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Abstract

Question answering is widespread and a vari-
ety of answer taxonomies exists in research
that divides responses into simple and com-
plex. Multi-hop answering has become pop-
ular when the complexity of questions and an-
swers increases. However, determining when
multi-hop reasoning becomes necessary is not
yet clear.

We propose to apply Bloom’s taxonomy to
the determination of question complexity in
question-answering systems. Originating in
pedagogy, Bloom’s taxonomy measures ques-
tion complexity to determine learning progress
levels. Subsequently, the determined question
complexity can help in deciding whether an
entity or phrase is sufficient as an answer or
whether reasoning chains should be given.

1 Introduction

When determining the answer type in a question-
answering (QA) system, the question type must
be considered first. While entities or short sen-
tences are sufficient for simple, factual questions,
more complex questions require more complex an-
swers. For example, simple product-related ques-
tions, such as “Does Kindle support Japanese?”,
can be easily answered by a yes/no response. When
extracting interpretative questions that require logi-
cal thinking, reasoning chains can be used to gen-
erate answers. Imagine a complex question such as
“What is the current situation in Syria?”. Answer-
ing this question is not easy and cannot be done by
a simple knowledge graph or ontology. To explain
why this answer is correct and to provide a cohesive
line of argumentation, multi-hop reasoning chains
are required to connect successive propositions.

While several approaches exist that present tax-
onomies for question and answer types, the com-
plexity of questions has not yet been measured to

classify the required answers. Assuming that com-
plex questions require complex answers, we need
to ask the question “What makes a question com-
plex?”. How can we determine the complexity of a
question and at what level of complexity are multi-
hop reasoning chains useful or even essential?

In pedagogy, Bloom’s Taxonomy of Educational
Objectives (Bloom et al., 1956) helps to capture a
learner’s level of understanding. At the lowest level
of the taxonomy, simple memorization is required
to reproduce a fact or concept, while as the level
increases, the abstraction level also increases. The
lower levels serve as base knowledge, while higher
levels represent the deeply processed knowledge
that can be abstracted and transferred for specific
purposes (Cannon and Feinstein, 2005).

This paper examines how Bloom’s Taxonomy
can be used to classify questions in QA systems
according to their complexity. Furthermore, it dis-
cusses which factors contribute to the complexity
of a question and when multi-hop reasoning is re-
quired instead of simple information extraction.

2 Related Work

Several approaches attempt to classify answers in
QA systems by constructing a question taxonomy.
Questions are grouped either flatly (Eichmann and
Srinivasan, 1999; Litkowski, 1999) or hierarchi-
cally (Takaki, 2000; Suzuki et al., 2003). Kim
(2014) proposes a method for defining answers and
ambiguity within questions. Moreover, taxonomies
exist for specific question types such as the taxon-
omy for opinion questions (Bayoudhi et al., 2013),
classifications based on data source, analysis types,
and response forms (Mishra and Jain, 2016).1 How-
ever, none of these surveys defines how these tax-
onomies can be used to calculate question complex-
ity.

1For an extensive list see Sundblad (2007).



Datasets containing multi-hop reasoning chains
are widely used (Yang et al., 2018; Jhamtani and
Clark, 2020; Wiegreffe and Marasović, 2021). Rea-
soning chains provide appropriate answers to ques-
tions posed in the respective datasets. For general
questions asked in QA scenarios, it is unclear if
or when a multi-hop reasoning chain is required
as an answer. This is because question complexity
measurement and reasoning chains have not yet
been combined.

Often, question complexity is used in education
to determine the difficulty of student exams. For
example, Luger and Bowles (2013) measure the dif-
ficulty of multiple choice questions. Research on
community QA services is often domain-specific,
comparing the difficulty of topic-related words
within certain domains (Liu et al., 2013; Wang
et al., 2014). Others use provided meta-information
such as user expertise to estimate question difficulty
(Sun et al., 2018) or measure relative complexity by
comparing users’ questions (Thukral et al., 2019).

Research most closely related to ours comes
from Padó (2017), which shows how Bloom’s Tax-
onomy can approximate the difficulty of questions
in a short-answer corpus. Together with measuring
the diversity of student responses, the difficulty can
be estimated from lower to higher levels of the tax-
onomy. In addition, textual entailment methods can
infer levels from the question wording (Anderson
and Krathwohl, 2014). However, their approach
is only used in the context of grading students, so
we propose to adapt it for measuring question com-
plexity in QA systems.

3 Approach

Our method combines Bloom’s Taxonomy (Bloom
et al., 1956) and question classification for QA
systems. We plan to classify the difficulty of ques-
tions by grouping them in Bloom’s revised matrix
(Anderson and Krathwohl, 2014). This matrix con-
tains two dimensions: the knowledge dimension on
the vertical axis and the cognitive process dimen-
sion on the horizontal axis (Cannon and Feinstein,
2005). This means that the complexity to under-
stand and answer a question increases from left
to right, and the complexity of knowledge further
increases from top to bottom. The squares in the
matrix were left empty by Cannon and Feinstein
(2005). We fill each of these squares with typical
question keywords, ranging from simple factual
questions (“list”, “define”, “name”) to more com-

plex questions (“explain”, “analyze”, “justify”).
These keywords can then in turn be mapped to spe-
cific question types. For example, “Who invented...”
might be a representative for a factual question in
the cognitive process dimension “remember”. The
three steps to follow are ...

1. filling in the matrix with keywords,

2. assigning categories to question types, and

3. defining the difficulty for the question types.

The question we want to answer is at what level
of knowledge and cognitive level multi-hop reason-
ing is required. The levels could then be used as a
basis for classifying responses, as more complex
questions will require complex answers. Determin-
ing the threshold of complexity in some experi-
ments remains for future work. The approach is
also intended to give a very general idea of how
to measure question complexity, which is why do-
main dependence is not considered.

We use existing keywords that we can map to
Bloom’s Taxonomy and perform classification on
a QA dataset. The questions of the dataset are
analyzed syntactically such that the model can be
independently applied to other domains.

4 Proof of Concept

In the following, we will show how to map Bloom’s
Taxonomy to question difficulty estimation. There-
fore, typical question keywords will be filled into
the revised matrix of Bloom’s Taxonomy. Then,
the questions will be tagged with their respective
Part-of-Speech (PoS) tags to capture their syntactic
features. For classification, a multi-layer percep-
tron (MLP) will be trained and evaluated on the
development data.

4.1 Keyword Mapping

To establish a connection between pedagogy and
QA systems, we fill in typical question indicator
words from educational studies into the revised ver-
sion of Bloom’s Taxonomy. For each slot in the
matrix, keywords used by Bloom to estimate ques-
tion complexity were assigned to their respective
categories. This is important because (a) the key-
words may appear directly in search queries and (b)
the keywords may be used later to assign question
words and templates to categories. The results are
presented in Table 1.



THE
KNOWLEDGE
DIMENSION

THE COGNITIVE PROCESS DIMENSION

1 2 3 4 5
Remember Understand Apply Analyze Evaluate

A name, list restate state distinguish select
Factual define, label order determine classify according to
B identify describe illustrate examine rank
Conceptual locate explain show analyze compare
C tell summarize solve deduct conclude
Procedural describe translate demonstrate diagram choose
D interpret find out infer justify
Meta Cognitive – paraphrase use examine judge

Table 1: The knowledge dimension matrix by Cannon and Feinstein (2005) filled with key indicators for complex
questions. The complexity ranges from low (top left) to very high (bottom right).

The keywords in the matrix indicate the level of
complexity within a search query. While simpler
questions are located at the top left, more complex
questions are positioned on the bottom right of the
table. In the next step, questions from the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2016) will be extracted, to map the keywords
to question terms. This helps to extract a selection
of questions and classify it according to the cells in
the matrix. The question selection will be described
in more detail in the next section.

4.2 Question Selection

Next, the keywords from Table 1 are used to ex-
tract and classify questions from a QA dataset. The
procedure is as follows: For each keyword in the
matrix, search through the dataset and extract ques-
tions that contain these keywords. For our proof
of concept, we searched SQuAD, a reading com-
prehension dataset consisting of 100,000+ ques-
tions from Wikipedia articles. In the dataset, all
sentences are searched by keyword and marked
correspondingly.

There are two obstacles to overcome. The first
is the small amount of about 770 questions that
contain keywords. The second is the unequal dis-
tribution of samples across the classes. For some
categories no questions exist (D5), some classes
only have 2 samples (C4) and others are overrep-
resented (D3) with 414 samples. Two classes have
significantly more samples than the rest, namely
A1 with 362 samples and D3 with 414 samples.
We circumvent both obstacles by transforming the
task into a binary classification task and by defin-
ing representatives for simple questions (A1) and
complex questions (D3). We then argue that the

complex samples from D3 will require multi-hop
reasoning answers.

To abstract the question structure of the training
set, all words are annotated with their respective
PoS tag. Since question words may indicate the
question complexity, they are included without any
adaptations. This will allow us to derive the com-
plexity of a question from its underlying syntactic
structure. An example from the class 0 (A1) looks
as follows:

Name an example of a heavy isotope

VERB DET NOUN ADP DET ADJ NOUN

An example from class 1 (D3) shows how ques-
tion particles remain untagged:

What number is used in perpendicular computing

WHAT NOUN AUX VERB ADP ADJ NOUN

In the next step, the annotated sentences are used
for classifier training. The classifier and the train-
ing process are described in the following section.

4.3 Question Classification

The question set comprises about 770 samples
and is split into 90% training and 10% validation
sets. Following the Google developers guide for
choosing our classification model, we calculate the
samples/number of words per sample. For a ratio
smaller than 1,500, they advise to choose a word n-
gram-based MLP. Therefore, we split the samples
into n-grams (where n = {1, 2, 3, 4}) and convert
the numbers into vectors. Subsequently, the vec-
tors are scored by importance using tf-idf (short for
term frequency-inverse document frequency).



The vectors are fed into the MLP with 3 layers
and 64 units and trained for 15 epochs. We added a
dropout of 0.2 and early stopping with patience =
3 on validation accuracy to prevent overfitting of
the model. The results are presented in the next
section.

4.4 Evaluation

The results show that binary classification, which
distinguishes between classes 0 (simple answer)
and 1 (multi-hop answer) with A1 and D3 as repre-
sentatives, yields good results with a simple MLP.
The training loss could be reduced after 15 epochs
to 0.21 with an accuracy of 0.92, a validation loss
of 0.42, and a validation accuracy of 0.85. Fig-
ure 1 shows the loss and validation values for each
epoch. The best results were obtained with PoS tag
n-grams where n = {1, 2, 3, 4} and a learning rate
of 1e-3.

Figure 1: Model loss and accuracy per epoch for 15
epochs after early stopping on validation accuracy with
a patience of 3.

When evaluating the model on the validation
data, we obtain a weighted F1 value of 0.85 for
both classes, with an F1 value of 0.72 for class 0
and 0.88 for class 1. Class 1 achieves the highest
recall value of 0.92. A look at the confusion matrix
(Figure 2) shows that the vast majority of classes
were assigned correctly.

To compute the complexity level, the diagonal of
the matrix could be a determinant for the definition
of complex questions. For automated calculations,
add 1 for each step to the right and down the matrix.
If the value is greater than a certain threshold, multi-
hop reasoning can be considered.

Figure 2: In this confusion matrix for binary classi-
fication, 0 represents simple answers (A1 in Bloom’s
Taxonomy) and 1 means that multi-hop answers are re-
quired (D3 in Bloom’s Taxonomy).

5 Conclusion and Future Work

We have shown that Bloom’s revised taxonomy can
be transferred from pedagogy to QA systems. The
diagonal of the matrix is a determinant for defining
complex questions, ranging from simple questions
in the upper left to complex questions on the bot-
tom right. For the proof of concept, we added PoS
tags to the questions as syntactic information to
train a domain-independent classifier for question
complexity. We argued that question words also
contribute to complexity, so they were not trans-
formed. Although the unequal distribution of the
training data only allowed a binary classification
for two representative classes A1 and D3, the clas-
sifier already provides good results for computing
question complexity.

In the future, we plan to collect a larger number
of questions from different types of datasets so that
a greater diversity of questions is captured. This is
crucial for obtaining a diverse data source with a
balanced combination of simple and complex ques-
tions. It also allows us to expand the question pool
so that more classes can be included in the clas-
sification. Next to PoS tagging, a wider variety
of linguistic features that contributes to the com-
plexity of a question should be considered. This
includes the sequence length and the inclusion of
semantic information in the classification model.
Finally, a user study could help to determine the
specific threshold within Bloom’s Taxonomy that
indicates the need for multi-hop reasoning.
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