
Proceedings of the 18th International Conference on Natural Language Processing, pages 307–312
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)

307

Leveraging Expectation Maximization for Identifying Claims in Low
Resource Indian Languages

Rudra Dhar
Jadavpur University
West Bengal, India

rudradharrd@gmail.com

Dipankar Das
Jadavpur University
West Bengal, India

dipankar.dipnil2005@gmail.com

Abstract

Identification of the checkable claims is one of
the important prior tasks while dealing with an
infinite amount of data streaming from social
web and the task becomes a compulsory one
when we analyze them on behalf of a multi-
lingual country like India that contains more
than 1 billion people. In the present work,
we describe our system which is made for
detecting check-worthy claim sentences in re-
source scarce Indian languages (e.g., Bengali
and Hindi). Firstly, we collected sentences
from various sources in Bengali and Hindi
and vectorized them with several NLP features.
We labeled a small portion of them for check-
worthy claims manually. However, in order
to label the rest of data in a semi-supervised
fashion, we employed the Expectation Maxi-
mization (EM) algorithm tuned with the Mul-
tivariate Gaussian Mixture Model (GMM) to
assign weak labels. The optimal number of
Gaussians in this algorithm is traced by using
Logistic Regression. Furthermore, we used
different ratios of manually labeled data and
weakly labeled data to train our various ma-
chine learning models. We tabulated and plot-
ted the performances of the models along with
the stepwise decrement in proportion of man-
ually labeled data. The experimental results
were at par with our theoretical understand-
ing, and we conclude that the weak labeling of
check-worthy claim sentences in low resource
languages with the EM algorithm has true po-
tential.

1 Introduction

Misinformation has taken over the internet and it is
now a well-recognized problem all over the world.
Governments, news agencies, information security
people all are trying to fight this menace with the
helping hands from the researchers of social net-
works, natural language processing, data science
and many more. With the exponential rise in in-

formation or news, making automated systems of
fact-checking becomes a necessity. Researchers
have made significant achievements in this field.
But most of the research is in high resource lan-
guages like English. However, misinformation or
fake news doesn’t stop in the high resource lan-
guage. Fake news is spreading far and wide in low
resource languages as well, like in the Indian lan-
guages of Bengali and Hindi (Majumder and Das,
2020). A lot more research needs to be done in this
arena and our present work we have contributed
towards it.

It is a common practice in machine learning
to use a semi supervised approach to weakly la-
bel data when labeled data is scarce (Xuan et al.,
2010). On the other hand, filtering out check wor-
thy claim sentences has been attempted by many
teams as mentioned in (Hassan et al., 2015), (Dhar
et al., 2019). While (Hassan et al., 2017) has made
a generic and large system, (Anand et al., 2018)
worked on twitter feeds. However, the problem of
identifying claim sentences in Indian languages has
not been attempted much and thus doesn’t have a
lot of labeled data. So here, we use the Expectation
Maximization (EM) (Dellaert, 2003), a semi super-
vised algorithm to assign weakly labels to a lot of
unlabeled data in Indian languages.

Suggested by (Hassan et al., 2015), automated
fact checking is a two-fold task: 1) identification
of check-worthy sentences, and 2) checking their
trustworthiness based on some reliable sources.
As checking the trustworthiness or veracity is a
very resource intensive and computationally expen-
sive job, identification or filtering out the check-
worthy sentences becomes very important. In this
work, we have used the semi supervised Expecta-
tion Maximization (EM) (Dellaert, 2003) algorithm
to weakly label check-worthy sentences in the low
resources Indian languages, Bengali and Hindi. Us-
ing semi supervised algorithms to label a lot of

308

web pages
crawled

sentence (labeled) # sentence
(unlabeled)

Average length of
sentence in Words

Bengali 400 1500 8568 11.40
Hindi 270 902 13537 13.70

Table 1: Statistics of our data.

unlabeled data is a common practice in Machine
Learning and NLP. But, using EM or similar al-
gorithms to weakly label check-worthy sentences
has rarely been tried, and has certainly never been
attempted in the context of Indian languages.

The rest of the Sections are organized as follows.
Section 2 gives the approaches in developing the
datasets while Section 3 and Section 4 describe the
algorithms of Expectation Maximization (EM) and
GMM, respectively. The experimental results are
shown in Section 5 along with important observa-
tions. Finally, Section 6 concludes the draft.

2 Data Set Preparation

We prepared our own data for this work. We
crawled sentences (mostly news) from various
web sources and manually labeled some of
them. We crawled Bengali sentences from ‘ABP
Ananda’ (https://bengali.abplive.com/) and
Hindi sentences from ‘Abp News’ (https://www.
abplive.com/) and ‘Aajtak’ (https://aajtak.
intoday.in/), as well as ‘Twitter’ (https://
twitter.com/?lang=bn/hn).

We manually labeled a portion of the data (about
1500 for Bengali, and about 900 for Hindi). There
were two classes. Class 1 refers to check-worthy
claims, whereas class 0 refers to not-check-worthy
sentences(that is, the rest of the sentences). Only
the sentences, which is a fact checkable claim, with
a clear context, are put in class 1. For example the
sentence (‘It is to be mentioned that in 2014, Rahul
defeated Smriti Irani by 1 lakh 6 thousand votes
in Amethi constituency.’) is considered a check-
worthy claim and hence would be labeled as class
1. Whereas the sentence (‘The court summoned
him on Thursday for this issue’) is not considered
a check-worthy claim and hence would be labeled
as class 0.

We extracted tf-idf scores, unigram, bi-gram and
part of speech tags, as features for both the lan-
guages. It has to be mentioned that the fitting of
data in a Multivariate Gaussian Mixture Model is
a very computationally expensive job. Experimen-
tation by using all the thousands of features in our

Gaussian Mixture Model (19907 for Bengali, and
27928 for Hindi) was not possible in our available
hardware setup. Therefore, we used Principal Com-
ponent Analysis (PCA) to reduce the dimension-
ality of the data to 1000. For Bengali we retained
92.9% data whereas in Hindi we retained 96.6%
data.

3 EM - Semi-Supervised Algorithm

It is described in (Dellaert, 2003) that EM is an
iterative optimization method to estimate some un-
known parameters Θ, given measurement data U.
However, we are not given some “hidden” nui-
sance variables J, which needs to be integrated out.
In particular, we want to maximize the posterior
probability of the parameters Θ given the data U,
marginalizing over J:

Θ∗ = arg max
Θ

∑
J∈τn P (Θ, J |U)

(Dempster et al., 1977) describes it from a statis-
tical point of view in detail and (Little and Rubin,
2014) states its proof. The EM algorithm seeks
to find the Maximum Likely Estimation of the
marginal likelihood by iteratively applying the two
steps namely Expectation and Maximization.

The EM algorithm needs a mixture model to
represent the data. Here, we use ‘Multivariate
Gaussian Mixture Models’ to represent the data.
A Gaussian mixture model is a probabilistic model
that assumes all the data points are generated from a
mixture of a finite number of Gaussian distributions
with unknown parameters. ‘Multivariate Gaussian
Mixture Models’ are Gaussian Mixture Models in
a multivariable or multidimensional vector space.

4 Experimental Setup

Firstly, we separated out the validation and the
test sets from the manually labeled data with
a train-validation-test split of 60%-20%-20% in
ratio. Then, we made the training set using
(strongly/human) labeled training data plus some
of the unlabeled data while the validation and the
test set consist of entirely labeled data. In each step
of Expectation Maximization, we fit the training

https://bengali.abplive.com/
https://www.abplive.com/
https://www.abplive.com/
https://aajtak.intoday.in/
https://aajtak.intoday.in/
https://twitter.com/?lang=bn/hn
https://twitter.com/?lang=bn/hn

309

No. of
Gaussian Class

Results on validation data
Bengali Hindi

precision recall F1 precision recall F1

8
0 0.78 0.53 0.63 0.75 0.56 0.64
1 0.38 0.66 0.48 0.40 0.60 0.48

16
0 0.72 0.59 0.65 0.75 0.53 0.62
1 0.41 0.56 0.47 0.38 0.61 0.47

32
0 0.78 0.53 0.63 0.78 0.65 0.71
1 0.38 0.66 0.48 0.48 0.62 0.54

64
0 0.78 0.53 0.63 0.81 0.53 0.64
1 0.38 0.66 0.48 0.42 0.74 0.54

Table 2: Results on validation data given different number of Gaussian

Figure 1: Single variable Gaussian mixture model with
3 Gaussian.

set to a Gaussian Mixture Model with a chosen
number of Gaussians and assign the weak labels
to the unlabeled data. Then, we measured the effi-
ciency of the Gaussian Mixture Model by training
a logistic regression component and evaluated on
the validation set. We repeat this step and select the
GMM which gives the best results on the valida-
tion set. At last, we report the performance of the
selected GMM on the test set by modeling various
Machine Learning models using human labeled
data plus weakly labeled data. In addition, we have
also explored this for various proportions of human
(strongly) and weakly labeled data, and observed
the performances with respect to the change in pro-
portion. The details of each step are given in the
following subsections as pseudo-code. (Note that
we denote check-worthy claim sentences as class
‘1’ and rest sentences as class ‘0’) (shown in Figure
2).

4.1 Pseudo-code of the EM algorithm

• X train = X train labeled + X train unlabled

• threshold = (number of claim in labeled data)

/ (number of labeled data)
#threshold is the proportion of claims in la-
beled data. Later we will mark a set to be
claim set, if it has higher proportion of claims
than threshold

• choose ‘gaussianNumber’ as the number of
Gaussians in our GMM.

• gModel = fit GMM with X train

• get which training example is assigned to
which Gaussian:
yGaussian = gModel .predict(X train)

• from yGaussian calculate number of strongly
labeled ‘0’ and ’1’ that fell under each Gaus-
sian:
for each Gaussian:

– gy[0] = number of strongly labeled ‘0’ in
the Gaussian

– gy[1] = number of strongly labeled ‘1’ in
the Gaussian

• calculate proportion of strongly labeled ’1’ in
a Gaussian from gy
for each Gaussian:

– gRatio = gy[1] / (gy[0] + gy[1])

• put a label on each Gaussian:
for each Gaussian:

– if gRatio > threshold, then gaussianLa-
bel = 1

– else gaussianLabel = 0

• weakly label unlabeled data:
y train weak labled = ‘gaussianLabel’ of the
Gaussian assigned to the sample.

310

Figure 2: Architecture of the system including the EM
algorithm.

• y train = y train labled + y train weak labled

• LModel = Logistic Regression model trained
by(X train, y train)

• predicted validation = predict value on valida-
tion set by LModel

• classification report(true validation, pre-
dicted validation)

5 Experiments and Evaluation

We considered various Gaussian Mixture Models,
with different numbers of Gaussian and selected
the model which has the best performance on the
validation data. We enlist the precision, recall, and
the F1 score of the models on the validation data
for both the classes and both the languages in Table
2. We manually observed these results and tried to
determine the optimum number of Gaussians. We

have noticed that the Gaussian mixture model with
16 numbers of Gaussians has the most promising
results for Bengali while for Hindi a model with 32
numbers of Gaussian achieves the best result.

5.1 Training and Testing
After fixing the optimal Gaussian mixture model
with the help of logistic regression, we train vari-
ous machine learning models with human labeled
data merged with semi-supervised weakly labeled
data. However, we have fixed the number of hu-
man labeled data in the training set throughout the
experiments. While we take various amounts of
weakly labeled data and add them into the training
set for identifying the impacts on utilizing varia-
tions in size of the weakly labeled data. We trained
a logistic regression as well as Support Vector Ma-
chine (SVM) classifiers which are the classic ma-
chine learning models along with a neural network
(Multi Layer Perceptron), and compared the results.
For the neural networks, we used various MLP
and chose the one giving the best results. In Table
3.1 and 3.2, we noted the performances of various
classifiers on the validation set vs. size of weakly
labeled data in the training set. (Note that class 1
is check-worthy claims, and class 0 is not-check-
worthy claims) The number of weakly labeled data
vs. the F1 score obtained in the test set is plotted
in Figure 3, for both the languages and both the
classes.

5.2 Observations
We observed that the performances of the models
decrease with respect to the reduction in the pro-
portion of human annotated data in the training set.
This is also very much expected, as any machine
learning algorithm’s performance is supposed to
deteriorate as the quality of its training data deteri-
orates.

This decrease in performance with increase in
proportion of weakly labeled data is steeper in case
of Hindi while for Bengali, it is more gentle. The
gentle decline of performance with the increase in
proportion of weakly labeled data for the Bengali
dataset is an important observation. It shows that,
annotating a lot of data with weak labels by em-
ploying a semi supervised algorithm, for detecting
fact checkable claims is possible.

In the case of Bengali for both the classes, the
performances of the classifiers like LR and SVM
started improving while adding a weakly labeled
data of size 1K to 2K while the neural networks

311

Size of Weakly
Labeled Data

class LR SVM Neural
network

No. of sample
in support

0
0 0.79 0.73 0.82 210
1 0.54 0.49 0.54 90

1000
0 0.69 0.70 0.70 210
1 0.45 0.40 0.49 90

2000
0 0.72 0.74 0.68 210
1 0.46 0.44 0.47 90

4000
0 0.63 0.72 0.67 210
1 0.38 0.44 0.46 90

8568
0 0.65 0.68 0.63 210
1 0.43 0.44 0.46 90

Table 3: F1 score for different classifiers with respect to different amounts of weakly labeled data in Bengali.

Size of Weakly
Labeled Data

class LR SVM Neural
network

No. of sample
in support

0
0 0.77 0.73 0.84 123
1 0.60 0.56 0.62 58

1000
0 0.82 0.74 0.83 123
1 0.61 0.55 0.68 58

2000
0 0.77 0.74 0.76 123
1 0.63 0.51 0.61 58

4000
0 0.71 0.71 0.73 123
1 0.60 0.47 0.54 58

Table 4: F1 score for different classifiers with respect to different amounts of weakly labeled data in Hindi.

(a) Bengali class 0 (b) Bengali class 1

(c) Hindi class 0 (d) Hindi class 1

Figure 3: F1 score on test set vs No. of weakly labeled data in training set.

312

started degrading. In contrast, LR and neural net-
works started improving in case of Hindi data in the
range of 500 to 1K except SVM. This is probably
due to the fact that most machine learning algo-
rithms perform better with more data. Thus, when
a little amount of weakly labeled data is added to
the training set, the performance of some of the
models are improved. But, the performances of
some of the models do not improve owing to the
fact that the data we are adding is ultimately weakly
labeled, and not by a human annotator.

6 Conclusion

In the present work, we have attempted to filter
out check-worthy claims, which is the first step of
fact-checking. Since there is a lot of information,
and little intelligent labour available for manually
tagging check-worthy sentences, we have used a
semi-supervised algorithm to quickly tag a lot of
check-worthy sentences by achieving a satisfied
level of accuracy. We used the semi supervised Ex-
pectation Maximization algorithm with Gaussian
Mixture Models, to weakly label the unlabeled data.
We crawled a lot of data from the web and weakly
labelled them using the Expectation Maximization
algorithm. We trained some classification models
with this weakly labeled data and observed the re-
sults on human annotated data. We find that the
performance is very close to the performance by
training with manually labeled data. Therefore, we
can conclude that our semi supervised algorithm
works well in the task of identifying fact checkable
sentences.

We expect the efficiency will increase in future
with more complicated models and more labeled
data. For the Expectation maximization algorithm,
computation power is also a concern. It is difficult
to fit Gaussian Mixture models with high dimen-
sions with currently available hardware. However
we did proof that this approach works for identify-
ing a lot of check-worthy claims with fair accuracy
in Indian languages.

Acknowledgments

The present work is supported by the research
project entitled ”Claim Detection and Verification
using Deep NLP: an Indian Perspective” funded by
DRDO, Government of India.

References
Sarthak Anand, Rajat Gupta, Rajiv Ratn Shah, and Pon-

nurangam Kumaraguru. 2018. Fully automatic ap-
proach to identify factual or fact-checkable tweets.
In FIRE.

Frank Dellaert. 2003. The expectation maximization
algorithm.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete
data via the em - algorithm plus discussions on the
paper.

Rudra Dhar, Subhabrata Dutta, and Dipankar Das.
2019. A hybrid model to rank sentences for check-
worthiness. In CLEF.

Naeemul Hassan, Bill Adair, James Hamilton,
Chengkai Li, Mark Tremayne, Jun Yang, and Cong
Yu. 2015. The quest to automate fact-checking. Pro-
ceedings of the 2015 Computation + Journalism
Symposium.

Naeemul Hassan, Anil Nayak, Vikas Sable, Chengkai
Li, Mark Tremayne, Gensheng Zhang, Fatma Ar-
slan, Josue Caraballo, Damian Jimenez, Siddhant
Gawsane, Shohedul Hasan, Minumol Joseph, and
Aaditya Kulkarni. 2017. Claimbuster: the first-ever
end-to-end fact-checking system. Proceedings of
the VLDB Endowment, 10:1945–1948.

Roderick Little and Donald Rubin. 2014. Statistical
Analysis with Missing Data, Second Edition, pages
200–220.

Soumayan Bandhu Majumder and Dipankar Das. 2020.
Detecting fake news spreaders on twitter using uni-
versal sentence encoder. In CLEF.

Jifeng Xuan, Jiang He, Zhilei Ren, Jun Yan, and
Zhongxuan Luo. 2010. Automatic bug triage using
semi-supervised text classification. pages 209–214.

https://doi.org/10.14778/3137765.3137815
https://doi.org/10.14778/3137765.3137815
https://doi.org/10.1002/9781119013563.ch10
https://doi.org/10.1002/9781119013563.ch10

