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Abstract

The audio segmentation mismatch between
training data and those seen at run-time is a
major problem in direct speech translation. In-
deed, while systems are usually trained on
manually segmented corpora, in real use cases
they are often presented with continuous audio
requiring automatic (and sub-optimal) segmen-
tation. After comparing existing techniques
(VAD-based, fixed-length and hybrid segmen-
tation methods), in this paper we propose en-
hanced hybrid solutions to produce better re-
sults without sacrificing latency. Through ex-
periments on different domains and language
pairs, we show that our methods outperform
all the other techniques, reducing by at least
30% the gap between the traditional VAD-
based approach and optimal manual segmen-
tation.

1 Introduction

Speech-to-text translation (ST) consists in translat-
ing utterances in one language into text in another
language. From the architectural standpoint, ST
systems are traditionally divided in cascade and
direct. Cascade solutions first transcribe the audio
via automatic speech recognition (ASR) and then
translate the generated transcripts with a machine
translation (MT) component. In direct ST, a single
end-to-end model operates without intermediate
representations. This allows reducing error propa-
gation and latency, as well as exploiting more in-
formation (e.g. speaker’s vocal traits and prosody).

Different from MT, where sentence-level splits
represent a natural (though not necessarily opti-
mal) input segmentation criterion, handling audio
data is more problematic. Existing training corpora
(Cattoni et al., 2021; Iranzo-Sánchez et al., 2020)
split continuous speech into utterances according to
strong punctuation marks in the transcripts (which
are known in advance), reflecting linguistic criteria

related to sentence well-formedness. This (manual)
segmentation is optimal, as it allows ST systems
to potentially generate correct outputs even for lan-
guages with different syntax and word order (e.g.
subject-verb-object vs subject-object-verb). At run-
time, though, audio transcripts are not known in ad-
vance and automatic segmentation techniques have
to be applied. The traditional approach is to adopt
a Voice Activity Detection (VAD) tool to break the
audio on speaker silences (Sohn et al., 1999), con-
sidered as a proxy of clause boundaries. However,
since the produced segmentation is not driven by
syntactic information (unlike that of the training
corpora), final performance on downstream tasks
degrades considerably (Sinclair et al., 2014).

The impact of a syntax-unaware segmentation
can be limited in cascade systems by means of ded-
icated components that re-segment the ASR tran-
scripts, so to feed MT with well-formed sentences
(Matusov et al., 2006). The absence of intermediate
transcripts makes this solution unfeasible for direct
systems, whose performance is therefore highly
sensitive to sub-optimal audio segmentation. This
has been shown in the 2020 IWSLT evaluation cam-
paign (Ansari et al., 2020), where the best direct
ST system had a key feature in the segmentation
algorithm (Potapczyk and Przybysz, 2020). In the
same evaluation setting, the second-best direct sys-
tem (Bahar et al., 2020) exploited an external ASR
model to segment the audio (with a +10% BLEU
gain compared to its VAD-based counterpart). This
solution, however, formally makes it closer to a
cascade architecture, losing the advantage of the
reduced latency of direct systems. For this rea-
son, while in §4 we compare with the state-of-the-
art method proposed in (Potapczyk and Przybysz,
2020), we will not consider approaches needing ad-
ditional models (e.g. ASR) like the one in (Bahar
et al., 2020).

So far, no work analyzed in depth the strengths



and weaknesses of different audio segmentation
methods in the context of direct ST. To fill this gap,
we study the behavior of the existing techniques
and, based on the resulting observations, we pro-
pose improved hybrid methods that can also be ap-
plied to streaming audio. Through experiments in
two domains (TED and European Parliament talks)
and two target languages (German and Italian), we
show that our solutions outperform the others in all
conditions, reducing the gap with optimal manual
segmentation by at least 30% compared to VAD
systems.

2 Audio Segmentation Methods

2.1 Existing Methods

VAD systems. VAD tools are classifiers that deter-
mine whether a given audio frame contains speech
or not. Based on this, a VAD-based segmentation
considers a sequence of consecutive speech frames
as a segment, filtering out non-speech frames. In
this work, we evaluate two widely used open source
VAD tools: LIUM (Meignier and Merlin, 2010)
and WebRTC’s VAD.1 For LIUM, we apply the
configuration employed in the IWSLT campaign
(Ansari et al., 2020). WebRTC takes as parameters
the frame size (10, 20 or 30ms) and the aggres-
siveness mode (an integer in the range [0, 3], 3
being the most aggressive). We select three config-
urations based on the segmentation they produce
on the MuST-C test set (Cattoni et al., 2021), one
of the test sets used in our experiments (see §4).
Specifically, we consider those not generating too
many (more than two times the segments of the
manual segmentation) or too long segments (more
than 60s). They are: (3, 30ms), (2, 20ms) and (3,
20ms). The statistics computed for the two segmen-
tation tools on the MuST-C test set are presented
in Table 1, along with those corresponding to man-
ual segmentation. To better understand the impact
of different VADs on translation quality, the tools
are compared on MuST-C and Europarl-ST data.
Table 2 reports preliminary translation results for
English-German (en-de) and English-Italian (en-it),
obtained with the systems described in §3. LIUM
and the most aggressive WebRTC configuration (3,
20ms) are significantly worse than the other two
WebRTC configurations. As (2, 20ms) achieves
comparable BLEU performance to (3, 30ms) on
MuST-C and better on Europarl-ST, it is used in

1http://webrtc.org/. We use the Python interface
http://github.com/wiseman/py-webrtcvad.

the rest of the paper.

System Man. LIUM WebRTC
Aggress. 3 2 3
Frame size 30ms 20ms 20ms
% filtered 14.66 0.00 11.27 9.53 15.58
Num segm. 2,574 2,725 3,714 3,506 5,005
Max len (s) 51.97 18.63 48.84 58.62 46.76
Min len (s) 0.05 2.50 0.60 0.40 0.40
Avg len (s) 5.82 6.44 4.19 4.53 2.96

Table 1: Statistics for different segmentations of the
MuST-C test set. “Man.” = sentence-based segmenta-
tion. “% filtered” = percentage of audio discarded.

VAD System MuST-C Europarl-ST
BLEU (↑) TER (↓) BLEU (↑) TER (↓)

English-German
LIUM 19.55 76.21 15.39 94.06
WebRTC 3, 30ms 21.90 66.96 16.23 89.35
WebRTC 3, 20ms 19.48 72.25 14.07 99.32
WebRTC 2, 20ms 21.87 66.72 18.51 78.12

English-Italian
LIUM 21.29 67.50 18.88 73.73
WebRTC 3, 30ms 22.46 64.99 19.85 72.28
WebRTC 3, 20ms 20.09 68.62 17.35 78.18
WebRTC 2, 20ms 22.34 66.12 20.90 69.54

Table 2: Results of the VAD systems on MuST-C and
Europarl-ST for en-de and en-it.

Fixed-length. A simple approach is splitting the
audio at a predefined segment length (Sinclair et al.,
2014), without considering the content. In contrast
with VAD, this naive method has the benefit of
ensuring that the resulting segments are not too
long or too short, which are typically hard condi-
tions for ST systems. However, the split points
are likely to break sentences in critical positions
such as between a subject and a verb or even in the
middle of a word. Unlike VAD, this method does
not filter the non-speech frames from the input au-
dio, which is entirely passed to the ST system. Fig.
1 shows that, with fixed segmentation, translation
quality improves with the duration of the segments
(slightly for values >=16s) up to 20s, after which
it decreases. 20 seconds is the maximum segment
length in our training data due to memory limits:
we can conclude that longer segments produce bet-
ter translations, but models can effectively translate
only sequences whose length does not exceed the
maximum observed in the training set.
SRPOL-like segmentation. The method de-
scribed in (Potapczyk and Przybysz, 2020) takes
into account both audio content (silences) and tar-
get segments’ length (i.e. the desired length of the
generated segments) to split the audio. It recur-
sively divides the audio segments on the longest
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Figure 1: BLEU scores (Y axis) with different fixed-length segmentations (in seconds – X axis).

silence, until either there are no more silences in
a segment, or the segment itself is shorter than
a threshold. It is important to notice that, in
(Potapczyk and Przybysz, 2020), the silences are
detected with a manual operation, making the ap-
proach hard to reproduce and not scalable. In this
paper, we replicate the logic, but we rely on We-
bRTC to automatically identify silences. For this
reason, our results might be slightly different than
the original ones, but the segmentation is automatic
and easy to reproduce. Another major problem of
this method is that it requires the full audio to be
available for splitting it. So it is not applicable to
audio streams and online use cases. Based on the
previous considerations drawn from Fig.1, in our
experiments we set the maximum length threshold
to 20s, so that the model is fed with sequences
that are not longer than the maximum seen at train-
ing time. The resulting segments have an average
length of 7-8s.

2.2 Proposed hybrid segmentation

Similar to (Potapczyk and Przybysz, 2020), our
method is hybrid as it considers both the audio con-
tent and the target segments’ length. However, un-
like (Potapczyk and Przybysz, 2020), we give more
importance to the target segments’ length than to
the detected pauses (we motivate this choice in §4).
Specifically, we split on the longest pause in the
interval (minimum and maximum length), if any,
otherwise we split at maximum length. Maximum
and minimum segment lengths are controlled by
two hyper-parameters (MAX LEN and MIN LEN).
Unlike the SRPOL-like approach, ours can operate
on audio streams, as it does not require the full
audio to start the segmentation procedure. More-
over, the latency is controlled by MAX LEN and
MIN LEN, which can be tuned to trade translation
quality for lower latency.

We tested different values for MIN LEN and
we chose 17s for our experiments, because it re-
sulted in the best score on the MuST-C dev set.
As in the other methods, and for the same reasons,
MAX LEN is set to 20s. The resulting segments
have an average length slightly higher than 17s.

We also introduce a variant of this method that
enforces splitting on pauses longer than 550ms. In
(Karakanta et al., 2020), this threshold is shown to
often represent a terminal juncture: a break be-
tween two utterances, usually corresponding to
clauses. Splitting on such pauses should hence
enforce separating different clauses. As a result,
segments can be shorter than MIN LEN, but we still
ensure they are not longer than MAX LEN. With
this variant, the segments are much shorter, as their
average length is 8s, similar to the SRPOL-like
technique.

3 Experimental Settings

We use a Transformer (Vaswani et al., 2017) whose
encoder is modified for ST. The encoder starts with
two 2D convolutional layers that reduce the length
of the Mel-filter-bank sequence by a factor of 4.
The resulting tensors are passed to a linear layer
that maps them into the dimension used by the fol-
lowing encoder Transformer layers. A logarithmic
distance penalty (Di Gangi et al., 2019) is applied
in all the encoder Transformer layers.

The ST models have 11 encoder Transformer
layers and 4 decoder Transformer layers. We use
8 attention heads, 512 attention hidden units and
2,048 features in the FFNs’ hidden layer. We set
dropout to 0.1. The optimizer is Adam (Kingma
and Ba, 2015) with betas (0.9, 0.98). The learning
rate is scheduled with inverse square root decay
after 4,000 warm-up updates, during which it in-
creases linearly from 3 · 10−4 up to 5 · 10−3. The
update frequency is set to 8 steps; we train on 8



Segm. method MuST-C en-de Europarl en-de MuST-C en-it Europarl en-it
BLEU (↑) TER (↓) BLEU (↑) TER (↓) BLEU (↑) TER (↓) BLEU (↑) TER (↓)

Manual segm. 27.55 58.84 26.61 60.99 27.70 58.72 28.79 59.16
Best VAD 21.87 66.72 18.51 78.12 22.34 66.12 20.90 69.54
Best Fixed (20s) 23.86 61.29 23.27 64.01 23.20 64.24 22.28 64.57
SRPOL-like 22.26 71.10 20.49 77.61 23.12 66.27 23.26 66.19
Pause in 17-20s 24.39 61.35 23.78 63.15 23.50 63.76 22.86 63.44

+ force split 23.17 66.20 22.52 68.56 23.45 63.79 24.15 63.31

Table 3: Comparison between manual and automatic segmentations: VAD, fixed-length and hybrid approaches.

GPUs and each mini-batch is limited to 12,000 to-
kens or 8 sentences, so the resulting batch size is
slightly lower than 512. We initialize the convo-
lutional and the first encoder Transformer layers
with the encoder of a model trained on ASR data.
We pre-train our ST models on the ASR corpora
with synthetic targets generated by an MT model
fed with the known transcripts (Jia et al., 2019) and
we fine-tune on the ST corpora. Both these train-
ings adopt knowledge distillation (Hinton et al.,
2015) with the MT model as teacher (Liu et al.,
2019; Gaido et al., 2020). Finally, we fine-tune on
the ST corpora with label-smoothed cross-entropy
(Szegedy et al., 2016). In all the three steps, we use
SpecAugment (Park et al., 2019) and time stretch
(Nguyen et al., 2020) as data augmentation tech-
niques.

The ASR model is similar to ST models, but we
use 8 encoder layers and 6 decoder layers. For MT,
instead, the Transformer attentions has 16 heads
and hidden-layer features are two times those of
ST and ASR models.

We experimented with translation from English
speech into two target languages: German and
Italian. To train the MT model used for knowl-
edge distillation, we employed the WMT 2019
datasets (Barrault et al., 2019) and the 2018 release
of OpenSubtitles (Lison and Tiedemann, 2016) for
English-German and OPUS (Tiedemann, 2016) for
English-Italian. All the data were cleaned with
Modern MT (Bertoldi et al., 2017). The ASR
model, whose encoder was used to initialize that of
the ST model, was trained on TED-LIUM 3 (Her-
nandez et al., 2018), Librispeech (Panayotov et al.,
2015), Mozilla Common Voice2, How2 (Sanabria
et al., 2018), and the audio-transcript pairs of the
ST corpora. The ST corpora were MuST-C (Cat-
toni et al., 2021) and Europarl-ST (Iranzo-Sánchez
et al., 2020) for both target languages. We filtered
out samples with input audio longer than 20s to
avoid out-of-memory errors. The text is encoded

2https://voice.mozilla.org/

using BPE (Sennrich et al., 2016) with 8,000 merge
rules (Di Gangi et al., 2020).

4 Results

We compute ST results in terms of BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006) on the
MuST-C and Europarl-ST test sets for en-de and
en-it. In MuST-C the two test sets are identical
with regard to the audio, while in Europarl-ST they
contain different recordings.

As shown in Table 3, fixed-length segmentation
always outperforms the best VAD, both in terms
of BLEU and TER. This may be surprising but it
confirms previous findings in ASR (Sinclair et al.,
2014): also in ST, VAD is more costly and less
effective than a naive fixed-length segmentation.
Besides, it suggests that the resulting segments’
length is more important than the precision of the
split times. This observation motivates the defi-
nition of our proposed techniques. Compared to
fixed-length segmentation, the SRPOL-like method
provides better results for en-it, but worse for en-
de, indicating that the syntactic properties of the
source and target languages are an important factor
for audio segmentation (see §5).

Our proposed method (Pause in 17-20s in Ta-
ble 3) outperforms the others on all test sets but
Europarl en-it, in which SRPOL-like has a higher
BLEU (but worse TER). The version with forced
splits on 550ms pauses is inferior to the version
without forced splits on the German test sets, but
it is on par for MuST-C en-it and superior on Eu-
roparl en-it, on which it is the best segmentation
overall by a large margin. Moreover, its scores are
always better than the ones obtained by the SRPOL-
like approach, although the length of the produced
segments is similar. These results suggest that, al-
though the best version depends on the syntax and
the word order of the source and target languages,
our method can always outperform the others in
terms of both BLEU and TER. Noticeably, it does
not introduce latency, since it does not require the
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Figure 2: Z-score normalized output lengths (number of words) according to the input segments length.

(a) Hallucinations with non-speech audio
Audio Music and applause.
4s seg-
ments

[Chinesisch] [Hawaiianischer Gesang] // Chris Anderson: Du bist ein Idiot. // Nicole: Nein.
[Chinese] [Hawaiian song] // Chris Anderson: You are an idiot. // Nicole: No.

(b) Hallucinations with sub-sentential utterances
Audio Now, chimpanzees are well-known for their aggression. // (Laughter) // But unfortunately, we have made too

much of an emphasis of this aspect (...)
Reference Schimpansen sind bekannt für ihre Aggressivität. // (Lachen) // Aber unglücklicherweise haben wir diesen

Aspekt überbetont (...)
4s seg-
ments

Publikum: Nein. Schimpansen sind bekannt. // Ich bin für ihre Aggression gegangen. // Aber leider haben wir
zu viel Coca-Cola gemacht. // Das ist eine wichtige Betonung dieses Aspekts (...)
Audience: No. Chimpanzees are known. // I went for their aggression. // But unfortunately we made too much
Coca-Cola. // This is an important emphasis of this aspect (...)

20s seg-
ments

Schimpansen sind bekannt für ihre Entwicklung. // Aber leider haben wir zu viel Schwerpunkt auf diesem
Aspekt (...)
Chimpanzees are known for their development. // But unfortunately, we have expressed too much emphasis on
this aspect (...)

(c) Hallucinations and bad translation with sub-sentential utterances
Audio (...) where the volunteers supplement a highly skilled career staff, you have to get to the fire scene pretty early to

get in on any action.
Reference (...) in der Freiwillige eine hochqualifizierte Berufsfeuerwehr unterstützten, muss man ziemlich früh an der

Brandstelle sein, um mitmischen zu können.
4s seg-
ments

(...) wo die Bombenangriffe auf dem Markt waren. // Man muss bis zu 1.000 Angestellte in die USA, nach
Nordeuropa kommen.
(...) where the bombings were on the market. // You have to come up to 1,000 employees in the USA, to
Northern Europe.

20s seg-
ments

(...) in der die Freiwilligen ein hochqualifiziertes Karriere-Team ergänzen, muss man ziemlich früh an die
Feuerszene kommen, um in irgendeiner Aktion zu gelangen.
(...) where the volunteers complement a highly qualified career team, you have to get to the fire scene pretty early
in order to get into any action.

(d) Final portions of long segment ignored
Audio But still it was a real footrace against the other volunteers to get to the captain in charge to find out what our

assignments would be. // When I found the captain, (...)
Reference Aber es war immer noch ein Wettrennen gegen die anderen Freiwilligen um den verantwortlichen Hauptmann

zu erreichen und herauszufinden was unsere Aufgaben sein würden. // Als ich den Hauptmann fand (...)
22s seg-
ments

(...) Es war immer noch ein echtes Fussrennen gegen die anderen Freiwilligen. // Als ich den Kapitän fand, (...)
(...) It was still a real footrace against the other volunteers. // When I found the captain, (...)

Table 4: Translations affected by errors caused by too short – (a), (b), (c) – or too long – (d) – segments. The
symbol “//” refers to a break between two segments. The breaks might be located in different positions in the
different segmentations. Over-generated – in examples (a), (b), (c) – and missing – in (d) – content is marked in
bold respectively in system’s outputs and in the reference.

full audio to be available for splitting it, as the SR-
POL-like technique does. In particular, averaged
on the two domains, our best results (respectively
with and without forced splits) reduce the gap with
the manual segmentation by 54.71% (en-de) and
30.95% (en-it) compared to VAD-based segmenta-
tion.

5 Analysis

A first interesting consideration regards the length
of the produced translations. In particular, we an-
alyze the case of fixed-length segmentation (see
Fig. 2): in presence of short input segments the
output is longer, while it gets shorter in case of seg-



ments longer than 20s. To understand this behavior,
we performed a manual inspection of the German
translations produced by fixed-length segmentation
with 4s, 20s and 22s.

The analysis revealed two main types of er-
rors: overly long (hallucinations (Lee et al., 2018))
and overly short outputs. The first type of error
occurs when the system is fed with small, sub-
sentential segments. In this case, trying to generate
well-formed sentences, the system “completes” the
translation with text that has no correspondence
with the input utterance. The second type of er-
ror occurs when the system is fed with segments
that exceed the maximum length observed in the
training data. In this case, part of the input (even
complete clauses, typically towards the end of the
utterance) is not realized in the final translation.

Table 4 provides examples of all these phenom-
ena. The first three examples show cases of hal-
lucinations in short (4s) segments, while the last
one shows an incomplete translation of a long (22s)
segment. In particular:

(a) shows the generation of text not related to
the source when the audio contains only noise or
silence (e.g. at the beginning of a TED talk record-
ing).

(b) presents the addition of non-existing content
in the translation of a sub-sentential segment.

(c) is related to a sub-sentential utterance as well,
but in this case the output of the system is affected
by both hallucinations and poor translation quality
due to the lack of enough context.

(d) reports a segment whose last portion ignored.
The length of the generated outputs also helps

understanding the different results obtained by
the variants of our method on the two target lan-
guages. Indeed, the introduction of forced splits (+
force split) produces audio segments that are much
shorter (~8s vs ~17s) and hence, according to the
previous consideration, the resulting translation is
overall longer. For German, the difference in terms
of output length is high (> 8.5%), while for Italian
it is much lower (4.33% on MuST-C and 2.49% on
Europarl-ST). So, the German results are penalized
by the additional hallucinations, while, for Italian
translations, the beneficial separation of clauses
delimited by terminal juncture dominates.

This different behavior relates to the different
syntax of the source and target languages. Indeed,
translating from English (an SVO language) into
German (an SOV language) requires long-range re-

orderings (Gojun and Fraser, 2012), which can also
span over sub-clauses. The Italian phrase structure,
instead, is more similar to English. This is con-
firmed by the shifts counted in TER computation,
which are 20% more in German than in Italian.
Moreover, in Italian their number does not change
between our method with and without forced splits,
while in German the version with forced splits has
5-10% more shifts.

6 Conclusions

We studied different segmentation techniques for
direct ST. Despite its wide adoption, VAD-based
segmentation resulted to be underperforming. We
showed that audio segments’ length is a crucial
factor to obtain good translations and that the best
segmentation approach depends on the structural
similarity between the source and target languages.
In particular, we demonstrated that the resulting
segments should be neither longer than the maxi-
mum length of the training samples nor too short
(especially when the target language has a different
structure). Inspired by these findings, we proposed
two variants of a hybrid method that significantly
improve on different test sets and languages over
the VAD baseline and the other techniques pre-
sented in literature. Our approach was designed to
be also applicable to audio streams and to allow
controlling latency, hence being suitable even for
online use cases.
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