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Abstract

We introduce a novel conversation embedding
by extending Bidirectional Encoder Represen-
tations from Transformers (BERT) framework.
Specifically, information related to “turn” and
“role” that are unique to conversations are aug-
mented to the word tokens and the next sen-
tence prediction task predicts a segment of a
conversation possibly spanning across multi-
ple roles and turns. It is observed that the ad-
dition of role and turn substantially increases
the next sentence prediction accuracy. Con-
versation embeddings obtained in this fashion
are applied to (a) conversation clustering, (b)
conversation classification and (c) as a context
for automated conversation generation on new
datasets (unseen by the pre-training model).

We found that clustering accuracy is greatly
improved if embeddings are used as features
as opposed to conventional tf-idf based fea-
tures that do not take role or turn informa-
tion into account. On classification task, a
fine-tuned model on conversation embedding
achieves accuracy comparable to an optimized
linear SVM model on tf-idf based features. Fi-
nally, we present a way of capturing variable
length context in sequence-to-sequence mod-
els by utilizing this conversation embedding
and show that BLEU score improves over a
vanilla sequence to sequence model without
context.

1 Introduction

Embedding of natural language units (word, sen-
tence or paragraph) deals with the problem of find-
ing a vector space representation of these units that
can be used in downstream applications of clas-
sification, summarization or token identification.
For example word embeddings (Mikolov et al.,
2013a,b,c; Pennington et al., 2014) have found ap-
plication in information retrieval (Manning et al.,
2008), document classification (Sebastiani, 2002;

Kim), question answering (Tellex et al., 2003; Mi-
naee and Liu, 2017), named entity recognition
(Turian et al., 2010) and parsing (Socher et al.,
2013). Extending the same concept to sentences
and documents one can also find the correspond-
ing vector representations independently (Le and
Mikolov, 2014) or by suitably averaging the word
vectors (Kusner et al., 2015).

While aforementioned embeddings are created
without optimizing for (or even considering) down-
stream applications there are recent approaches that
seek optimal representations based on pre-training
(Radford et al., 2018; Howard and Ruder, 2018;
Peters et al., 2018). These applications can be at
sentence-level such as natural language inference
(Bowman et al., 2015; Williams et al., 2018) and
paraphrasing (Dolan and Brockett, 2005) where
the semantic relationship between sentences are
captured or at word-level tasks (Rajpurkar et al.,
2016; Wang et al., 2018). There are two different
approaches for applying pre-trained embeddings,
(a) feature-based ((Peters et al., 2018), where the
model architecture is task-specific and pre-training
is a feature of the architecture) and (b) fine-tuning
(Radford et al., 2018; Devlin et al., 2019) (where
the pre-training architecture is quite generic to han-
dle a variety of downstream tasks and model param-
eters are later fine-tuned for specific tasks). While
most of the pre-training architectures use unidi-
rectional language models (Radford et al., 2018;
Peters et al., 2018), Bidirectional Encoder Rep-
resentations from Transformers (BERT, (Devlin
et al., 2019)) uses a different strategy to learn sen-
tence/paragraph representations and achieves best
scores on a variety of tasks.

Even though there are different strategies for
creating word, sentence and document level em-
beddings, there is no study available in literature
that deals with conversation embedding. While
a piece of conversation may look very similar to a
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paragraph (and one can probably start with para-
graph embedding to embed conversations) it has
two important additional pieces of information,
namely, turns and roles. A turn can consist of a sin-
gle word, sentence or multiple sentences (all belong
to a single role) and a conversation can have many
participants (roles) where it is crucial to distinguish
who is saying what. An efficient representation
of a complete conversation (or part of it) should
take into account the role and turn information (and
their congruence) for downstream applications.

The most important application of conversation
embedding is in the area of automated dialogue
generation. Starting with the vanilla sequence-to-
sequence model (Sutskever et al., 2014; Vinyals
and Le, 2015) there are different approaches to
capture the “context” so that meaningful responses
can be generated (Sordoni et al., 2015b; Mei et al.,
2017). The “context” continuously grows as the
conversation progresses and can be defined in terms
of everything that has happened in the conversation
so far or key words from earlier turns extracted by
some attention based algorithms (Bahdanau et al.,
2015). There could be different approaches to cap-
ture a context, e.g., (a) separate RNNs for previous
turns and roles, (b) attention over previous turns or
(c) a global vector representing counts of tokens
from previous turns etc. However, all of them have
limitations either in capturing all the required infor-
mation or in their ability to deal with a continuously
increasing context length. An embedding that can
map a variable length context (i.e., a conversation
segment) into a numeric vector while including key
pieces of information required for generating the
next response would be immensely helpful in auto-
matic dialogue generation. This is what has been
attempted in this work where we create conversa-
tion embedding using BERT and apply to various
downstream tasks. Our contributions are

1. Extension of BERT based sentence
representation to conversation
representation by adding the notion
of roles and turns and thus creating an
embedding of conversation segments hitherto
unavailable in literature.

2. We show that with the inclusion of roles and
turns during pre-training the next sentence
prediction accuracy increases.

3. Application of these pre-trained models on
conversation clustering shows better accuracy

over tf-idf based features.

4. We demonstrate how conversation embedding
can be used to capture context in sequence-to-
sequence models and thereby improving the
BLEU score.

2 Related Work

Very little work is available in the literature on con-
versation embedding, especially that treats conver-
sations with all its associated complexities. Most
of the work has been on word embedding (non-
neural, (Brown et al., 1992; Ando and Zhang,
2005; John Blitzer and Pereira, 2006; Pennington
et al., 2014) and neural (Mikolov et al., 2013a,b,c;
Liu et al., 2017)), sentence embedding (Le and
Mikolov, 2014) and embedding of paragraphs (Dai
et al., 2015). Recent approaches involving pre-
training and fine-tuning also deal with sentences
and sentence pairs (Peters et al., 2018; Radford
et al., 2018; Devlin et al., 2019) and the down-
stream tasks are mostly classifications (and not
sequence generation). On conversation embedding,
the closest that we see is from Mehri et al. (2019)
where multiple pretraining objectives are explored.
Conversations are encoded using recurrent neural
network (RNN) and no information from roles or
turns are included.

The importance of capturing “context” for rele-
vant response generation is well understood. (Sor-
doni et al., 2015b) tried capturing the context ini-
tially using bag-of-words representation (Sordoni
et al., 2015a) and later by a hierarchical recurrent
encoder-decoder (HRED) approach (Serban et al.,
2016a) applied to the movie dataset (Banchs, 2012)
with only one previous utterance appearing as the
context. Here, a dialogue D consisting of a series
of utterances {U1, U2, . . . , UM} was decomposed
as

pθ(U1, U2, . . . , UM ) =

M∏
m=1

Nm∏
n=1

pθ(wm,n|wm,<n, U<m)

(1)
and two encoders were used to encode context

and current input. A second approach based on
stochastic latent variables (called VHRED model)
to capture dependency amongst multiple time steps
is proposed by (Serban et al., 2016b) and it was
shown that VHRED generated responses preferred
over HRED. HRED architecture is further modified
by (Li et al., 2018) to take bidirectional GRU as
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input to the encoder, for application to multi-modal
input scenario (Agarwal et al., 2018) and in a GAN
set up for generating a sequence response (Su et al.,
2018).

In the next section we describe our approach
of creating conversation embedding from BERT.
Subsequently, we demonstrate three applications of
this embedding, namely, clustering, classifications
and dialogue generation. Finally, conclusions are
drawn.

3 Conversation Embedding Using BERT

BERT represents a sentence or a pair of sentences
by their Wordpiece tokens (Sennrich et al., 2016),
segment names (A or B) and token-wise positions.
While this representation is enough for contiguous
sentences from a paragraph it does not take into
account (1) role or speaker and (2) turn or depth
of the conversation. In this work we add these
two additional pieces of information along with
the rest of the embedding. To give an example,
Table 1 is a snippet of a typical conversation with
the corresponding roles (Customer and Agent) and
turns (0, 1, 2, . . .):

The corresponding text, role and turn tokens for
input to a BERT model will be as shown in Fig. 1.
While the role in the present case takes only two
values, i .e., agent and customer (although there
is no restriction) the turn can be as high as 200
in our conversation data. Thus, the turn embed-
ding can be similar to the position embedding used
in Transformer, i .e., sines and cosines. However,
in the present work we have projected both the
turn and role values to a fixed-dimensional vector
and learnt the corresponding embeddings (Gehring
et al., 2017). These embeddings are added together
along with the position and segmentation embed-
dings defined in the original BERT paper.

The pre-training steps of BERT are partly based
on tasks defined earlier, namely, masked language
model (MLM) and next sentence prediction (NSP).
However, in case of MLM the masked word can be
from different roles and turns. Similarly, the sen-
tence pairs in NSP can span across multiple roles
and turns. Thus, both MLM and NSP will drive
better understanding of the conversation structure.

Task #3: Middle Sentence Prediction

In addition to NSP and MLM we have also intro-
duced a new task, namely, middle sentence predic-

tion (MSP). As the name suggests, we choose any
two alternate turns (both coming from the same
role) and try to predict the middle turn (different
role). Similar to the NSP task, MSP is also con-
verted into a binary classification problem where
50% of the time the actual middle turn is chosen
and for the rest of the time another turn from a
different conversation is picked randomly (while
maintaining the role). In this way, the model should
be able to understand the conversation structure bet-
ter that will also help in applications like automated
response generation.

4 Experiments

The data for all the experiments presented here
are from conversations between customer service
agents and existing/new customers who contact the
customer service for their order related issues. The
conversations between customer and agents are di-
vided into sessions which we merged together to
generate a single conversation. For BERT model
pre-training we have randomly selected 100,000
chats of various different topics. These conversa-
tions are of varying number of turns and tokens
(as can be seen in Table 2). For text normalization
following steps are carried out (a) lower casing,
(b) replacing entities like number, customer, city
and state names, url, date, ticket number etc. by
their corresponding tokens and finally (c) remov-
ing empty spaces, multiple punctuation and special
characters. We have restricted the number of words
in the vocabulary to 30,000 (same as what was con-
sidered in the original BERT paper (Devlin et al.,
2019)).

4.1 Pre-training

We use the base configuration (Devlin et al., 2019)
for pre-training, i .e., number of layers, L = 12,
hidden dimension, H = 768 and number of self-
attention heads, A = 12. Both turn and role are
projected into the same hidden dimension H as
used for segments and positions. There are only
two words in the role vocabulary (”A” and ”C”)
whereas we have taken 128 as the turn vocabulary
dimension. The maximum sequence length used in
all the examples is 128.

We have created two different pre-training
datasets from the 100,000 chats. The first one does
not contain any MSP task and has 1.7 million ex-
amples for NSP and MLM tasks created by having
a duplication factor of 5 (for random masking and
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Turn Role Text
0 Agent Please proceed with your query.
1 Customer 1want my order delay for one day. On the date of 26 nov
2 Agent I certainly understand your concern. Let me check that.
3 Customer Okk
4 Agent Thanks for waiting. On checking details ...

Table 1: Sample conversation and the corresponding text, roles and turns

Statistics Turn Token
Minimum 1 1
Maximum 195 8409

Mean 13 23
50th percentile 11 14
75th percentile 17 26
90th percentile 25 52

Table 2: Statistics of Turns and Tokens in the pre-training dataset

binary label selection). The second dataset has all
possible (∼1M) MSP examples (no duplication)
along with NSP and MLM examples created with
a duplication factor of 2 (678k) resulting in 1.77
million data points. Thus, the two datasets are simi-
lar in size but having a totally different distribution
of task types. We use a batch size of 32 for all
examples and train for 3 epochs (∼170k steps),
which takes around 80 hours in a 12 GB Tesla GPU
machine.

The corresponding MLM and NSP task perfor-
mance for these datasets are shown in Table 3. The
effect of adding the role and turn is clear in the
next sentence prediction with a much better accu-
racy. It can also be seen that adding MSP task
increases (next or masked) sentence prediction ac-
curacy. Addition of role and turn on the other hand
has little effect on the MLM accuracy, mostly be-
cause these masked words are more dependent on
surrounding words (rather than the roles or turns of
the surrounding words).

Once we have pre-trained BERT models (with
roles and turns) we can use the representation of
[CLS] (from the top layer or from multiple layers,
(Devlin et al., 2019)) as a representation (embed-
ding) of the entire conversation. This representa-
tion (a vector of length H , 768 in the present case)
then can be used for many potential downstream
predictions as it has captured the entire conversa-
tion in a fixed length vector. Here we apply our
pre-trained BERT models for clustering and auto-
mated response generation. For all the applications,

including MSP, we use the representation of the
[CLS] token at the top layer as an embedding. In
addition, we also fine tune the BERT model for
intent prediction.

4.2 Conversation Clustering
The data for conversation clustering consist of a
different set of 50,000 conversations (again taken
from conversations between customers and agents).
Each conversation has a labeled intent (based on
agents’ tagging of the corresponding issue) and the
distribution of these intents in the dataset is shown
in Table 4. Each conversation is converted into a
fixed length feature vector (dimension 768) using
the pre-trained models described in the previous
section. A t-SNE (van der Maaten and Hinton,
2008) plot of this dataset is shown in Fig. 2 where
interactions amongst different intents and existence
of multiple intents in a conversation are captured to
a certain extent. For example, most of the intents
have some overlap with “others” intent and “status”
(order) is closely related to “delivery”. Also, con-
versations with “others” tag and falling in the range
of component-1 > 0 and component-2 > 10 seem
to have no overlap with any of the other existing
intents. A sample of 10 conversations from this
region shown below confirms that:

• check my last order i want to know about
which battery inbuilt

• can u update the name from [[name]] [[name]]
to [[name]] [[name]] in the invoice ?
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Figure 1: Conversation segments and corresponding BERT input representation using tokens, roles (A - agents, C
- customer) and turns (k is the turn number varying between 1 and #turns).

Type MLM Accuracy NSP Accuracy
Set-1, no role and turn 82.4% 89.0%

Set-1, with role and turn 83.5% 96.4%
Set-2 (MSP), with role and turn 81.6% 97.5%

Table 3: Pre-training test results on the two different datasets

Intent Percentage
Cancel 11.2

Delivery 16.5
Return & Refund 18.3

Status Inquiry 22.1
Others 31.9

Table 4: Distribution of pre-defined intents in the clus-
tering dataset

• [[order-id]] item missing product

• i do not want to change the address i want to
change the payment method

• what is mean by no cost emi ?

• hi . i want to remove my default mobile num
[[phone]] and change to [[phone]] i have the
option to change email but not mobile

• i want to buy screen guard with phone but u
charge extra delivery charges for screen guard
yes

• call me back

• what is the offer for this phone i am not able
to understand hello can you type you there

• ji mujhe emi pe phone lena h

where the last sentence has both English and Hindi
words.

Although tags are not always very accurate and
there can be multiple intents in a single conversa-
tion, we apply k-means algorithm (with 5 clusters)
on the BERT embedding and calculate the accuracy.
We also extract tf-idf based features (uni-grams and
bi-grams) from the conversations (without taking
role and turn information into account) and apply

Figure 2: Clustering of conversations by t-SNE
(van der Maaten and Hinton, 2008) applied on conver-
sation embeddings

Feature Accuracy
tf-idf based feature 31.07%

word2vec based feature 33.28%
BERT embedding (no MSP) 44.08%

BERT embedding (with MSP) 42.98%

Table 5: Accuracy of k-means clustering of conversa-
tions

k-means algorithm with 5 clusters. Once cluster
numbers are obtained for individual data points
we apply Hungarian algorithm (Papadimitriou and
Steiglitz, 1998) to map cluster number to intents
(class names) and compute the accuracy. Instead
of clustering all 50000 data points we randomly
sample 10000 data points 10 times and apply k-
means algorithm 5 times (for both tf-idf and BERT
based feature representation) and compute the av-
erage accuracy. The results are shown in Table 5
where it is clear that BERT based feature (on an
unseen dataset) has resulted in a much better accu-
racy underscoring the efficiency of this approach
of embedding a conversation.
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4.3 Conversation Classification
For classification we consider another set of 40,000
conversations (different from what is used in pre-
training or clustering) with intents (labels) provided
by the customer service agents. The distribution of
these intents in this data is similar to what is shown
in Table 4. We fine-tune the pre-trained BERT
model for 32,000 data points and apply on the rest
8,000 examples. We use the same vocabulary of
pre-training (with 30,000 words) for tokenization
with maximum sequence length of 128. We fine
tune the BERT model for 5 epochs with a batch size
of 32 and learning rate of 2×10−5. For comparison,
we consider a linear SVM model with tf-idf based
features. Hyper-parameters and ranges shown in
Table 6 are considered for grid search. The results
are presented in Table 7. It can be seen that BERT
fine-tuned model achieves comparable accuracy
(slightly higher) on completely unseen data.

hyperparameter range
maximum document frequency 0.5, 0.75, 1.0

n-gram range 1, 2, 3
idf usage True, False

tf-idf norm L1, L2
α 10−4, 10−5, 10−6

Regularization L2, elasticnet

Table 6: Hyperparameter set for SVM classifier

Model Accuracy
Linear SVM 72.04%

BERT fine-tuned 72.13%
BERT fine-tuned (with MSP) 72.24%

Table 7: Accuracy of different classifiers

4.4 Conversation Generation
The final example shows another application of
BERT based features for automatic dialogue gen-
eration. As discussed previously, sequence-to-
sequence (or seq2seq) models are not naturally
amenable to accommodate conversation contexts
and various approaches have been tried in the
past. We try to generate response tokens rkt for
turn k by maximizing the probability of response
rk = {rk1 , rk2 , . . . , rkT }

p(rk|ik) =
T∏
t=1

p(rkt |rk1 , . . . , rkT−1, i
k, c1:k−1)

(2)

where ik and c1:k−1 are the input and con-
text for the kth turn, respectively. Since the
context contains everything that has happened
so far in the conversation, i .e., c1:k−1 =
{i1, r1, i2, r2, . . . , ik−1, rk−1} it is an ever grow-
ing list and difficult to encode in a fixed length
vector. In this work, we convert a variable length
context into a fixed length feature vector using a
pre-trained BERT model, i.e.,

c1:k−1 = BERT ({i1, r1, i2, r2, . . . , ik−1, rk−1}) ∈ RH
(3)

where H is the embedding dimension in BERT
model.

Figure 3 shows the schema of applying context
embedding. The model is based on an encoder-
decoder pair modified for context embedding. At
k-th turn, the context embedding represents turns
1 to k − 1 that is used as an initial hidden state to
the encoder (after a linear transformation). Next,
tokens of the k-th turn are fed into the encoder one-
by-one and the corresponding encoder outputs are
recorded. The final encoder output (h5 in Fig. 3)
is concatenated with the context embedding (again
with another linear transformation) and used as the
initial state of the decoder. Following Bahdanau
style attention (Bahdanau et al., 2015) the decoder
state is compared with encoder outputs to compute
attentions weights that are applied on the encoder
outputs to get ‘context vector’. This context vector
is concatenated subsequently with the k + 1-th
turn tokens before given as input to the decoder
to generate decoder outputs. Although not used in
this work, context embedding can also be included
in the attention weight calculation.

The data for conversation modeling is also taken
from prior customer interaction with agents. How-
ever, we have considered only conversations for a
specific issue, i .e. ‘status check’. We have man-
ually extracted 3,872 conversations with 14,978
turns (data points) that have only this intent and
no other additional intents displayed in the same
conversation. The median number of turns in these
conversations is 6 (75th percentile is 8 and 90th

percentile is 15). We fixed the encoder sequence
length to 32 and decoder sequence length to 128
(90th percentile is 128). The context (which is a
cumulative of previous turns) that is passed to the
BERT model ideally should be less than 128 (the
maximum sequence length considered in the BERT
model). However, in our dataset the maximum
number of tokens in a context is 363 while 99th
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Figure 3: Encoder-decoder model with context embedding. Context embedding is used to set the initial hidden
state of both the encoder (E) and decoder (D).

percentile is 109. Thus, for less than 1% of the
cases the context will be truncated before being
evaluated by BERT model.

We have used GRU for encoder and decoder
(single layer) with a hidden dimension of 256 (same
for the token embedding dimension). The inputs
are reversed before given as input to the encoder.
Before passing the context embedding (vector of
dimension 768) to the encoder and decoder linear
layers with ReLU activation (projecting 768 to 256)
are used. In case of decoder there is an additional
linear layer (with ReLU activation) that acts on the
concatenated vector of last encoder hidden state
and context vector (i.e., of dimension 768+ 256 =
1024).

We have used 80% of the data for training and
20% for validation. All the model components
are trained by Adam optimizer (Kingma and Ba,
2014) with default values and batch size of 16.
Model performance is evaluated by BLEU score
(Papineni et al., 2002) where the validation data
is evaluated at the end of every epoch and tested
for improving BLEU score. If the score does not
improve for 4 consecutive epochs training is termi-
nated. Table 8 shows the BLEU scores (BLEU-2
and BLEU-3 indicate BLEU scores for bi-grams
and tri-grams) with and without conversation em-
beddings. The best rating is obtained when MSP
task was not included in BERT pre-training which
is not intuitive. However, both conversation embed-
ding based models result in a better BLEU score
than vanilla seq2seq model.

Model BLEU-2 BLEU-3
no context embedding 0.2284 0.2037

with MSP 0.2354 0.2116
without MSP 0.2403 0.2177

Table 8: BLEU-2 and BLEU-3 for conversation re-
sponse generated by different seq2seq models

5 Conclusion

We have introduced an embedding (representation)
of a conversation (or conversation segment) by
augmenting role and turn information to word to-
kens and utilizing BERT for pre-training. This
pre-trained model can be used either to generate
features from new conversations or can be fine-
tuned further on specific tasks. In this work we
have explored both the options. Pre-trained model
based conversation features are used for (a) conver-
sation clustering and (b) for representing contexts
in a conversation for predicting the next response.
In case of clustering we show that embedding based
features result in higher accuracy when compared
to tf-idf based features. Similarly, for conversation
modeling embedding feature based context repre-
sentation drove higher BLEU score when compared
to a vanilla seq2seq model without any contextual
information. We also fine-tune a pre-trained model
for conversation classification on new dataset and
obtain accuracy similar to what is given my a linear
SVM model trained on tf-idf based features. With
these examples we show the general applicability
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of the current approach on modeling various tasks
involving conversation data.
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