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Abstract

Cosine similarity is a widely used measure
of the relatedness of pre-trained word embed-
dings, trained on a language modeling goal.
Datasets such as WordSim-353 and SimLex-
999 rate how similar words are according to
human annotators, and as such are often used
to evaluate the performance of language mod-
els. Thus, any improvement on the word sim-
ilarity task requires an improved word repre-
sentation. In this paper, we propose instead
the use of an extended cosine similarity mea-
sure to improve performance on that task, with
gains in interpretability. We explore the hy-
pothesis that this approach is particularly use-
ful if the word-similarity pairs share the same
context, for which distinct contextualized simi-
larity measures can be learned. We first use the
dataset of Richie et al. (2020) to learn contex-
tualized metrics and compare the results with
the baseline values obtained using the standard
cosine similarity measure, which consistently
shows improvement. We also train a contextu-
alized similarity measure for both SimLex-999
and WordSim-353, comparing the results with
the corresponding baselines, and using these
datasets as independent test sets for the all-
context similarity measure learned on the con-
textualized dataset, obtaining positive results
for a number of tests.

1 Introduction

Cosine similarity has been largely used as a mea-
sure of word relatedness, since vector space models
for text representation appeared to automatically
optimize the task of information retrieval (Salton
and McGill, 1983). While other distance measures
are also commonly used, such as Euclidean dis-
tance (Witten et al., 2005), for cosine similarity
only the vector directions are relevant, and not
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their norms. More recently, pre-trained word rep-
resentations, also referred to as embeddings, ob-
tained from neural network language models, start-
ing from word2vec (W2V) (Mikolov et al., 2013),
emerged as the main source of word embeddings,
and are subsequently used in model performance
evaluation on tasks such as word similarity (To-
shevska et al., 2020). Datasets such as SimLex-999
(Hill et al., 2015) and WordSim-353 (Finkelstein
et al., 2001), which score similarity between word-
pairs according to the assessment of several hu-
mans annotators, have become the benchmarks for
the performance of a certain type of embedding
on the task of word similarity (Recski et al., 2016;
Dobó and Csirik, 2020; Speer et al., 2017; Banjade
et al., 2015).

For ~na and ~nb, the vector representations of two
distinct words wa and wb, cosine similarity takes
the form

cosab =
~na · ~nb
||~na|| ||~nb||

, (1)

with the Euclidean inner product between any two
vectors ~na and ~nb given as

~na · ~nb =
∑
i

~nia~n
i
b, (2)

and the norm of a vector ~na given as

||~na|| =
√
~na · ~na, (3)

dependent on the inner product (Axler, 1997).
Using this measure of similarity, improvements

can only take place if the vectors that represent the
words change. However, the assumption that the
vectors interact using a Euclidean inner product
becomes less plausible when it comes to higher
order vectors. If, differently, we consider that the
vector components are not described in a Euclidean
basis, then we enlarge the possible relationships
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between the vectors. Specifically in the calculation
of the inner product, on which the cosine similarity
depends, we can use an intermediary metric tensor.
By challenging the assumption that the underlying
metric is Euclidean, cosine similarity values can be
improved without changing vector representations.

We identify two main motivations to search for
improved cosine similarity measures. The first mo-
tivation has to do with the cost of training larger and
more refined language models (Bender et al., 2021).
By increasing the performance on a task simply by
changing the evaluation measure without changing
the pre-trained embeddings, we expect that better
results can be achieved with more efficient and in-
terpretable methods. This is particularly true of
contextualized datasets, with benefits not only for
tasks such as word similarity, but also others that
use cosine similarity as a measure of relatedness,
such as content based recommendation systems
(Schwarz et al., 2017), and where it can be particu-
larly interesting to explore the different metrics that
emerge as representations of vector relatedness.

The second motivation comes from composi-
tional distributional semantics, where words of dif-
ferent syntactic types are represented by tensors
of different ranks, and representations of larger
fragments of text are produced via tensor contrac-
tion (Coecke and Clark, 2010; Grefenstette and
Sadrzadeh, 2011a,b; Milajevs et al., 2014; Baroni
et al., 2014; Paperno et al., 2014). This framework
has proved to be a valuable tool for low resource
languages, enhancing the scarce available data with
a grammatical structure for composition, providing
embeddings of complex expressions (Abbaszadeh
et al., 2021). As these contractions depend on an
underlying metric that is usually taken to be Eu-
clidean, improvements have only been achieved,
once again, by modifying word representations
(Wijnholds and Sadrzadeh, 2019). As proposed
by Correia et al. (2020), another way to improve
on these results consists in using a different metric
to mediate tensor contractions. Metrics obtained in
tasks such as word similarity can be transferred to
tensor contraction, and thus we expect this work to
open new research avenues on the compositional
distributional framework, providing a better inte-
gration with (contextual) language models.

This paper is organized as follows. In §2 we in-
troduce an extended cosine similarity measure, mo-
tivating the introduction of a metric on the hypoth-
esis that it can optimize the relationships between

the vectors. In §3 we explain our experiment on
contextualized and non-contextualized datasets to
test whether improvements can be achieved. In §4
we present the results obtained in our experiments
and in §5 we discuss these results and propose fur-
ther work.

Our contributions are summarized below:

• Use of contextualized datasets to explore con-
textualized dynamic embeddings and evaluate
the viability of contextualized similarity mea-
sures;

• Expansion of the notion of cosine similarity,
motivating our model theoretically, contribut-
ing to a conceptual simplification that yields
interpretable improvements.

1.1 Related Literature
Variations on similarity metrics on the contextual-
ized dataset of Richie et al. (2020) have been first
explored in Richie and Bhatia (2021), but only on
static vector representations and diagonal metrics.
Other analytical approaches to similarity learning
have been identified in Kulis et al. (2013). The
notion of soft cosine similarity of Sidorov et al.
(2014) presents a relevant extension theoretically
similar to ours, but motivated and implemented
differently. Using count-base vector space models
with words and n-grams as features, the authors
extract a similarity score between features, using
external semantic information, that they use as a
distance matrix that can be seen as a metric; how-
ever, they do not implement it as in Eq. (4), but
instead they transform the components by creating
a higher dimensional vector space where each entry
is the average of the components in two features,
multiplied by the metric, whereas we, by contrast,
learn the metric automatically and apply it to the
vectors directly. Hewitt and Manning (2019) also
use a modified metric for inner product to probe the
syntactic structure of the representations, showing
that syntax trees are embedded implicitly in deep
models’ vector geometry.

Context dependency in how humans evaluate
similarity, which we based our study on, has been
widely supported in the psycholinguistic literature.
Tversky (1977) shows that similarity can be ex-
pressed as a linear combination of properties of
objects, Barsalou (1982) looks at how context-
dependent and context-independent properties in-
fluence similarity perception, Medin et al. (1993)
explore how similarity judgments are constrained
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by the very fact of being requested, and Goldstone
et al. (1997) test how similarity judgments are in-
fluenced by context that can either be explicit or
perceived.

2 Model

A metric is a tensor that maps any two vectors to
an element of the underlying field K, which in this
case will be the field of real numbers R. This el-
ement is what is known as the inner product. To
this effect, the metric tensor can be represented
as a function, not necessarily linear, over each of
the coordinates of the vectors it acts on. In geo-
metric terms, the metric characterizes the under-
lying geometry of a vector space, by describing
the projection of the underlying manifold of a non-
Euclidean geometry to a Euclidean geometry Rn

(Wald, 2010). The inner product between two vec-
tors is informed by the metric in a precise way, and
is representative of how the distance between two
vectors should be calculated.

A standard example consists of two unit vectors
on a sphere, which is an S2 manifold that can be
mapped onto R3. If the vectors are represented in
spherical coordinates, which are a map from S2 to
R3, the standard method of computing the angle
between the vectors using Eq. (1) will fail to give
the correct value. The vectors need to be trans-
formed by the appropriate non-linear metric to the
Euclidean basis in R3 before a contraction of the
coordinates can take place. To illustrate this, take
as an example a triangle drawn on the surface of a
sphere S2. If it is projected onto a planisphere R3,
a naive measurement of its internal angles will ex-
ceed the known 180 degrees, which corresponds to
a change in the inner product between the vectors
tangents to the triangle corners (see Levart (2011)
for a demonstration). To preserve this inner prod-
uct, and thus recover the equivalence between a
triangle on a spherical surface and a triangle on a
Euclidean plane, the coordinates need to be prop-
erly transformed by the appropriate metric before
they are contracted.

By the same token, we explore here the possi-
bility that the shortcomings of the values obtained
using cosine similarity when compared with hu-
man similarity ratings are not due to poor vector
representations, but to a measure that fails to assess
the distance between the vectors adequately. To
test this hypothesis, we generalize the inner prod-
uct of Eq. (2) to accommodate a larger class of

relationships between vectors, modifying it using a
metric represented by the distance matrix d, once
a basis is assumed, that defines the inner product
between two vectors as

~na ·d ~nb =
∑
ij

~niad
ij~njb, (4)

where ~nia is the ith component of ~na. Using a
metric of this form, the best we can achieve is a
linear rescaling of the components of the vectors,
which entails the existence of a non-orthogonal
basis. The metric d is required to be bilinear and
symmetric, which is satisfied if

dsym = BTB, (5)

such that Eq. (4) can be rewritten as

~na ·d ~nb = (B~na)
T · (B~nb) . (6)

We can thus learn the components of a metric
for a certain set of vectors by fitting it to the goal of
preserving a specified inner product. In the case of
word similarity, the matrix B can be learned super-
vised on human similarity judgments, towards the
goal that a contextualized cosine similarity applied
to a set of word embeddings, using Eq. (6), returns
the correct human assessment. An advantage of
this approach is that the cosine is symmetric with
respect to its inputs, which is a nice property that
this extension preserves by requiring that symmetry
of the metric.

3 Methods

The general outline of our experiment is as fol-
lows. First, we learn contextualized cosine simi-
larity measures for related (contextualized) pairs
of words, and afterwards for unrelated (non-
contextualized) pairs of words. A schematic rep-
resentation can be found in Fig. 1. We then test
whether these learned measures are transferable
and provide improvements on word pairs that were
not seen during training, when compared with the
standard cosine similarity baseline.

3.1 Datasets
For a contextualized assessments of word similar-
ity, we use the dataset of Richie et al. (2020), where
365 participants were asked to judge the similarity
between English word-pairs that are co-hyponyms
of eight different hypernyms (Table 1). Participants
were assigned a specific hypernym and were asked
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Each hypernym of Richie et al.
(2020) dataset

Human similarity
judgements

Standard Cosine 
(Baseline)

Context independent datasets

Entire Richie et al. (2020)
dataset (all hypernyms)
WordSim353
SimLex999

Contextualized Cosine

Word 
Representations

Contextual (dynamic) 

BERTctxt

Non-contextual (static and
dynamic) 

W2V
GloVe
BERT
GPT-2

Results

Metric learning

Early stopping
k-fold 
Learning rate 

Figure 1: Schematic representation of the experiment leading up to the results in Tables 4 and 5.

to rate the similarity between each co-hyponym
pair from 1 to 7, with the highest rating indicating
the words to be maximally similar. The number
of annotators varies per hypernym, but each word-
pair is rated by around 30 annotators, such that for
the largest categories each annotator only saw a
fraction of the totality of the word-pairs. As exam-
ples from the hypernym ‘Clothing’, the word-pair
‘hat/overalls’ was rated by 32 of the 61 annotators,
resulting in an average similarity of 1.469, while
‘coat/gloves’ had an average similarity rating of
3.281 and ‘coat/jacket’ of 6.438, also by 32 annota-
tors. The average similarity was computed for all
word-pairs and rescaled to a value between 0 and
1, to be used as the target for supervised learning.

Besides trying to fit a contextualized similar-
ity measure to each hypernym, we also consid-
ered the entire all-hypernyms dataset, in order to
test whether training on the hypernyms separately
would result in a better cosine measure compared
with when the hypernym information was disre-
garded.

To test whether similarity measures can be
learned if the similarity of words is not assessed
within a specific context, we use the WordSim-353
(WS353) (Finkelstein et al., 2001) and part of the
SimLex-999 (SL999) (Hill et al., 2015) datasets,
where the word-pairs bear no specific semantic re-
lation. From the SL999 dataset only the nouns

Table 1: Number of words, word-pairs and human an-
notators per hypernym.

Hypernym Words Pairs Annotators
Birds 30 435 54
Clothing 29 406 61
Professions 28 378 67
Sports 28 378 61
Vehicles 22 231 28
Fruit 21 210 31
Furniture 20 190 33
Vegetables 20 190 30
All 198 2418 365

were included, resulting in a dataset of 666 word-
pairs. Additionally, we use these datasets to verify
whether the similarity metric learned by training
on the whole dataset of Richie et al. (2020) can be
transferred to other, more general, datasets.

3.2 Word embeddings

To fine-tune the cosine similarity measure, we start
from different pre-trained word representations.
We do that for two classes of embeddings, static
and dynamic.

Static embeddings were obtained from a pre-
trained word2vec (W2V) model (Mikolov et al.,
2013) and a pre-trained GloVe model (Pennington
et al., 2014), each used to encode each word in the
pair. Dynamic embeddings were obtained from two
Transformers-based models, pre-trained BERT (De-
vlin et al., 2019) and GPT-2 models (Radford et al.,
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Representation Corpus Corpus size Dim
word2vec Google News 100B 300
GloVe GigaWord Corpus & Wikipedia 6B 200
BERTbase-uncased BooksCorpus & English Wikipedia 3.3B 768
GPT-2medium 8 million web pages ∼ 40 GB 768

Table 2: Pre-trained embeddings obtained from differ-
ent source language models, with BERT and GPT-2 im-
plemented using the Huggingface Transformers library.

Hypernym Context words
Birds small, migratory, other,

water, breeding
Clothing cotton, heavy, outer, winter,

leather
Professions health, legal, engineering,

other, professional
Sports youth, women, men, ea, boys
Vehicles military, agricultural, motor,

recreational, commercial
Fruit citrus, summer, wild, sweet,

passion
Furniture wood, furniture, modern,

antique, office
Vegetables some, wild, root, fresh, green

Table 3: Five most likely words for masked token pre-
ceding hypernym token using BERT.

2019) (see Table 2). Here the representation of
each word was taken to be the average representa-
tion of sub-word tokens when necessary, excluding
the [CLS] and [SEP] tokens.

The token representations provided by the BERT
model, as a bidirectional dynamic language model,
can change depending on the surrounding context
tokens. As such, additional contextualized embed-
dings were retrieved, BERTctxt, to test whether per-
formance could be improved relative to the baseline
cosine metric by using the hypernym information,
as well as when compared with the hypernym co-
sine metric learned on non-contextualized repre-
sentations. In this way we test whether leveraging
the contextual information intrinsic to this dataset
can in itself improve similarity at the baseline level,
without the need of further training.

The contextualized vectors of BERTctxt were
obtained by first having BERT predict the five
most likely adjectives that precede each hypernym
using ([MASK] <hypernym>), and then using
those adjectives to obtain five contextualized em-
beddings for each co-hyponym, subsequently aver-
aged over. Most of the predicted words were adjec-
tives, and the few cases that were not were filtered
out. For instance, for the category ‘Clothing’, the
most likely masked tokens were ‘cotton’, ‘heavy’,
‘outer’, ‘winter’ and ‘leather’. The contextualized
representation of each hyponyms of ‘Clothing’ was

(a)

(b)

(c)

(d)

Figure 2: Distributions of pairwise human similarity
judgments simhum and cosine similarity measures us-
ing either BERT representations (cos(BERT)) or con-
textualized BERT representations (cos(BERTctxt)). In
(a) and (b) the absolute difference of scores, ordered
per hypernym, is shown, while (c) and (d) represent the
distribution of different similarity scores with respect
to each other. Comparing the first two plots we can
see a regularization effect by contextualizing the repre-
sentations, and between the last two plots we can see a
clustering effect.
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thus calculated as its average representation in the
context of each of the adjectives, so that, for in-
stance, for ’coat’ we first obtained its contextual-
ized representation in ‘cotton coat’, ‘heavy coat’,
‘outer coat’, ‘winter coat’, and ‘leather coat’, per-
forming a final averaging. The full list of context
words can be found in Table 3. Figs. 2a and 2b
show that this transformation reduces the absolute
extreme values of the difference between the val-
ues of the standard cosine similarity and the cor-
responding human similarity assessments, while
regularizing the bulk of the differences closer to
the desired value of 0. We tested other forms of
contextualizing, such as (<hypernym> is/are
[MASK]), but the resulting representations did not
show as much improvement.

The WS353 and SL999 datasets were only
trained with non-contextualized embeddings, since
we cannot obtain contextualized embeddings for
the nouns in these datasets using the same method.
For consistency, the models that were learned with
contextualized representations were not tested on
these datasets at the final step of our experiment.

3.3 Model

A linear model was implemented on the PyTorch
machine learning framework to learn the parame-
ters of B, without a bias, such that a word initially
represented by inputa is transformed to input’a =
Binputa. The forward function of this model takes
two inputs and returns

(input’a)
T · input’b√

(input’a)
T · input’1

√
(input’b)

T · inputb
, (7)

where a and b correspond to the indices of the
words of a given word-pair1.

3.4 Cross-validation

The number of co-hyponyms per hypernym is small
when compared with the number of parameters
in B to be trained, which depends on the square
of the dimension Dim of each representation. To
ensure that the models did not overfit, a k-fold
cross-validation was used during training (Raschka,
2015), which divided each dataset in k training sets
and non-overlapping development sets. Addition-
ally, early stopping of training was implemented
in the event that the validation loss increased for

1https://github.com/maradf/
Contextualized-Cosine

Figure 3: Example of learning curve, showing losses
over epochs, from a fold training on the hypernym
Clothes on the GloVe embeddings. In this case, train-
ing was stopped early at 397 epochs.

ten consecutive epochs after it dropped below 0.1
(Bishop, 2006).

3.5 Hyperparameter selection

Per each dataset h (each hypernym, all hypernyms,
WS353 or SL999) and learning rate lr, k models
Bh

i,lr
were trained, with i ∈ {1, ..., k} and with k

corresponding validation sets vali. The training
was done using two 16 cores (64 threads) Intel
Xeon CPU at 2.1 GHz.

A fixed seed was used to find the best combina-
tion of the learning rate lr (1 × 10−5, 1 × 10−6,
and 1 × 10−7) and the number of folds (5, 6 and
7) for the k-fold cross-validation. The regression
to the best metric was done using the mean square
error loss function and the Adam optimizer. The
maximum number of training epochs was set to
500, as most models converged at that point as per
preliminary learning curve inspection (Fig.3). The
implementation of early stopping resulted in de
facto variation of the number of epochs required to
train each model.

3.6 Testing the model

Each one of the Bh
i,lr

models was tested on the cor-
responding holdout validation set vali, resulting
in two correlation scores between the models’ pre-
dicted similarity scores and the human judgment
scores: a Pearson correlation score rhi,lr(val

h
i ) and

a Spearman correlation score ρhi,lr(val
h
i ). A final

score per k and lr was calculated using the average
performance on the validation sets as

 https://github.com/maradf/Contextualized-Cosine
 https://github.com/maradf/Contextualized-Cosine
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(a) Pearson correlations.

Dataset (h) BERT BERTctxt GPT-2 word2vec GloVe

Model Base Model Base Model Base Model Base Model Base

Birds 0.311 0.098 0.316 0.042 0.200 -0.023 0.293 0.213 0.215 0.194
Clothing 0.550 0.141 0.515 0.065 0.501 0.349 0.529 0.417 0.574 0.364
Professions 0.501 0.193 0.601 0.073 0.651 0.542 0.635 0.566 0.529 0.529
Sports 0.452 0.175 0.543 0.139 0.556 0.324 0.532 0.418 0.580 0.386
Vehicles 0.496 0.218 0.616 0.123 0.645 0.385 0.738 0.719 0.703 0.567
Fruit 0.315 0.016 0.378 -0.037 0.333 0.203 0.361 0.239 0.571 0.392
Furniture 0.353 -0.018 0.539 -0.035 0.568 0.399 0.368 0.333 0.470 0.462
Vegetables 0.211 -0.059 0.293 -0.044 0.378 0.144 0.577 0.281 0.562 0.290
All hypernyms 0.434 0.100 0.542 0.040 0.508 0.287 0.483 0.400 0.539 0.397
WordSim-353 0.517 0.238 - - 0.651 0.647 0.637 0.654 0.622 0.568
SimLex-999 0.403 0.161 - - 0.555 0.504 0.495 0.455 0.510 0.408

(b) Spearman correlations.

Dataset (h) BERT BERTctxt GPT-2 word2vec GloVe

Model Base Model Base Model Base Model Base Model Base

Birds 0.260 0.102 0.299 0.052 0.190 -0.054 0.250 0.211 0.238 0.201
Clothing 0.436 0.184 0.467 0.059 0.445 0.276 0.510 0.414 0.513 0.384
Professions 0.501 0.248 0.578 0.170 0.560 0.473 0.518 0.410 0.482 0.486
Sports 0.391 0.174 0.526 0.142 0.540 0.291 0.458 0.339 0.478 0.325
Vehicles 0.518 0.238 0.601 0.056 0.626 0.288 0.709 0.687 0.680 0.596
Fruit 0.265 -0.014 0.333 -0.103 0.365 0.173 0.368 0.277 0.491 0.342
Furniture 0.353 -0.032 0.491 -0.120 0.527 0.393 0.442 0.402 0.464 0.451
Vegetables 0.217 -0.028 0.305 0.015 0.363 0.089 0.587 0.290 0.528 0.228
All hypernyms 0.407 0.111 0.504 0.034 0.504 0.242 0.446 0.379 0.477 0.377
WordSim-353 0.543 0.267 - - 0.715 0.705 0.675 0.701 0.624 0.579
SimLex-999 0.416 0.180 - - 0.566 0.513 0.475 0.445 0.500 0.374

Table 4: Best correlation scores between human similarity judgments and similarity scores found by the trained
model, compared with baseline cosine metric values of the same hyperparameters. The underlined correlation
values are the statistical significant values with a p < 0.05, and the bold values correspond to model correlations
that were higher than base correlations.

rhk,lr =
1

k

k∑
i=1

rhi,lr(val
h
i ), (8)

ρhk,lr =
1

k

k∑
i=1

ρhi,lr(val
h
i ). (9)

The baseline results were obtained in a similar
form, but with the model Bstd corresponding to
the identity matrix, returning the standard cosine
similarity rating as

rh,stdk =
1

k

k∑
i=1

rstd(valhi ), (10)

ρh,stdk =
1

k

k∑
i=1

ρstd(valhi ). (11)

The model results shown in Table 4 correspond
to the best correlation values obtained using Eqs.
(8) and (9), with the baselines given as in Eqs. (10)

and (11). The hyperparameters corresponding to
the best results can be found in Table 5, along with
the relative change in correlation performance. As
the seed was fixed, the differences in performance
achieved by models trained on each hypernym
and on all-hypernyms of the contextualized dataset
were not due to randomization errors. The final
correlation per fold on the entire all-hypernyms
dataset was found by first calculating the correla-
tion per hypernym and then averaging over all eight
hypernyms.

To test the transferability of the metric learned
on the all-hypernyms dataset to other datasets, the
model that returned the best correlation scores on
the validation datasets of the all-hypernyms dataset
was tested on the entire WS353 and SL999 datasets.
As the best performing model consists in fact of k
models, each one of these was tested on the entire
datasets, as



135

(a) Pearson correlations.

Dataset (h) BERT BERTctxt GPT-2 W2V GloVe

% lr , k % lr, k % lr, k % lr, k % lr, k

Birds 217 10−6,5 652 10−6, 5 770 10−5, 5 38 10−5, 5 11 10−5, 7
Clothing 290 10−6,5 692 10−6, 6 44 10−5, 6 27 10−5, 7 58 10−6, 5
Professions 160 10−6, 5 723 10−6, 6 20 10−5, 5 12 10−5, 7 0 10−5, 5
Sports 158 10−5, 6 291 10−6, 6 72 10−5, 6 27 10−5, 6 50 10−6, 7
Vehicles 128 10−6, 6 401 10−5, 7 68 10−5, 5 3 10−5, 5 24 10−6, 6
Fruit 1869 10−5, 7 922 10−6, 6 64 10−5, 7 51 10−6, 5 46 10−7, 7
Furniture 1861 10−5, 7 1440 10−6, 6 42 10−5, 7 11 10−5, 6 2 10−5, 6
Vegetables 258 10−5, 7 566 10−6, 6 163 10−5, 5 105 10−6, 7 94 10−6, 5
All 334 10−5, 5 1255 10−6, 7 77 10−5, 6 21 10−5, 6 36 10−7, 6
WordSim-353 117 10−6, 7 - - 1 10−5, 7 -3 10−5, 6 10 10−5, 5
SimLex-999 150 10−6, 7 - - 10 10−5, 6 9 10−5, 6 25 10−6, 5

(b) Spearman correlations.

Dataset (h) BERT BERTctxt GPT-2 W2V GloVe

% lr, k % lr, k % lr, k % lr, k % lr, k

Birds 155 10−6, 5 475 10−6, 5 252 10−5, 7 18 10−5, 5 18 10−7, 5
Clothing 137 10−6, 5 692 10−6, 6 61 10−5, 7 23 10−5, 7 34 10−6, 5
Professions 102 10−6, 7 240 10−6, 5 18 10−5, 5 26 10−5, 7 -1 10−7, 6
Sports 125 10−5, 6 270 10−6, 6 86 10−5, 6 35 10−5, 6 47 10−6, 6
Vehicles 118 10−6, 6 973 10−6, 6 117 10−5, 7 3 10−5, 5 14 10−6, 6
Fruit 1793 10−6, 7 223 10−6, 6 111 10−5, 6 33 10−6, 6 44 10−7, 7
Furniture 1003 10−6, 6 309 10−6, 5 34 10−5, 5 10 10−5, 6 3 10−6, 7
Vegetables 675 10−5, 7 1933 10−6, 6 308 10−5, 5 102 10−6, 7 132 10−6, 5
All hypernyms 267 10−5, 5 1382 10−6, 7 108 10−5, 6 18 10−5, 6 27 10−6, 5
WordSim-353 103 10−6, 5 - - 1 10−5, 7 -4 10−6, 5 8 10−5, 5
SimLex-999 131 10−6, 7 - - 10 10−5, 6 7 10−5, 6 34 10−6, 5

Table 5: Change (%) in correlation from Table 4, given by (|Model| − |Base|)/|Base|, at corresponding best
hyperparameters (lr, k). Values in bold indicate the highest increase on a given dataset.

rh,testk,lr
=

1

k

k∑
i=1

rAll−hyp
i,lr

(testh), (12)

ρh,testk,lr
=

1

k

k∑
i=1

ρAll−hyp
i,lr

(testh), (13)

with h ∈ {WS353,SL999}.
The baselines for these results were obtained

by applying Bstd to the entire WS353 and SL999
datasets as

rh,std = rstd(testh), (14)

ρh,std = ρstd(testh). (15)

As the correlation functions are not linear, the re-
sults from Eqs. (10) and (11) for the WS353 and
SL999 datasets are expected to differ from those
obtained using Eqs. (14) and (15) for the same
datasets.

4 Results

The validation results on Table 4 show consistent
improvements over the baselines, with statistical
significance. This confirms that the modification
introduced to the cosine measure worked in a prin-
cipled way, and consistent with the results found by
Richie and Bhatia (2021). On the individual hyper-
nym datasets, ‘Vehicles’ showed the best correla-
tions, except for the Pearson correlation in GPT-2,
in spite of not being the largest hypernym dataset.
On the contrary, the smallest categories showed
the lowest correlations. In general, the relative per-
formance of hypernyms according to the baselines
extends to the model correlations, although with
better performance. With some exceptions, mainly
in the ‘Birds’ hypernym, the best performing rep-
resentation was GPT-2, followed by W2V, but the
relative increase as shown in Table 5 was clearly
superior for the dynamic representations. An im-
portant observation that we make is that the model
trained on all hypernyms had a better performance
than the average performance on the individual hy-
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pernyms. As the seed was fixed, this means that
the performance on the hypernym-specific valida-
tion sets increased if at training time the models
saw more examples, from different categories, in-
dicating that a similarity relationship was learned
and transferred across different contexts. Improve-
ments over baseline also took place if a metric was
learned on datasets where the word pairs did not
share a context, as was the case with WS353 and
SL999, but the percentual increase was lower, as
seen in Table 5.

Comparing the results of BERT contextualized
and non-contextualized, the baseline values of the
contextualized representations were worse than
those obtained with the contextualized embeddings,
although without statistical significance, while the
improvement after training was consistently better
and significant for all datasets with the contextu-
alized representations. Figs. 2c and 2d, show that
the distribution of points using the contextualized
embeddings is more concentrated and collinear,
making it more likely that a metric that acts in the
same way for all points in the dataset will rotate
and rescale them into a positive correlation. The
percentual increases also show that BERT contex-
tualized had the greatest increases from before to
after training, suggesting that there was a cumula-
tive effect in considering the context both in the
representations and in the similarity measure.

Table 6 shows the results of applying the best
model learned on all hypernyms to the WS353 and
SL999 datasets. The baseline values for the static
representations are comparable with the existing
literature (Toshevska et al., 2020). We see that our
model was capable of improving on the correlation
scores on the datasets, for some representations.
Although the improvements did not happen across
the board, they show clear evidence that the notion
of similarity in the form of a modified cosine
measure can be learned in one dataset and applied
with positive results to an independent dataset.

Pearson Spearman

WS353 SL999 WS353 SL999

BERT Model 0.487 0.375 0.519 0.384
Base 0.239 0.151 0.267 0.172

GPT-2 Model 0.635 0.507 0.676 0.513
Base 0.647 0.504 0.709 0.520

W2V Model 0.613 0.472 0.632 0.457
Base 0.653 0.460 0.700 0.452

GloVe Model 0.593 0.431 0.558 0.392
Base 0.578 0.408 0.578 0.376

SOTA 0.704 0.658 0.828 0.76

Table 6: Best model trained on all hypernyms, tested
on SimLex-999 and WordSim-353 datasets. Bold val-
ues indicate correlation scores above baseline, and un-
derlining indicates statistical significance. State of the
art from Recski et al. (2016); Dobó and Csirik (2020);
Speer et al. (2017); Banjade et al. (2015).

5 Conclusion and Outlook

In this paper we tested whether a contextualized
notion of cosine similarity could be learned, im-
proving the similarity not only of the results for the
datasets where it was learned, but of unrelated sim-
ilarities. We showed that this metric improved the
correlations above baseline, and that, when learned
on a contextualized similarity dataset, it had an ad-
vantage when compared to one learned on a dataset
with unrelated word-pairs. We furthermore showed
that this framework has the potential to generalize
the notion of similarity to word-pairs it has not seen
during training. An important future research line
towards interpretability consists in understanding
the properties of the metrics that yielded the best
results, particularly in identifying the distinctive
features of the best metrics, such as their eigen-
systems. Other further directions include apply-
ing these metrics to distributional compositional
contractions, including with dependency enhance-
ments (Kogkalidis et al., 2019), testing this frame-
work on larger contextualized datasets and trying
out more complex, non-linear, metric forms.
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