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Abstract

We propose the task of automatically gener-
ating commentaries for races in a motor rac-
ing game, from vision, structured numerical,
and textual data. Commentaries provide infor-
mation to support spectators in understanding
events in races. Commentary generation mod-
els need to interpret the race situation and gen-
erate the correct content at the right moment.
We divide the task into two subtasks: utterance
timing identification and utterance generation.
Because existing datasets do not have such
alignments of data in multiple modalities, this
setting has not been explored in depth. In this
study, we introduce a new large-scale dataset
that contains aligned video data, structured
numerical data, and transcribed commentaries
that consist of 129,226 utterances in 1,389
races in a game. Our analysis reveals that
the characteristics of commentaries change de-
pending on time and viewpoints. Our experi-
ments on the subtasks show that it is still chal-
lenging for a state-of-the-art vision encoder to
capture useful information from videos to gen-
erate accurate commentaries. We make the
dataset and baseline implementation publicly
available for further research.1

1 Introduction

Live commentary plays an important role in
sports matches and video games; it makes spec-
tators more excited, more immersed, and bet-
ter informed about the matches or games (e.g.,
Schaffrath (2003)), as in the example of racing
game commentary “We are approaching the final
long straight. I wonder who is going to win!”.
Live commentary also enhances the value of on-
line videos and home videos. However, providing
a live commentary requires a certain level of com-
menting skills and knowledge of the target sports

1https://kirt.airc.aist.go.jp/
RacingCommentary

or video games; the majority of online videos
and home videos are left without live commen-
tary.2 The application of natural language gener-
ation technology would be a solution to this prob-
lem. Thus, we select the racing game domain as
an example, and propose a task of generating live
commentary on it.

Examples of utterances in a live commentary for
a racing game are shown in Figure 1. Live com-
mentaries should describe each important event
in the race at the moment when the event oc-
curs, within a short period of time. Thus, we
have to make decisions on when to speak and
how long/elaborately to speak, in addition to what
to say and how to say it, which have been long
studied. The importance of each event would
have to be assessed in the context of a compe-
tition in which participants are striving to win.
It suggests that what to say for race commen-
tary generation should be different from, for ex-
ample, image captioning. In this sense, the task
of live commentary generation contains inherent
limitations that are not addressed in well-studied
generation problems such as summary genera-
tion for basketball (Puduppully and Lapata, 2021),
and image/video captioning (Vinyals et al., 2015;
Yao et al., 2015); however, some techniques de-
veloped for such existing generation tasks are also
useful for live commentary generation.

As input, vision data, such as the videos shown
in Figure 1, are common in many tasks. How-
ever, it is not a trivial task to capture important
information from vision data, because many of the
frames in a race would be similar to each other,
unlike images for image captioning data. There-
fore, we propose the use of structured data, that
is, telemetry data, including the positions and the
speeds of cars, and the steering wheel angles. The

2For example, many gameplay videos on Twitch do not
have live commentary (https://www.twitch.tv).
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Figure 1: Translated Examples of commentaries (original utterances in Japanese are in brackets). For the com-
mentaries on the top, the commentator is watching the race from the aerial viewpoint. For those at the bottom, the
commentator is watching the race through a camera just behind the driver.

assumption that such telemetry data are available
is not unrealistic. It is the general trend that many
sensors are used to obtain telemetry data even in
real sports matches and motor races. For exam-
ple, each race car in F1 races is monitored by 300
sensors.3 Additionally, players are tracked by GPS
technology during football matches to obtain posi-
tional data (Memmert and Raabe, 2018). We work
on video games because telemetry or vision data
are easier to obtain than in real sports. This can ad-
dress the huge demand in the gaming community
and serve as a favorable test bed for live commen-
tary generation. As a result, the task addressed in
this paper is the live commentary generation for
racing games from vision, structured, and textual
data.4

Live commentary generation has not been stud-
ied in-depth, partly because of the lack of datasets.
Thus, we create a new dataset for live commentary
generation, which includes 129,226 utterances of
live commentary, aligned with gameplay video
and telemetry data of racing game. The teleme-
try data contain the positions and speeds of race
cars and various types of information about cir-
cuits and cars. There are two types of live com-
mentary. One is provided by the game players
while playing and watching the racing game from
the virtual camera behind the car. The other is pro-
vided by another person watching the game from
a virtual helicopter. We analyze the differences in

3https://aws.amazon.com/f1/
4We include textual data as input because we use the pre-

vious utterances as additional input.

the characteristics of commentaries from different
viewpoints.

We split the live commentary generation into
two subtasks: the utterance timing identification
and utterance generation. We propose multimodal
models for these subtasks and also provide an em-
pirical evaluation. Our experiments suggest that
the use of telemetry data works well for this task,
whereas it is difficult for a state-of-the-art vision
encoder to extract useful information from race
videos, especially for utterance generation.

Our contributions are threefold: (1) we propose
a novel task of automatically generating motor
racing game commentaries, (2) we create a dataset
and analyze its characteristics, and (3) we propose
methods for this task and argue that combining
multimodal data is challenging, which is worth ex-
ploring in depth. We make the dataset and baseline
implementations publicly available to enhance fur-
ther studies on this task.

2 Related Work

Existing studies on commentary generation
can be divided into real-time commen-
tary (Taniguchi et al., 2019; Kim and Choi,
2020) and commentaries written after-
wards (Puduppully and Lapata, 2021). Our
focus is on the former. Live commentary
generation is formulated as the extraction
of tweets (Kubo et al., 2013), the combina-
tion of rules and keyword extraction from
videos (Kim and Choi, 2020) and neural network-
based data-to-text (Taniguchi et al., 2019). To
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generate commentary in real-time, we need to
solve at least two tasks: timing identification and
utterance generation tasks. However, existing
studies focus on the latter, where the timings
are given, for example, minute-by-minute up-
dates (Kubo et al., 2013). Unlike baseball, the
timing identification task for race commentary is
not trivial because a race cannot be segmented
simply.

Our setting can be considered as a combi-
nation of two different research topics: video
captioning (Kim and Choi, 2020) and data-to-
text (Taniguchi et al., 2019). Various meth-
ods for encoding video frames have been ac-
tively studied (Dosovitskiy et al., 2021); com-
mentaries often include comments that focus on
the positional relation between cars, which re-
quires a more fine-grained understanding of video
frames. The performance of current vision en-
coders still needs to be evaluated. Data-to-
text is the task of converting structured data
into natural language, which has been applied
to the domain of finance (Murakami et al., 2017;
Aoki et al., 2018, 2021; Uehara et al., 2020),
weather forecast (Murakami et al., 2021), a sum-
mary of sports matches (Puduppully and Lapata,
2021; Iso et al., 2019) and live sports com-
mentary (Taniguchi et al., 2019). The inputs
used for existing studies are time-sequence
numerical data (Murakami et al., 2017), ta-
bles (Puduppully and Lapata, 2021; Gardent et al.,
2017) or simulated images (Murakami et al.,
2021). These models focus on neural network-
based approaches; however, data-to-text tasks
have been studied for a long time (see a survey
paper (Gatt and Krahmer, 2018) for details).

Existing studies on generation mostly focus on
generating text from a single viewpoint, i.e. they
generate objective descriptions of video frames in
video captioning, and a data-to-text model gen-
erates a text that focuses on the main content of
the input data. A few existing studies state that
live commentaries change depending on the view-
points of commentators. For example, Kubo et al.
(2013) found that the generated commentaries
on soccer matches are not objective, and these
are biased to mention more popular teams. The
viewpoints are the key to characteristic commen-
taries, but most studies have ignored the differ-
ence caused by the viewpoints that our dataset ad-
dresses.

Datasets play important roles in studies on
generation. Existing datasets for generation
tasks contain data in a single modality, such
as, videos (Zhou et al., 2018; Krishna et al.) or
structured data (Puduppully and Lapata, 2021;
Gardent et al., 2017). We propose a new large-
scale dataset that contains transcribed commen-
taries aligned with videos and structured numer-
ical data.

3 Dataset

We describe the procedure used to create our
dataset. We then show its statistics and the analy-
sis to characterize the task.

3.1 Procedure for creating our dataset

Collecting recordings and spoken commen-
taries: We hired five workers who regularly
play e-sports games. Thus, some of the work-
ers are familiar with playing racing games, but
some are not. They are not professional com-
mentators. As a racing game, we used Assetto
Corsa5. For each race consisting of two laps, one
worker plays while simultaneously commentating
it from the viewpoint of the virtual camera just be-
hind the car (driver’s view). Another worker is as-
signed to commentate the race from the viewpoint
of a virtual helicopter (aerial view), without play-
ing the game. Note that the commentaries are in
Japanese. Drivers used a physical steering con-
troller to achieve a situation close to real sports
competitions.

For both commentaries, we ask the commenta-
tors to mainly mention the car driven by the player;
however, the commentators could also mention
other cars if they found them worth mentioning.
Circuit maps, in which each turn is numbered,
are available to commentators so that they can re-
fer to them by numbers (e.g., Turn 15). Well-
known turns or straights are given names such as
Casanova for turn six in the Laguna Seca circuit.6

Collecting transcriptions of commentaries:
After the collection of recordings, we hired 149
workers on a crowdsourcing service, Lancers7, to
transcribe all the recordings. Workers are sup-
posed to transcribe the recordings and add the

5Assetto Corsa is a game title developed and published by
Kunos Simulazioni:
http://www.kunos-simulazioni.com

6The numbers and names are obtained from Wikipedia or
other websites that describe circuits.

7http://lancers.jp
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Telemetry data types Example values
current lap [0..] 1
is current lap invalidated? false
lap time of current lap (ms) 256
lap time of previous lap (ms) 156164
progress on current lap [0, 1] 0.002780
projected diff. from best lap 0.0
speed (km/h) 177.693130
steer rotation (rad) -59.793526
world position (x, y, z) (m) (5.372770,

64.056038,
-749.219971)

position on track (L=−1, R=1) -0.515301
distance from ideal path (m) 0.854022

Table 1: List of collected structured telemetry data with
example values. The last two types of data are not from
the API, but are calculated by the authors.

start and end timestamps to each utterance. Ut-
terances are basically sentences, with some excep-
tions; some utterances do not form complete sen-
tences because they are truncated owing to speech
repair. Finally, we manually checked whether the
transcriptions aligned with the videos correctly.
Collecting structured telemetry data: We also
collected structured telemetry data. Using Assetto
Corsa’s API, we extracted various structured nu-
merical data, including the speeds of the cars par-
ticipating in the race, % of the progress over the
entire race, the angles of the steering wheel, and
other 13 types of numerical values. The full list of
the types of structured data collected is shown in
Table 1. We repeated the extraction of these values
every 0.01 seconds on average.

3.2 Statistics and Analysis

In total, the five workers had played 1,389 races.
1,084 out of the 1,389 races are given commen-
taries from both the drivers’ and aerial viewpoints.
The remaining 305 races are given only commen-
taries from the drivers’ viewpoints. Thus, we col-
lected a total of 2,473 video recordings aligned
with commentaries and multimodal data.8 The to-
tal duration of the recordings is 226 hours, and the
number of collected utterances is 129,226, which
is more than the number of descriptions in Ac-
tivityNet Captions dataset (Krishna et al.), a large
dataset for dense video captioning. Also, as a
non-English dataset, it might provide some valu-
able linguistic diversity, as most datasets are in En-
glish. On average, they produced an utterance with
a length of 2.73 seconds and then they kept silent

81,084+305 videos from driver’s viewpoints, and 1,084
videos from aerial viewpoints.

# of unique circuits 4
# of commentators 5
total # of races 1,389
total # of recordings 2,473
- driver’s viewpoint 1,389
- aerial viewpoint 1,084
total recording duration 226:37:53
- driver’s viewpoint 126:11:19
- aerial viewpoint 100:26:34
total # of utterances 129,226
avg. # of utterances per race 52.25
avg. # of characters per utterance 22.22
avg. length of an utterance 2.73s
avg. length of silence 3.46s

Table 2: Statistics of the dataset.

for 3.46 seconds. The other statistics are listed in
Table 2.

We manually designed labels for the utterances
to capture their characteristics. Each label is de-
fined as a pair of two sub-labels, target label and
the content label, as presented in Table 3.

The target label represents the target subject
of the utterance, such as the player’s car,
other cars, all cars, or the circuit.
For example, the utterance “All the cars now
start” is labeled as all cars, because it fo-
cuses on all the cars participating in the race,
whereas “The player is now approaching Turn15”
is labeled as the player’s car, because it
mentions only the target car. The content label
represents the content of the utterance, such as
the relative position, movement, lap
time and other content types as presented in
Table 3. As an example, the player is now
approaching Turn15 is labeled as the player’s
car:movement, because it mentions the movement
of the player’s car.

We randomly extracted 874 utterances from 20
videos, and then manually annotated them using
the listed labels. It should be noted that this man-
ual labelling task is performed under the multi-
label setting, which allows us to assign one or
more labels to an utterance. We analyze the distri-
butions of the labels to capture the characteristics
of the dataset. In this analysis, we are particularly
interested in (1) how the label distribution changes
over time, and (2) how the label distribution differs
depending on the commentator’s viewpoint.

How utterances change over time?
We split a race into quarters according to the time-
line (e.g., the first quarter corresponds to the inter-
val from the beginning of a race to the 25% point).
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Target labels Example utterances
player’s car This was a very elegant

overtake by the player.
other cars The car behind just overtook

the player.
all cars All the cars has now started.
circuit Laguna Seca is well known

for its very long strait.
none Ah!
Content labels Example utterances
relative position The player is now at the

second making the distance
close to the first.

location on map The blue car is approaching
Turn2 and others follow.

lap time The player now crossed the
finish line at the time 3.15

previous event Maybe this mistake might
cause big impact on the time

future event Can the player successfully
pass the difficult Turn 15?

movement The player overtook the red
car on this long straight.

stable race All cars are stable without
any problems.

features All the cars are the same,
Porsche Macan.

greetings Ok, now I start my
commentary on this race.

reaction Oh!
others —

Table 3: List of sub-labels and example utterances. A
label assigned to an utterance is defined as a pair of
Target and Content sub-labels.

Figure 2 shows the label distributions for different
quarters. In the figure, the proportions of the la-
bels in the first quarter are represented by the tops
of the four bars, which are colored blue. Similarly,
the second (orange), third (black), and fourth (yel-
low) bars from the top represent the proportions in
the second, third, and fourth quarters, respectively.

For the first quarter indicated by the top bar for
each label, which are colored blue in the figure, the
labels with features (i.e., circuit:features, player’s
car:features and other cars:features) are frequent
compared with the other quarters. This suggests
that commentators often start the commentary by
mentioning the features of the circuit or the cars.

For the final quarter indicated by the bottom
bars, which are colored yellow, none:greetings
and player’s car:lap time are frequent, suggesting
that the commentators mention the elapsed time
after the cars crossed the finish line and finally
concluded the session with greetings.

Next, we focus on the differences between the
two middle quarters, indicated by the second and
third bars, which are colored orange and black.

Figure 2: Distribution over utterance labels in different
periods of timestamps

The proportion of player’s car:movement in the
second quarter (the second bars colored orange), is
higher than in the third quarter (the third bars col-
ored black). Thus, the commentators tend to men-
tion more facts in the second quarter. In contrast,
the third quarter (the third bars colored black)
contains more future event and previous event la-
bels that often include commentators’ comments,
concerns, or opinions on the previous and future
events. This suggests that there are more mentions
on the objective facts in the early stages of races,
whereas subjective utterances increase toward the
end of the races.

How do utterances differ depending on the
viewpoint?

　
We examined the differences between commen-

taries from two different viewpoints: the driver’s
and aerial. Figure 3 shows the label distribution,
where the upper bars colored orange correspond to
the driver’s viewpoint, and the lower bars colored
blue correspond to the aerial viewpoint.

The proportion of the player’car:location for
the aerial viewpoint is almost double of that of
the proportion of the same label for driver’s view-
point. This is because the commentators with
aerial viewpoint can capture the locations in maps
more easily, whereas commentators with driver’s
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Figure 3: Distribution over utterance labels annotated
from different viewpoints: driver’s (the upper bars col-
ored orange) or aerial (the lower bars colored blue).

viewpoint cannot see the entire circuit. Addition-
ally, the proportion of player’s car:stable race
is very high for the aerial viewpoint. Because
the aerial viewpoint is farther from the cars than
the driver’s viewpoint, the commentaries from the
aerial viewpoint hardly mention slight movements
of the cars; they more often say that the race is
stable.

In contrast, the proportion of the player’s
car:previous event for the driver’s viewpoint is
higher than that of the aerial viewpoint. If the
commentaries are spoken by the players them-
selves, they often comment on the events that just
happened, e.g., “OK, yes, the car turned success-
fully!”.

The analysis above shows that the viewpoint in-
fluences the characteristics of the utterances.

4 Tasks and Models

We formulate a live commentary generation task
and introduce the baseline models as shown in Fig-
ure 4. We report the performances of the baseline
models for both subtasks to better understand the
commentary generation task.

4.1 Task Formulation

To generate a live commentary, one needs to find
multiple timepoints and generate an utterance at

each timepoint. We solve this task in a sequential
fashion; given the previous timepoint and its utter-
ance, we find the next timepoint and generate its
utterance, which will be solved below.

The task of timing identification is to determine
the timestamp t at which an utterance should be
generated. We formulate this problem as a binary
classification for each second. Given the timepoint
of the previously generated utterance, we itera-
tively classify each successive second according to
whether the second is the next timepoint for gen-
eration or not. If the second is classified as posi-
tive, the model goes on to the generation step. If
the second is classified as negative, the model goes
on to the classification of the next second. If the
model does not output positive for m seconds, the
next second is forced to be positive. We set m = 7,
which is double the average interval between two
consecutive utterances.

For the classification of each second, we en-
code a given tuple (V , D, T ). V denotes a
sequence of the previous k video frames V =
(img1, ..., imgk) captured every second. We
set k = 10 in our experiments. We used
torchvision9 library to extract these images
from videos. S denotes the structured data
D = {D1, ..., DN} consisting of N sets of
the structured telemetry data, where each Dn =
{val1,n, ..., valk,n} consists of k values tracked at
each of the previous k seconds. T represents the
textual information, which is the previous utter-
ance in our setting.

The task of the utterance generation is to gener-
ate a sequence of characters as an utterance, given
the tuple of (V , D, T ) for the given/estimated
timepoint. In other words, we use the same in-
formation for both the second classification above
and the utterance generation. We use a multimodal
encoder-decoder architecture to generate an utter-
ance.

4.2 Multi-modal Encoder
The models for both subtasks use the same net-
work for encoding the input vision, structured
telemetry and textual data. The encoded repre-
sentation is then used in the network for sub-
tasks. For video frames V , each video frame
is converted to an image embedding by using
Vision Transformer (Dosovitskiy et al., 2021)10.

9https://pytorch.org/vision
10We used an open implementation at https://

github.com/lucidrains/vit-pytorch.
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Figure 4: Baseline models for the timing identification and commentary generation tasks. Each sequence of
numerical data i.e. speed, rotation, position and so on, is considered as a vector and we obtain a compressed
vector. Vision information is encoded by using Vision Transformer and LSTM-based encoder. Textual information
is encoded by using another LSTM-based encoder. The concatenated vector of the encoded numerical, vision and
textual information is passed to the models for sub-tasks.

The image embeddings are then sequentially
encoded by using a Long Short-term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997):
hi,V = LSTMV (hi−1,V , V iT (imgi)), where
ViT returns the output vector for the [CLS] to-
ken calculated by Vision Transformer. We treat
the final state hk,V of the LSTM as the representa-
tion of V . For each sequence Dn of the structured
data D tracked for the previous k seconds, we con-
sider the sequence Dn as a vector for the n-th type
of data in the structured telemetry data, and we
transform it into an another representation by us-
ing a linear transformation: dn = ReLU(DnWd+
b), where Wd is a weight matrix, b is a vec-
tor, and ReLU activates the vector. The concate-
nated vector of D1 to DN is the representation
of D. For textual input, we simply embed char-
acters in the textual input and then sequentially
encode the embeddings by using another LSTM:
hi,T = LSTMT (hi−1,T , embe(xi)), where embe
returns the character embedding. We treat the final
state of the LSTM as the representation for textual
input T . Finally, the concatenated vector of the
encoded representations of V , D, and T is passed
to the networks for the sub-tasks explained next.

4.3 Timing Identification Model

For the timing identification, the encoded rep-
resentation is passed to a network that con-
sists of a linear transformation and the soft-
max function: Softmax(encode([V ;D;T ])Wt),

where encode() returns the outputs of the encoder
and Wt converts the concatenated vector to two-
dimensional vector that represents the scores for
the decisions to utter or not utter at this timepoint.
We obtain the probability distribution over deci-
sions by using the softmax function.

For training, we use the gold start timestamps
from commentators as positive instances. We use
the midpoint of the silence between consecutive
utterances as negative instances. We train this
classifier by using the cross-entropy loss. For test-
ing, we classify every second after the time at
which the previous utterance is given. We out-
put the timestamp first classified as positive by our
model.

4.4 Utterance Generation Model

This second subtask generates an utterance as a se-
quence of characters given an encoded represen-
tation V, S, and T . We use an encoder-decoder
architecture with an attention mechanism, which
consists of an LSTM-based decoder initialized by
the representation passed from the encoder:

hj,d = LSTMd(hj−1,dec, embd(yj−1)), (1)

aji =
exp(hj,dWhi,V )∑10
i=1 exp(hj,dWhi,V )

, (2)

cj =
∑
i

ajihi,V , (3)

oj = Softmax([hj,d; cj ]Wd), (4)
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where embd returns the embedding of a charac-
ter,11 cj is a vector produced by an attention mech-
anism over the outputs of LSTMV , and yj−1 is
the previously generated character. Wd is a ma-
trix that converts the concatenation [hj,d; cj ] to a
vector of scores over the predefined vocabulary for
the target utterances, and Softmax converts it to
a probability distribution. This generator is trained
by using cross-entropy loss.

5 Experiments

We conduct experiments for the two subtasks to
further investigate the characteristics of the task.

5.1 Data and Parameters

We use 100 tuples of videos, commentaries, and
structured data for validation, another 100 tuples
for testing, and the remaining tuples for training.
For Vision Transformer, we set the number of
heads to six, the layer size to two, and each head is
represented as a 100-dimensional vector. The pa-
rameter for the patch size is 30×30. The dropout
rate was set to 0.1. Each type of telemetry data
is represented as a 10-dimensional vector. We use
three types of data i.e., speed, progress in a lap,
steer rotation, and position on track. The dimen-
sions of both the hidden states and input vectors to
the LSTMs in encoders are set to 100. Thus, the
dimension of the hidden state of the LSTM in the
decoder side is 230, which is the sum of the size
of the encoded images, textual information and
structured data. The size of the character embed-
dings in the decoder is set to 100. We use separate
vocabularies for the textual input and the target
text. We use Adam (Kingma and Ba, 2015) with
several initial learning rates ranging from 10−3 to
10−5 for optimizing parameters. We continue the
training iterations until the loss in the validation
dataset does not decrease for 10 epochs. We con-
duct the utterance generation experiments for the
gold timestamps.

5.2 Timing Identification

We evaluate the models by using the average gaps
in second between the gold timestamp and pre-
dicted timestamp. We propose a simple base-
line that outputs the timestamp after 3.46 seconds
from the end timestamp of the previous utterance.
3.46 is the average interval between two consecu-
tive utterances as shown in Table 4. As a result,

11Note embd is different from embe.

Model Avg. gap
baseline: average interval 3.66
struct 3.27
struct+text 3.26
struct+text+vision 3.12

Table 4: The average gap in seconds between the gold
and predicted timestamps. Lower values are better.

Model 10−3 10−4 10−5

struct 18.22 22.78 23.39
struct + text 18.03 23.78 23.86
struct + text + vision 17.49 22.58 24.01
only vision 0.30 2.74 7.46

Table 5: BLEU scores on the test dataset for the com-
pared models trained on different learning rates. The
model with the learning rate 10−5 achieves the best per-
formance on the validation dataset.

the average gap between the gold timestamps and
predicted timestamps obtained from the baseline
model was 3.66. When we use only structured
data as input, we obtained the average gap of 3.27
seconds. Adding textual information achieved a
slightly better value of 3.26, but the difference is
negligible. Adding vision information improves
the performance to 3.12.

5.3 Utterance Generation
We use BLEU (Papineni et al., 2002) to evalu-
ate the baseline models for this task. The scores
are shown in Table 5. The model based only on
telemetry data worked well. Adding textual infor-
mation improved BLEU score if the learning rate
is set to lower values i.e., 10−4 or 10−5. However,
we obtained a very low BLEU score when we used
only vision-based input. Adding vision informa-
tion to struct+text model degraded the score if the
learning rate is set to 10−3 or 10−4. Even with a
smaller learning rate, 10−5, vision information did
not significantly improve the performance.

6 Discussion

We list the gold and the utterances generated by
the model with learning rate 10−4 in Table 6. Gold
utterances often focus on relative position situa-
tions, as in Example 1, which requires capturing
the physical relations between cars. However, as
shown in the first example of a generated utterance
by data+text, we found only a few generated
utterances that mention the relative positions of
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Example 1: timestamp: 00:55
Gold
The player is now following very close to the car ahead.
data+text
Now we’re on Turn 10, the player is now accelerating
data+text+vision
I want to step on the brakes firmly here.
Example 2: timestamp: 02:04 and 02:07
Gold
We are now approaching the chicane on Turn 11 and 12.
The player should properly use the curb and go on
a straight line here, and the player showed
stable race here.
data+text
The player should brake properly here.
The player should brake properly here.

Table 6: The gold and automatically generated com-
mentaries. Texts are translated from Japanese.

the player’s car and other cars. Integrating vision
information further reduces such utterances men-
tioning relative positions and other detailed infor-
mation, and also makes utterances less specific.
To generate utterances with detailed information,
a model must accurately capture the information
displayed in a small area of the image. However,
it may be too hard for the model to, for exam-
ple, capture the distance between the car driven
by the player and the car just behind, or the drastic
changes of speeds from the video frames shown in
Figure 1, whereas telemetry data provides the use-
ful information. From the perspective of studies
on vision, methods to properly capture such fea-
tures are worth exploring.

We also observed that generated commentaries
contain many repetitions of the same utterance, es-
pecially utterances generated by the model with
vision information. The utterances in Example 2
in Table 6 exemplifies repetitions. It should be
note that the two utterances are only three seconds
apart. The input to the model does not change
significantly during such a short period of time,
resulting in the two identical utterances. Some
mechanisms to increase the diversity of utterances
might alleviate this problem, which is a particular
challenge in commentary generation.

We found errors in the name of a country
e.g., Nürburgring in Germany was generated as
Nürburgring in Italy. Such errors are also known
as a common problem in other generation tasks.

7 Future Research Directions

Finally, we discuss the future directions. We
noticed that evaluation is very difficult for this

task. Only BLEU scores of course cannot cap-
ture the correctness because this evaluation ig-
nores the relation between a commentary and a
race represented in. However, manually check-
ing videos, language, structured data, and gen-
erated utterances would incur a huge labor cost.
An exploration into correct and efficient automatic
and manual evaluation methods that consider all
vision, language, and structured data should be
conducted in the future. For evaluation by using
BLEU, it might be helpful if we have multiple ref-
erence utterances for one timestamps. However, it
is difficult to collect multiple utterances simulta-
neously in this task because different commenta-
tors give utterances at different timings. We leave
them for an important future research direction.

Extensions of model would be considered as
one of the main steps to produce better commen-
taries. However, more importantly, we need to
explore an essential research question: “what is a
good commentary?”. Further analysis of the char-
acteristics that contributes to making commen-
taries better need to be conducted.

8 Conclusion

In this paper, we proposed the task of generating
commentaries for motor racing games. Our anal-
ysis reveals that the characteristics of utterances
change over time in a race, and such changes are
also caused by differences in viewpoints. They
also show that combining vision, language and
structured data is challenging, which worth study-
ing in depth. For future work, exploring better
methods to combine vision, language, and struc-
tured data will be a promising direction for future
work. We release the data to enhance further stud-
ies on generation tasks from multimodal inputs.
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