bring something new
into the mix

lest actually manages to
goaltender bring some-
thing new into the mix

Random Insertion
(synonym)

is a gorgeous film - vivid
with color , music and
life

is a gorgeous film bril-
liant - vivid with color ,
music and life

liveliness is a gorgeous
film - medicine vivid
with color exist , music
and life

Random Deletion an adventurous young
talent who finds his in-
spiration on the fringes
of the american under-
ground

an adventurous talent
who finds his on the
fringes of american un-
derground

an young finds his on the
of underground

Random Swap the movie is widely seen
and debated with ap-
propriate ferocity and
thoughtfulness

the movie seen widely
is and debated with ap-
propriate ferocity and
thoughtfulness

movie the is widely seen
ferocity thoughtfulness
with appropriate and and
debated

Back-translation does n’t know what it
wants to be

Do not know what he
wants to be

I don’t know what you
want to be

Table 3: Overview of the data augmentation transforms from our search space that operate directly on the input.
This shows the outcome when the transformations are applied on samples from the SST-2 dataset with three
different magnitude levels m = 0, 0.5, 1. Where relevant, tokens that have been replaced are highlighted in bold.
In addition, newly inserted tokens are italicized whereas tokens that have changed places are underlined.

dicted by a language model (LM) conditioned on
the labels. In this work, we use the implemen-
tation provided by Wu et al. (2019) which uses
BERT as a conditional masked language model.
At the beginning of the search, the model is fine-
tuned on the training data on a task that applies
extra label-conditional constraint to the traditional
masked language objective. Once fine-tuned, the
model can be used to infer masked words given a
label. When applied to sample si, this operation
replaces ni = bmi · |si|e of the tokens with a mask,
where |si| is the number of tokens in the sample af-
ter applying the BERT tokenizer. Then, along with
its label, the masked sample is fed to the fine-tuned

conditional model which infers a vocabulary word
for each of the masked tokens. These predictions
are used as a replacement.

Random Insertion When applied to a sample si,
the random insertion operation randomly adds a
token to the sample. The number of tokens to insert
ni is set to a fraction of the length of si, namely
ni = bm̂i · |si|e, where |si| is the number of tokens
in si and m̂i = 0.25 ·mi is the scaled-down magni-
tude which ensures the number of inserted tokens
does not exceed 25% of the original number of
tokens and, by extension, that the new sample con-
tains at most 20% of randomly inserted tokens. We
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include two independent variants: each inserted
token is either a synonym of one of the tokens
(selected uniformly at random) in si as suggested
by Wei and Zou (2019) as part of their EDA tech-
niques or is sampled uniformly at random from a
subset of the BERT vocabulary. Note that we only
consider words between index 1996 and 29611 of
the vocabulary to exclude special and unused to-
kens as well as punctuation, digits and tokens with
non-English characters. We also ignore tokens that
start with "##" the special characters used to in-
dicate a trailing WordPiece token. The position
for the insertion of the new token in si is chosen
uniformly at a random. The implementation uses
the codes provided by Wei and Zou (2019).

Random Deletion The random deletion opera-
tion removes a fraction of the tokens from the sam-
ple. Each token is discarded with probability qi,
where qi = m̂i = 0.25 ·mi which is the magnitude
level scaled down between 0 and 0.25 to guarantee
that at most half of the tokens are removed. This
allows a wide range of values around the original
intensity parameter of 0.1 suggested by Wei and
Zou (2019) whose implementation we use.

Random Swap This augmentation swaps any
two words from the sample si at random ni times in
a row, where ni = bm̂i∗|si|c and |si| is the number
of tokens in sample si. The magnitude parameter
mi is scaled down to have a maximum value of
0.25 to ensure that at most 50% of the words are
swapped. Once again, we use the implementation
provided by Wei and Zou (2019).

Gaussian Noising The Gaussian noising opera-
tion is not applied on the input sequences but rather
directly on the contextualized word representations.
Let wij be the embedding of word j in sample si.
Then, each embedding in the sample is transformed
as follows:

ŵij = wij + ej , ejk ∼ N (0, σ2) , (1)

where σ = mi and ej is a vector of the length of
d (embedding dimension) with elements ejk nor-
mally distributed with mean 0 and standard devia-
tion mi.

Uniform Noising Similarly to Gaussian noising,
the uniform noising operation is applied directly on
the contextualized embeddings. More specifically,

ŵij = wij + ej , ejk ∼ U(−mi,mi) . (2)

Once again, ejk (0 ≤ k < d) are the elements of
noise vector ej uniformly distributed over the half-
open interval [−mi,mi] and d is the dimension of
the embeddings.

Back-translation The back-translation opera-
tion first translates the sample si to an interme-
diate language before translating the intermediate
translation back to English. To allow us to incor-
porate this transform into the search space, we re-
late the magnitude level with the quality of the
translation: when back-translation is applied with
a low magnitude, the intermediate language used
is one that achieves a high BLEU3 score accord-
ing to Aiken (2019). Similarly, high magnitude
settings back-translate samples through a language
with a poor BLEU3 score. Table 4 summarizes
the languages that can be chosen for each level of
magnitude. To generate translations, we use the
python library Googletrans which uses the Google
Translate Ajax API to make calls.

A.2 Search

At the beginning of training, all probability and
magnitude hyperparameters are set to 0. This fol-
lows suggestions by Ho et al. (2019) who postulate
that little to no augmentation is needed at the be-
ginning of the training, since the model only starts
to overfit later on, and the data should increasingly
become more diverse throughout the training. Be-
cause the complexity of the BERT models lies in
the contextual representation layers which are al-
ready pre-trained and the task-specific layer that
needs to be fine-tuned is rather simple, we keep
the architecture identical both for the child models
and for the final model. A key difference between
applying PBA to image classification and applying
PBA to NLP tasks with pre-trained BERT model
is that in the former settings models are commonly
trained for hundreds of epochs, whereas only two
to four epochs of fine-tuning are sufficient in the
latter settings. Consequently, the original strategy
of running a search for 160 or 200 epochs (de-
pending on the model and dataset) while having
exploit-and-explore procedures take place after ev-
ery 3 epochs is not feasible for NLP tasks with
a pretrained BERT model. Hence we modify the
learning rate to slow down the fine-tuning process.
More specifically, we look through a small grid
search for a learning rate that can replicate the per-
formance achieved when using the original param-
eters (Devlin et al., 2019) but on a larger number
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mi

1
2
3
4
5
6
7
8
9

10

INTERMEDIATE LANGUAGES

Portuguese, Italian, French, Czech, Swedish
Dutch, Maltese, Polish, Romanian, Russian
Afrikaans, Belarusian, Slovak, Danish, Indonesian
German, Albanian, Bulgarian, Japanese, Spanish
Chinese, Croatian, Finnish, Latvian, Arabic, Malaysian
Greek, Korean, Norwegian, Serbian, Turkish, Welsh
Galician, Icelandic, Slovenian, Vietnamese
Catalan, Estonian, Filipino, Hungarian, Swahili
Irish, Thai, Hebrew, Ukrainian, Persian
Lithuanian, Macedonian, Yiddish, Hindi

Table 4: The intermediate translation languages for each magnitude level mi. They are separated according to
inverse BLEU3 scores.

of epochs. Thus, by reducing the learning rate, we
find a way to carry out the search over a total of 48
epochs. The search is conducted on 16 child mod-
els that are trained in parallel. At the beginning of
the search, approximately 80% of the training data
are set aside to form the validation set, which will
be used to periodically assess the performance of
the child models. The remaining training data are
used to optimize the networks. After each epoch
(instead of 3 originally), the exploit-and-explore
procedure takes place where the 4 worst perform-
ing (on the validation set) child models copy the
weights and the parameters of the 4 best performing
child models. At the end of the 48 epochs, the aug-
mentation schedule of the model with the highest
performance (on the validation set) is extracted.

A.3 Train

To train the final model, the train and validation
data are grouped to form the final training set.
Training is conducted using the same learning rate
and the same number of epochs as during the search
and uses the discovered schedule for augmentation.
At the end of the training, the performance of the
trained model is evaluated on an independent test
set.

A.4 Implementation details

The implementation parameters can be found in
Table 5.

A.5 Results and Discussion

Additional results, tables and figures can be found
in this section.

A.5.1 Schedule Robustness Experiment

In the main text, we touched upon the fact that
the schedules yielded by the same search can vary
significantly from one run to another. For illus-
tration, the schedules yielded by 10 independent
searches on the SST-2 dataset with N=1500 sam-
ples are displayed in Figure 1. To reduce the num-
ber of figures, the product of the magnitude and the
probability hyperparameters through the epochs is
shown for each schedule. This figure shows that
the optimal set of hyperparameters varies signif-
icantly from one search to another. In Figure 2
the average magnitude and probability parameters
over the 10 schedules at each epoch is displayed.
These plots allow us to realise that, while the pa-
rameters generally increase throughout the epochs,
the magnitudes and probabilities of each transform
have a similar value. Although some operations
(e.g. Random Swap) have slightly higher average
parameters than others, we can see that no augmen-
tation transform clearly dominates the others. This
could indicate that the role of the augmentation
operations in this setting is not the one that is ex-
pected. Indeed, it seems that the data augmentation
merely acts as a regulariser and do not help the
network learn any kind of invariance.

.

SST-2
MNLI

PARAMETERS [%]

EPOCHS LEARNING RATE BATCH SIZE

48 1E-5 32
48 5E-5 32

Table 5: Implementation details of both the child mod-
els and the final model (both with and without augmen-
tation). The model used is the uncased BERT base
model with a classification layer.
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Stacked product of probability and magnitude through epochs
SST-2 N=1500

RandomSwap
RandomDeletion
RandomInsertionSyn
RandomInsertionSyn

SynonymReplacement
HypernymReplacement
NearestNeighbour
ContextualAugmentation

Backtranslation
EmbNormalNoise
EmbUniformNoise

Figure 1: The schedules yielded by 10 independent searches on SST-2 with N =1500 samples (using 250 for
training and 1250 for validation during the search). The height of each bar corresponds to the product of the
probability and the magnitude parameters at each epoch.
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(a) Average probabilities
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Stacked average magnitudes over 10 searches through epochs
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(b) Average magnitudes

Figure 2: The average probability and magnitude
values for the schedules yielded by 10 independent
searches on SST-2 with N=1500 samples. The height
of each bar corresponds to the average probability and
magnitude parameters at each epoch over the 10 sched-
ules.

A.5.2 Validation Size Experiment
In this section, we discuss the split ratio experiment
in more detail. Overall, the main idea behind using
a large validation set is to choose augmentation
hyperparameters that do not overfit the validation
samples and thus generalize well to unseen data.
However, in our case, since the total number of
available samples N is small in all experiments,
this implies that the size of the training set will be
extremely limited. This might hinder the learning
process (with too few training examples it can be
difficult to learn the optimal network weights) or
make the choice of augmentation hyperparameters
irrelevant for larger training sets (there is no guaran-
tee that the augmentation chosen for the small train
set with will also help when ultimately training
with both the training and the validation set). Thus,
there exists a clear trade-off between the size of
the two sets: while a large validation set can allow
for better optimization of the augmentation hyper-
parameters, a larger training set allows for better
optimization of the network weights which, in turn,
has an impact on the quality of the augmentation
hyperparameters evaluation.


