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Abstract

For open-ended language generation tasks
such as storytelling or dialogue, choosing the
right decoding algorithm is vital for control-
ling the tradeoff between generation quality
and diversity. However, there presently exists
no consensus on which decoding procedure is
best or even the criteria by which to compare
them. In this paper, we cast decoding as a
tradeoff between response quality and diver-
sity, and we perform the first large-scale eval-
uation of decoding methods along the entire
quality-diversity spectrum. Our experiments
confirm the existence of the likelihood trap:
the counter-intuitive observation that high like-
lihood sequences are often surprisingly low
quality. We also find that when diversity is
a priority, all methods perform similarly, but
when quality is viewed as more important, nu-
cleus sampling (Holtzman et al., 2019) outper-
forms all other evaluated decoding algorithms.

1 Introduction

Generative language models are applicable for a
wide variety of tasks including writing articles,
composing Shakespearean sonnets, and engaging
in conversation (Radford et al., 2019; Zhang et al.,
2019; Fan et al., 2018). This work examines de-
coding methods, a critical component in language
models used in open-ended generative tasks where
successful models must generate a diverse spec-
trum of high quality answers rather than merely a
single output (Ippolito et al., 2019a).

For many tasks, these two criteria of quality and
diversity are not equally important. In machine
translation, the most important criteria is to pro-
duce an accurate, high-quality translation of the
input; generating a variety of alternative transla-
tions is also useful, but not if it comes at the cost of
correctness. Meanwhile, in open domain dialogue
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Figure 1: The Likelihood Trap. For a given con-
text, we generate 100 sentences of equal length span-
ning a variety of model likelihoods and ask human
crowdworkers to rate their quality. While model log-
likelihoods are generally positively correlated with av-
erage human quality judgments, we notice an inflec-
tion point after which they become negatively corre-
lated. Each point in the graph represents the average
crowdworker rating of 5 sentences with similar model
likelihoods.

the goal is often to sustain an enjoyable conversa-
tion with a human conversational partner and as
such, a higher premium is placed on diversity. To
give a concrete example for the case of dialogue,
the phrase “I don’t know” is typically a perfectly
reasonable remark that appears quite often in the
course of normal human conversation. However, a
chatbot that only repeats “I don’t know” makes for
a very poor conversationalist. In such open-ended
domains, being able to converse about a wide va-
riety of topics with the occasional odd remark is
highly preferred to merely repeating the safest pos-
sible remark over and over (Li et al., 2016).

To evaluate both of these criteria, we character-
ize the performance of decoding algorithms along
the entire quality-diversity spectrum instead of sim-
ply at individual points. We compare a variety of
commonly-used decoding algorithms in the first
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large-scale study of decoder performance, utilizing
over 38,000 ratings on almost 10,000 samples. Our
results indicate that when diversity is highly valued,
all decoders perform similarly, but when quality is
viewed as more important, the recently proposed
nucleus sampling (Holtzman et al., 2019) outper-
forms all other evaluated decoding algorithms.

Additionally, we investigate the commonly held
intuition that model likelihood is directly correlated
with human quality judgments by explicitly mea-
suring the relationship between the quality of a sen-
tence as judged by human raters and its likelihood
under a generative model. Our findings confirm the
existence of a likelihood trap, the counter-intuitive
observation that the highest likelihood sentences
are of extremely low quality, despite a generally
positive relationship between model likelihoods
and human quality judgments. While this finding
has been observed across a wide variety of models
and tasks from news generation to machine trans-
lation (Cohen and Beck, 2018; Holtzman et al.,
2019), to our knowledge we are the first to ex-
plicitly quantify the relationship between the two
across the entire model probability space.

2 The Likelihood Trap

Sequence likelihood is commonly used as a heuris-
tic for selecting high-quality generations. Beam
search, the principal approach adopted in machine
translation, encapsulates this principle by (approx-
imately) finding the single most likely generation
argmax log pmodel(x).

However, prior work has suggested that this as-
sumption of a monotonically positive relationship
between sequence likelihood and sequence quality
breaks down at the extremes (Section 5). We empir-
ically quantify the relationship between sequence
likelihoods and human quality judgments by sub-
sampling a large number of context-continuation
pairs representing a wide variety of model log-
likelihoods. We then request human crowdworkers
to rate the quality of each continuation given the
context on a five-point “Terrible”-to-“High Quality”
scale. Figure 1 plots these ratings as a function of
log pmodel and confirms that on average the highest
quality generations are not the most likely. Specifi-
cally, we find that continuation quality is generally
positively related with log pmodel(x) up until an
inflection point after which it becomes negatively
related. Our findings suggest that while model like-
lihoods form a good proxy for continuation quality,

naively maximizing over sentence likelihood leads
to suboptimal continuation quality. We term this
phenomenon the likelihood trap.

3 Evaluation Framework

We introduce an evaluation framework for mea-
suring the trade off quality and diversity in lan-
guage generation. We consider autoregressive lan-
guage models that decompose the likelihood of
a sequence x1:n token-by-token in a left-to-right
fashion (Hamilton, 1994; Sutskever et al., 2014).
Specifically, the (conditional) probability of the
sequence is:

pmodel(x1:n | c) =
n∏

i=1

pmodel(xi|x1:i−1, c)

where c is any additional conditioning signal,
such as the previous turn of dialogue. Typically,
pmodel is not sampled from directly; it is first post-
processed by a decoder to bias it towards already
high-likelihood tokens.

We evaluate the quality of a single sequence
x1:n by asking humans for a quality judgment
HJ(x). We can define the quality of a model
Q(p) = Ex∼p[HJ(x)] as the expected human “qual-
ity” judgment for sentences drawn from it. We mea-
sure the diversity of a model via the (conditional)
Shannon entropy H (Shannon, 1948), a diversity
metric widely used across many fields beyond com-
puter science including biology, economics, chem-
istry, and physics. Conditional Shannon entropy
is given by H(p | c) = −Ex∼p(x|c)[log p(x | c)].
Since many metrics for measuring diversity in lan-
guage generation exist in the literature, we validate
our choice of entropy by measuring its correla-
tion with other commonly used metrics of diversity
based on n-gram frequency. We find the Spearman
correlation with distinct-1 and distinct-2 (number
of distinct unigrams and bigrams divided by total
number of n-grams) to be 0.80 and 0.77 respec-
tively over sentences generated by GPT-2.

Our choices of using the average human qual-
ity judgement to measure quality and entropy to
measure diversity guarantee that the optimal Pareto
frontier trades off monotonically between quality
and diversity. Optimizing quality with no regard for
diversity results in outputting only the single high-
est quality sentence, whereas optimizing for diver-
sity with no regard for quality results in outputting
every utterance with equal probability. Typical
tasks in language generation (e.g. summarization,
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machine translation, storytelling) will fall some-
where in between these two extremes.

Since our models are imperfect, each decoding
algorithm will, to the best of its ability, trace out its
own estimate of this frontier. As most commonly
used decoding strategies offer a knob to control
the diversity of the generated text, we compare the
performance of decoding algorithms by plotting
their performance along various positions on the
quality-diversity tradeoff curve.

4 Experiments

We evaluate three commonly used decoding algo-
rithms, sweeping across the quality-diversity curve
by considering several hyperparameter settings per
decoding algorithm. At the extremes of their hy-
perparameter ranges, these algorithms all converge
to greedy and random sampling, respectively.
• temperature: Sample tokens with probability

proportional to p(xi|x1:i−1)1/t, t ∈ [0, 1].
• top-k (Fan et al., 2018): Sample tokens only

from the k highest likelihood tokens in the vo-
cabulary at each timestep, k ∈ [1, vocab size]
• top-p (also known as nucleus sampling)

(Holtzman et al., 2019): Sample only from
tokens comprising the top-p percent of proba-
bility mass at each timestep, p ∈ [0, 1].

4.1 Setup

Due to the large monetary cost of evaluation, we
evaluate each decoding algorithm on the same lan-
guage model: the 774M parameter variant of GPT-
2 (Radford et al., 2019), a publicly-released lan-
guage model. To ground samples in a common
context, we select a set of 48 examples from the
GPT-2 test set to condition upon by manually filter-
ing out examples containing explicit content or web
markup. Samples are drawn by conditioning on a
‘prompt’ consisting of the first 20 space-delimited
words of a test example. As sample quality be-
comes ambiguous when samples are terse (Ippolito
et al., 2019a), we explicitly require all sampling
methods to generate exactly 30 tokens, a length
approximately equal to the prompt.

To estimate the expected Human judgment score
Ep[HJ(x)] of the probability distributions induced
by each decoding algorithm, we enlist a quali-
fied pool of 146 Amazon Mechanical Turk (AMT)
workers selected by satisfactory performance on
a qualification task. Workers are presented sets
of five samples, each conditioned on the same

prompt and drawn from five different algorithm-
hyperparameter configurations and asked to assign
qualitative scores to each sample ranging from
human-like to gibberish. The exact prompts as
shown to crowdworkers along with thorough de-
scriptions of our data collection process and our
checks for robustness are included in the Appendix.

Prior work has found that human annotaters have
significant trouble in directly separating out ma-
chine and human generated continuations when
they are of similar quality, as the task of assess-
ing sentence quality is highly subjective (Ippolito
et al., 2019a). We found that constructing pairwise
preference ratings by randomly pairing samples
evaluated at the same time significantly reduced
the variance of our results. Specifically, if one sam-
ple is rated higher than the other, one is assigned
a score of +1 and the other -1. If both are rated
equally, both are assigned a score of 0. The score
assigned to a decoding configuration is its average
score across all pairwise preference ratings.

4.2 Results

We now introduce the first large-scale study com-
paring decoding algorithms and their hyperparame-
ters. Unlike all prior work (Holtzman et al., 2019;
Ippolito et al., 2019b), we explicitly put decoding
algorithms on equal footing by comparing sample
quality at equal points of diversity. We consider five
hyperparameter configurations per decoding algo-
rithm for a total of fifteen configurations. For each
configuration and prompt, we draw ten samples. In
total, workers rate nearly 10,000 samples resulting
in over 38,000 paired ratings. Our main results are
summarized in Figures 2a and 2b. Reassuringly,
both entropy and human quality judgements vary
smoothly with decoding algorithm hyperparameter.

As expected, random sampling directly from
pmodel(x) is simultaneously the highest entropy
and the lowest quality. This is empirically consis-
tent with the long-standing intuition that decoding
algorithms are critical to improving sample quality.
Why is text from random sampling such poor qual-
ity? Language models such as GPT-2 are trained to
minimize the KL-divergence between a training set
and the model distribution pmodel, an objective that
prioritizes recall over precision (Arjovsky et al.,
2017). As a result, models tend to ensure that high
quality sequences have high likelihood without in-
sisting that all high likelihood sequences also have
high quality. When we evaluate samples from the
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Figure 2: (a) Human judgment scores for each decoding algorithm and hyperparameter choice. A score of 0
represents the average human judgement rating of all the sentences evaluated. Nucleus sampling is rated the highest
while random sampling (“model”) performs the worst. (b) Decoder quality plotted as a function of entropy, with
each point representing a single decoding configuration. Error bars represent 95% bootstrap confidence intervals.

model, we evaluate the latter condition.
Our second conclusion is that sample quality

varies significantly with entropy for all decoding
algorithms. Moreover, when aligned on entropy,
sample quality between all autoregressive decoding
algorithms is comparable across a wide range. It
is only when entropy is low – when decoding al-
gorithms heavily influence sampling – that sample
quality between algorithms diverge. In this regime,
we find that nucleus sampling outperforms top-k,
which in turn outperforms temperature sampling.
Observing such a difference should be unsurpris-
ing: the entropy of a distribution alone does not
characterize its samples and thus its overall quality.
As such, a fair comparison of decoding algorithms
must not only compare at the same level of entropy
but at a range of entropy levels.

5 Related Work

Encouraging Diversity We choose to evaluate
three commonly used decoding methods: nucleus
sampling (Holtzman et al., 2019), top-k sampling
(Fan et al., 2018), and temperature sampling. All
three methods control the relative tradeoff between
quality and diversity with a single hyperparameter
as described in Section 4, though many other de-
coding methods also exist in the literature. Ippolito
et al. (2019b) compares many of these algorith-
mic advancements on the tasks of open-ended dia-
log and image captioning, concluding that quality-
diversity tradeoffs make it difficult to say that any
one method is ubiquitously best.

Likelihood Trap We are far from the first to
observe evidence of the likelihood trap. In particu-
lar, the machine translation and image captioning

communities have long known that using higher
beam sizes often leads to lower BLEU scores
(Vinyals et al., 2016; Yang et al., 2018; Stahlberg
and Byrne, 2019; Meister et al., 2020). In open-
ended generation, Holtzman et al. (2019) find sim-
ilar results, observing that maximizing the likeli-
hood generates extremely repetitive sentences. Our
main contribution towards understanding the like-
lihood trap is the first explicit measurement of the
relationship between model likelihoods and human
quality judgments at all points in the model proba-
bility space, not just the endpoints.

Frameworks Our framework differs from
those which ask that generative models mimic
the training distribution exactly (Hashimoto et al.,
2019; Kingma and Welling, 2013; Goodfellow
et al., 2014). While indistinguishability is some-
times the ultimate goal, humans make errors, and
a perfect model would not seek to imitate these
mistakes. As we ground quality evaluations in hu-
man judgments rather than statistical measures, our
framework is easily able to capture the possibility
of superhuman performance.

6 Conclusion

In this paper, we propose a framework for credibly
evaluating decoding algorithms and use it to con-
duct the first large scale evaluation of decoding al-
gorithms by measuring their performance along the
entire quality-diversity frontier. We observe that
decoders can be tuned to produce higher-quality
text, but that this improved quality comes at the
cost of diversity. Our findings suggest that existing
decoding algorithms are largely interchangeable in
high diversity settings, but that nucleus sampling
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performs best when quality is valued over diversity.
We show that when performing a comparison of
text generated from multiple decoding algorithms,
it is crucial to ensure equivalent diversity to make
the comparison fair, a step many evaluations fail
to do. Finally, we warn against falling for the like-
lihood trap, as selecting generated text that is too
likely results in text that humans judge to be worse.
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A Appendix

A.1 Experimental Design
In this section, we describe the design of experi-
ments presented in Section 4 in greater detail.

We begin by describing the task presented to
crowdsourced raters. A sample task is shown in
Figure 4. Each task consists of a “context” se-
quence of the first 20 words in a news article.1

We then present the rater with five continuations
of 30 word-piece tokens. The rater assigns a la-
bel of “High Quality,” “Decent,” “Passable,” “Bad”
or “Terrible” to each. We note that these labels
are inherently subjective, and include a description
and reference example before each task to calibrate
the rater. The same description and example is
repeated in Figure 3.

In preliminary experiments, we found examples
and instructions insufficient for achieving repeat-
able results. Manual inspection of rater responses
revealed a failure to interpret the labels correctly
as well as spammers who would always choose
the same response for every prompt. As a result,
we crafted a qualification exam of five continua-
tions. Only raters which rated all five continua-
tions correctly or nearly correctly2 were allowed
to participate in further experiments. Of the 550
crowdsourced workers surveyed, 136 met this cri-
teria. We refer to this set of raters as the ”qualified
rater pool” below.

Even with a qualification exam, we found raters
often disagree on the appropriate label for a given
continuation. However, when asked to choose
which of two continuations was higher quality qual-
ity (if any), raters were better aligned. With this in
mind, we choose to analyze pairs of ratings given
in the same task. From five absolute ratings, we
construct twenty pairwise preference ratings: two
per pair of continuations. If two continuations re-
ceive the same label, they are assigned a preference
of 0. If the first continuation is rated higher than
the second, a the pair (first, second) is assigned a
score of +1 and the pair (second, first) a score of -1.
All analyses comparing multiple decoding methods
use this methodology.

Even with the precautions above, care is needed
to ensure repeatable results. To measure this, we

1News articles are sourced from GPT-2’s WebText dataset.
https://github.com/openai/gpt-2-output-dataset

2Raters which incorrectly labeled at most one continuation
with a label at most one level off (e.g. if the correct answer
is ”Bad”, acceptable errors are ”Passable” and ”Terrible”) are
counted as ”nearly correct”.

performed an “A/A” experiment prior to data col-
lection. This experiment consists of having the
same tasks rated by two different pools of raters.
Identical analyses are performed on both rating re-
sults, and the experimental setup is deemed valid
if conclusions are consistent. To achieve this, we
constructed 150 tasks3 using a subset of the con-
text sequences and decoding methods from our
primary experiment. We artificially split the quali-
fied worker pool in two by sending the same tasks
for evaluation at midnight and at noon.4 We submit
the same set of tasks to both rater pools. An anal-
ysis of results from both sets of ratings (Figure 5)
reveals a statistically consistent preference of top-p
over top-k and (local) temperature sampling, and
a severe disapproval of random sampling from the
model. These results are also consistent with the
same statistics gathered in the full-scale experiment
presented in the main text and another experiment
described below.

To further validate the reliability of our method-
ology, we explicitly measure inter-rater agreement
on the same set of 150 tasks in a follow-up exper-
iment after large-scale data collection. In this ex-
periment, we ask each task be rated by five distinct
raters. We measure Fleiss’s Kappa, a measure inter-
rater agreement, on the resulting pairwise ratings.
We obtain a score of 0.1964 – an indication that a
correlation between raters exists but that the task is
far from unambiguous. While this may initially ap-
pear concerning, we argue that this is an indication
of the task’s difficulty. Unlike image classification,
for example, a universally agreeable criteria for
text quality does not exist. A measure of Cohen’s
Kappa on the A/A experiment above produces a
score of 0.19578 – nearly identical to the inter-rater
agreement experiment described here. The similar-
ity of these two statistics gives evidence that the
proposed experimental design is repeatable in spite
of the task’s ambiguity. These reuslts underscore
the importance of large-scale, repeatable studies
like that presented here. We conclude by measur-
ing rater preference between each pair of sampling
method and hyperparameter on the five-raters-per-
task inter-rater agreement experiment described
above. Results, as shown in Figure 7, indicate that
the same trends presented in the full-scale experi-
ment (Figure 2a) hold.

3The large-scale experiment includes 1,930 tasks.
4All tasks within each experiment were rated within 4

hours and 1.5 hours, respectively.
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Context Continuation log p(x) Classification

The Atlanta Falcons have started
the 2015 season 4-0 under new
head coach Dan Quinn.
Quarterback Matt Ryan has the ...

... mental Tough O’Rourke Tough apology assessment category of virtue from Boser’ Blog here. It’s got
letters and images on it and is utterly ...

-177 Nonsense

... team afloat and looks closer to the 2010 Atlanta Falcons. Starting cornerback Desmond Trufant was one
of the top players on the 2014 ...

-74 Reasonable

... team in the thick of the NFC South race. The Atlanta Falcons have started the 2015 season 4-0 under new
head coach Dan Quinn. Quarter...

-14 Repetition

They have changed the phone menu
to try to deflect us to email, but you
can still get a live ...

... answer from a female administratoria llallushoss@rahpx Sandra PJ Jenniea nightiopq HamidF daroyqg
S’) ...

-229 Nonsense

... message or call on line, so I suppose they are just using that as an excuse. Yet they are still telling people
to change their telephone number...

-86 Reasonable

... link to a phone number here. They have changed the phone menu to try to deflect us to email, but you
can still get a live link to...

-23 Repetition

Table 1: Examples of sentences at various model likelihoods. Sentences with very low log pmodel generate non-
sense, while sentences that have high likelihood under the model often devolve into extreme repetition. Nonsense
and repetition classifications shown here are only for illustrative purposes. Crowdworkers simply rated sentences
for overall quality.

Figure 3: Instructions for the crowdworker task. Each sentence continuation is labeled on a scale from “Terrible”
to “High Quality”. A description of each label and an example continuation that fits each each is provided before
each task. Exact example used may vary.
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Figure 4: Sample crowdworker task used for the main evaluation results. Raters assign a label on a scale from
“Terrible” to “High Quality” to each of five continuations sharing a common context of twenty words. Each
continuation is generated by a different sampling method and hyperparameter.
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(a) A/A, midnight
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(b) A/A, noon
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(d) Inter-rater

Figure 5: Average Human judgement scores for each sampling method, aggregated across sampling method hy-
perparameters. In spite of being collected by different raters on different sets of tasks and different points in time,
rater preference remains consistent.

Experiment Num Ratings Kappa
A/A 2,968 0.1957 (Cohen’s)

Five-Rater 14,760 0.1964 (Fleiss’s)

Figure 6: Inter-rater agreement between pairwise preference ratings as measured in a preliminary A/A experiment
and an explicit, five-raters-per-task inter-rater agreement experiment. While agreement is low, Kappa is strongly
consistent between both experiments.
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Figure 7: Human judgement scores for each decoding algorithm and hyperparameter choice, as measured in the
inter-rater agreement experiment. Preference between sampling methods remains consistent with large-scale ex-
periment shown in Figure 2a in spite of using only decodes generated by a subset of context sequences.


