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Abstract

Despite state-of-the-art performance, NLP sys-
tems can be fragile in real-world situations.
This is often due to insufficient understanding
of the capabilities and limitations of models
and the heavy reliance on standard evaluation
benchmarks. Research into non-standard eval-
uation to mitigate this brittleness is gaining
increasing attention. Notably, the behavioral
testing principle ‘Checklist’, which decouples
testing from implementation revealed signifi-
cant failures in state-of-the-art models for mul-
tiple tasks. In this paper, we present a case
study of using Checklist in a practical scenario.
We conduct experiments for evaluating an of-
fensive content detection system and use a
data augmentation technique for improving the
model using insights from Checklist. We lay
out the challenges and open questions based on
our observations of using Checklist for human-
in-loop evaluation and improvement of NLP
systems. Disclaimer: The paper contains ex-
amples of content with offensive language. The
examples do not represent the views of the
authors or their employers towards any per-
son(s), group(s), practice(s), or entity/entities.

1 Introduction

NLP systems have been known to learn spurious
patterns from data to achieve high accuracy on test
sets (Goyal et al., 2017; Gururangan et al., 2018;
Glockner et al., 2018; Tsuchiya, 2018; Geva et al.,
2019). Evaluating models on static benchmarks
and on test sets that have a similar distribution to
the training data has resulted in an overestimation
of model performance (Belinkov and Bisk, 2018;
Recht et al., 2019) and models becoming increas-
ingly fragile or less useful in real-world settings.
This can be due to various factors such as language
complexity and variability, the difference between
training, testing, and real-world data, and insuffi-
cient understanding of the capabilities and limita-
tions of the model itself. When deployed in the

wild, such systems tend to break down, resulting in
grossly incorrect predictions. This leads to mistrust
in the system at two levels – first, on individual
predictions and second, on the system’s soundness
in uncontrolled environments such as usage after
deployment (Ribeiro et al., 2016).

Further, evaluation benchmarks are also becom-
ing increasingly obsolete due to the exponential
rise in data and compute-heavy systems that ex-
ceed performance expectations, bringing the bench-
mark’s ‘toughness’ and hence, its reliability into
question (Nie et al., 2020). In order to mitigate this
limitation of static evaluation, several approaches
are used to evaluate other model aspects includ-
ing, but not limited to, robustness (Rychalska et al.,
2019), fairness (Prabhakaran et al., 2019), consis-
tency (Ribeiro et al., 2019), explanations (Ribeiro
et al., 2016), and adversarial performance (Ribeiro
et al., 2018b; Iyyer et al., 2018; Nie et al., 2020).

Human-in-Loop processes can be used to com-
plement the capabilities of automation with human
expertise (Ribeiro et al., 2020; Potts et al., 2020;
Nie et al., 2020; Ribeiro et al., 2018b). Previous
studies have shown that using humans to close the
loop of the process of evaluation, explanation, or
improvement can lead to a much better understand-
ing of the system through higher explainability
(Ribeiro et al., 2018a, 2016), better detection of
model failures (Ribeiro et al., 2020; Iyyer et al.,
2018), and easier bug-fixing (Ribeiro et al., 2020,
2018b), resulting in robustness of the model in prac-
tical scenarios and increased trust in its predictions.

Ribeiro et al. (2020) introduced a behavioral test-
ing strategy that decouples testing from model im-
plementation. Using human-generated test sets,
they showed that state-of-the-art NLP models for
multiple tasks fail to perform well for basic capa-
bilities. We describe the framework in detail in
section 2.

In this paper, we describe a case study of using
the Checklist paradigm of evaluation in a practi-
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cal scenario. Specifically, we used Checklist to
evaluate and debug an offensive content detection
system. We found that Checklist can lead to effec-
tive pinpointing of specific capabilities for which
the model, despite impressive performance on a
standard benchmark test set, failed. Further, these
insights can be used to improve the model using
targeted data augmentation to debug specific model
failures. However, we found that using Check-
list for evaluation and improvement is not always
foolproof. We discuss the challenges and open
questions observed during these experiments.

The rest of the paper is organized as follows:
First, we give a brief overview of the Checklist
framework. In Section 3, we describe our case
study, including the capabilities we test, results on
the base model, the method applied to use these
insights for improvement, and the results thereafter.
Finally, we present a detailed analysis of some of
the most imminent challenges with using Checklist
for our experiments.

2 Overview of Checklist

The Checklist framework (Ribeiro et al., 2020) in-
troduces a human-in-loop behavioral testing tech-
nique for evaluating NLP systems. The authors
argue that even though models perform well on
static benchmarks, they fail to perform in real-
world scenarios for basic capabilities. They release
an open-source package 1 with functionality to cre-
ate template sets and run software engineering-like
decoupled testing on black-box models.

The individual phenomena tested using Check-
list are known as capabilities. These capabilities
are based on model expectations and the language
usage that it needs to handle. For example, Nega-
tion is a capability of a Sentiment Analysis model
- the model should be able to distinguish ‘happy’
and ‘not happy’ as two opposite sentiments despite
the overlapping word ‘happy’.

The Checklist framework provides three differ-
ent test types. The Minimum Functionality Tests
(MFTs) are simple tests, similar to unit tests in soft-
ware testing, that can test predictions on specific
model capabilities. Most of the capabilities tested
in our case study are MFTs. Invariance tests (INVs)
are a test type where small semantic-preserving
perturbations are applied to the test cases, and it is
expected that the model output should not change.
For example - in our case, while testing for the Ro-

1https://github.com/marcotcr/checklist

bustness of the model, small typos are introduced.
Directional Expectation tests (DIRs) are similar to
INV, except that the model output is expected to
change in a certain way.

In order for humans to generate test cases,
Checklist uses Templates and Lexicons. For ex-
ample: ‘I {POSITIVE VERB} {ACTIVITY}.’ is
a template. ‘POSITIVE VERB’ and ‘ACTIVITY’
in this template are two different keywords in the
lexicon, each taking a specific set of values. For ex-
ample, POSITIVE VERB = [‘like’, ‘love’, ‘enjoy’]
and ACTIVITY = [‘dancing’, ‘hiking’ ‘cooking’,
‘coding’]. The template generates 12 examples - the
Cartesian product of the values of the two lexicon
keywords in the template.

In the original Checklist work, the authors test
state-of-the-art and commercial systems across
three tasks revealing unprecedented failure rates
even for the most basic capabilities. For more de-
tailed information on these results, we refer the
reader to the original paper.

3 A Case Study of Using Checklist

We used Checklist to evaluate and improve an in-
house offensive content detection system. While
we studies a particular system as a use case, the
process can be applied to any NLP model.

The first step was to create a documentation of
expectations. This documentation was important
to lay out guidelines for what constitutes positive
or negative examples in specific settings. In accor-
dance with standard text classification annotation,
for this task, offensive content is the positive class,
and non-offensive content is the negative class. The
documentation or guidelines contained concrete
definitions of various offensive content categories
that the model is expected to detect. These are
henceforth known as the model capabilities and
are described in section 3.1. This is important for
Checklist evaluation because it relies on building
templates that target specific model capabilities.
We gave this documentation to the annotators who
were expected to use these guidelines to come up
with templates of specific capabilities that could be
used to find bugs.

Since offensive classification is a task that inher-
ently has a class imbalance with fewer examples in
the positive class in most publicly available datasets
(de Gibert et al., 2018; Davidson et al., 2017), in-
cluding ours, we asked the annotators to develop
templates that would result in offensive data. An-

https://github.com/marcotcr/checklist
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other reason for this design decision was that while
offensive content is more likely to follow a certain
pattern - a combination of entities and offensive
language, non-offensive content would not follow
any discernible patterns making it difficult to con-
vert it into templates. Further, from an application
perspective in real-world settings, where such a
model is employed to flag or filter offensive con-
tent, a higher recall is preferable, as false negatives
(examples that are offensive but predicted as non-
offensive) need to be avoided even at the cost of a
few false positives.

3.1 Capabilities

Based on the documentation the capabilities tested
for detection of offensive content were:

1. Characterization: Derogatory con-
tent/Defamation targeted towards individuals
or groups (people who share certain attributes
like sex, race, religion, nationality, occupa-
tion, age, etc.) including stereotypes. Also
includes positive and negative characteri-
zations of individuals or groups including
comments on sexual orientation, ethics,
morality, habits, physical appearance, or other
characteristics.

(a) Simple Characterization of Individu-
als: Characterizing individuals. Exam-
ple: Trump is an idiot, is Joe Biden
racist?, Kevin Spacey gay, Fat Meghan
Markle, Bin Laden was amazing, etc.

(b) Simple Characterization of Groups:
Characterizing groups Example: Mexi-
cans are lazy, Are all whites racist, Jews
are greedy, females belong in the kitchen,
all men are pigs, people from middle east
stink, etc.

2. Negation: Negation of characteristics tar-
geted towards individuals or groups. Also in-
cludes negation of positive and negative char-
acterizations of individuals or groups includ-
ing comments on sexual orientation, ethics,
morality, habits, physical appearance, or other
characteristics.

(a) Negation of Positive characterization
of Individuals: Negating a positive char-
acterization of any individual. Also in-
cludes content that seeks or suggest nega-
tion of rights or equality to specific enti-
ties. Example: Trump is not smart, Justin

Beiber is not an ethical person, Gandhi
was not honest, etc.

(b) Negation of Positive Characterization
of Groups: Negating positive characteri-
zation of groups. Also includes content
that seeks or suggest negation of rights
or equality to specific groups. Exam-
ple: Females are not smart, Muslims are
not honest, Policemen cannot be good,
Women should not be allowed to go to
college, etc.

(c) Negation of Negative Characteriza-
tion of Individuals: Negating negative
characterization of individuals. Example:
Bin Laden was not bad, Hitler was not
brutal, etc.

(d) Negation of Negative Characteriza-
tions of Groups: Negating negative
characterization of groups. Example: Ji-
hadists are not bad, Racist people are
not awful, etc

3. Violence Explicitly seeking or suggesting vi-
olence against Groups or Individuals. Also
includes content that in general talks about
violent actions in an offensive fashion but is
not directed towards any specific entity. Ex-
ample: ISIS beheadings, Trump should be
assassinated, Should men hit women, North
korea should be nuked, etc.

4. Unsafe: Seeking or suggesting unsafe content
related to topics including, but not limited to,
suicide, self-harm, illegal drugs, addictive or
harmful medication, etc. Example: Easy ways
to kill oneself, Where to buy levothyroxine
without prescription, How to make meth at
home, etc.

5. Racy: Sexually suggestive content which may
or may not be targeted to individuals or groups.
Example: Pictures of hot women swimmers,
Japanese men in bedroom, etc

6. Robustness: To test if the system is robust to
minor perturbations like typos or punctuation
that are consistent with intentional or uninten-
tional usage in writing offensive content.

(a) One Typo: Introducing one random typo
in the example by flipping adjacent char-
acters. Example: fcuk.

(b) Two Typo: Introducing one random typo
in the example by flipping adjacent char-
acters. Example: All mne ar epigs.

(c) Punctuation Insertion: Random inser-
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tion of punctuation marks in the example.
Example: f*ck.

3.2 Using Checklist to Evaluate the Base
Model

We used one template set and documented the fail-
ure rates of an in-house XLMR-based offensive
content detection model, henceforth referred to as
the base model. This base model had a good perfor-
mance on the standard static benchmark test sets of
10k instances,2 similar to other state-of-the-art sys-
tems for offensive content detection. The static test
set had a similar distribution to the training data and
has roughly 2.5k positive and 7.5k negative exam-
ples. The metrics on the static test set are available
in the base model row of Table 1. The model was
a 24-layer transformer-based XLM-R model fine-
tuned with 481k examples of offensive and hate
speech data, out of which 198k were positive ex-
amples. The model was trained with a learning rate
of 5e-6 for 10 epochs with a batch size of 128.

Targeting specific capabilities using Checklist
showed huge failure rates, indicating that the model
still failed to meet the expectations even with good
performance metrics. This is consistent with the
original findings of Ribeiro et al. (2020), where
multiple state-of-the-art models were found to have
huge failure rates for the many basic capabilities.

Particularly in derogatory content, offensive con-
tent against a specific person seemed to be tougher
to detect as compared to offensive content against
a group. This may be because the names used to
generate the test cases for offensive content against
a person may not necessarily be names of famous
people seen in training data, and the model was
unable to generalize offensive language detection
to unseen named entities. It is also possible that
offensive content against specific groups is a more
sensitive issue and is thus represented more in the
base model’s training data. Further, the model was
unable to handle negation very well. This is con-
sistent with the findings of Ribeiro et al. (2020)
who also found that state-of-the-art sentiment anal-
ysis models failed much more when dealing with
negation.

In capabilities of unsafe and violent content, the
failure rates were comparatively lower. This can be
attributed to the fact that such content is more likely
to contain specific keywords or patterns that the
model has learned to classify as offensive during

2Created by three human judges with majority voting

Model Precision Recall F1 Score
Base 79.75 80.13 79.94
Aug-1 80.20 79.30 79.75
Aug-2 79.27 80.13 79.70
Aug-3 79.50 80.13 79.81
Aug-4 80.56 80.25 80.40
Aug-5 80.14 80.13 80.14

Table 1: Metrics on static benchmark test set

training, resulting in lower failure rates even when
tested using templates. In Racy content, however,
this might have been tougher. This is because racy
content is often observed to be multi-intentioned.
The same content can be an innocent statement or
a racy statement. For example, words like ‘cock’
or ‘chicks’ that are often used in an explicit or racy
sense and can also refer to their actual (non-racy)
meaning.

Finally, Checklist evaluation revealed that the
model was NOT robust to minor perturbations.
This is an important finding because it is expected
that the model would come across content that
the user intentionally or unintentionally mistypes.
However, such perturbations may not have been
reflected in the training and standardized testing
data.

As seen in the Base Model row of Table 2, the
failure rates for examples generated by templates
of specific capabilities is high.

3.3 Improving the Model
So far, consistent with previous results, Check-
list evaluation revealed important gaps in the base
model. The interesting follow-up question is how
to use these insights to improve the model to over-
come current limitations. Typically, in deep learn-
ing models, model improvements result from im-
proved model architectures, better training or fine-
tuning strategies, or more data. However, these
strategies do not directly address the limitation
of models in specific capabilities in the way that
Checklist reveals. Thus, we explored the use of
insights from the human-in-loop evaluation that
can help improve the model in these specific set-
tings while also testing the improved model against
standard benchmarks used to evaluate the model.

3.3.1 Data Augmentation Methodology
We used an iterative process of data augmenta-
tion to improve the model using the insights of
model failures from Checklist evaluation and data
generated by templates. We chose this iterative
data augmentation method due to its demonstrated
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1.a 1.b 2.a 2.b 2.c 2.d 3 4 5 6.a 6.b 6.c
Base 47.37 22.84 32.13 36.73 37.77 46.16 18.70 6 44.70 46.62 59.11 42.61

Aug-1 22.21 0.05 0.03 0 1.07 0.02 0 0 0 3.54 4.23 1.08
Total

Examples 10k 5.5k 3k 6k 7.5k 5.5k 4.3k 1k 2.7k 12.3k 12.3k 12.7k

Table 2: Failure Rates (%) of Base and Improved models for Test holdout set for different capabilities 3.1

Model Training Data TS-1 TS-2 TS-3 TS-4 TS-5
Base Base training data (BTD) 38.0 (0) 20.05 (0) 28.24 (0) 26.35 (0) 34.14 (0)
Aug-1 BTD + data from TS-1 4.0* (-34) 12.67 (-7.38) 5.66 (-22.58) 18.83 (-7.52) 13.67 (-20.47)
Aug-2 BTD + data from TS-2 31.73 (-6.27) 0.01* (-20.04) 19.34 (-8.9) 13.28 (-13.28) 26.97 (-7.17)
Aug-3 BTD + data from TS-3 30.21 (-7.79) 15.53 (-4.52) 0.01* (-28.23) 26.11 (-0.24) 23.57 (-10.57)
Aug-4 BTD + data from TS-4 34.29 (-3.71) 9.61 (-10.44) 24.98 (-3.26) 0* (-26.35) 30.29 (-3.85)
Aug-5 BTD + data from TS-5 32.18 (-5.82) 15.74 (-4.31) 19.34 (-8.9) 19.35 (-7.0) 0.01* (-34.13)

Table 3: Average (weighted across different capabilities by number of examples in each) failure rates (%) of
different models on independently created template sets. Figures in bracket show change in failure rate from the
failure rate of base model tested on the particular template set (* refers to tested on the test holdout set such that
the testing examples are disjoint from training data of the augmented model but come from the same template set)

success in improving NLI models by Nie et al.
(2020), who proposed iterative Human-And-Model-
in-the-Loop-Enabled-Training (HAMLET) to cre-
ate dynamic and harder adversarial test sets for that
‘fools’3 the model. These harder examples are then
used to re-train the model, and the process is re-
peated. Potts et al. (2020) also successfully use a
similar human-in-loop feedback process with data
augmentation to create iterations of datasets and
better models for sentiment analysis.

Our process in spirit is similar, except instead
of adversarial examples, we focused on specific
capabilities from the Checklist evaluation using
templates. A set of examples generated from the
same Checklist templates, which is disjoint from
the test examples themselves, were appended to
the model’s original training set, and the model
was re-trained. This yielded a new model, hence-
forth called the augmented model. The augmented
model was then tested on the set of examples that
was earlier used to test the base model.

Specifically, TS-1 was the set of templates used
to test the base model. This template set was gener-
ated by a human annotator, known to have sufficient
expertise of English. The data generated from the
TS-1 was divided into a training subset (TrS) and
test subset (TeS) with a ratio of 60:40. First, the
base model’s failure rates on TeS were recorded as
shown in Table 2. Now the TrS was combined with
the base model’s training data, and the model was
re-trained. This re-trained model is called the aug-
mented model. The data from TeS was now used
to test this augmented model for the capabilities

3flips the output of the model

captured in TS-1.

3.3.2 Performance After Data Augmentation

We found that the failure rates of the augmented
model dropped significantly. Interestingly, the per-
formance on the static evaluation test sets neither
improved nor degraded substantially, which can
be seen in Table 1. Here, Aug-1 was the model
obtained by retraining the base model with the orig-
inal data plus data from TrS of TS-1. The rest of
the four augmented models, Aug 2-5, will be de-
scribed subsequently. This shows that while data
augmentation helps specific capabilities, it does
not degrade performance on the static benchmark
leading to the conclusion that the retrained model
is not over-fitted to the examples generated using
Checklist.

The fact that the performance on the bench-
mark test set did not improve showed that static
benchmark evaluation sets failed to evaluate the
model rigorously enough for important capabilities.
Adding data points that make the model more ro-
bust to such examples improves the model overall.
However, this improvement was not captured in
the static evaluation as the test set might not have
contained such specific examples for these capabil-
ities in the first place. This is why the failure of
model in these scenarios went unnoticed till it was
evaluated specifically for those capabilities using
Checklist. This observation bolsters the case of
using Checklist evaluation for better understanding
and explainability of the limitations of the model.
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3.3.3 Testing on Multiple Template Sets

The fact that TrS and TeS have very similar (but not
the same) examples as they were generated from
the same set of templates can be one reason for
the augmented model’s extremely low failure rate.
However, to analyze whether the model learned
generalizable capabilities from the TS-1 and ascer-
tain that these gains in performance corresponding
to lower failure rates are not specific to a template
set, we asked a new independent annotator to use
the documentation guidelines to create templates
from scratch. The data generated from this indepen-
dently generated template set is used to evaluate
the base and augmented model (Aug-1, which was
trained on data from TS-1). This process was car-
ried out with four different annotators, resulting in
4 new augmented models (Aug 2-5).

Specifically, we created a larger study and asked
four more annotators to create template sets in-
dependently using the documentation guidelines.
These template sets are called TS-2, TS-3, TS-4,
and TS-5. Data from each template set was also
split into training and testing sets with a ratio of
60:40. The same base model was first used, and
failure rates were recorded on each template set.
Next, four more augmented models were created
(Aug-2, Aug-3, Aug-4, and Aug-5). For creat-
ing Aug-i (2≤i≤5), the training data from TS-i
was combined with the base model’s training data,
and the model was re-trained on this entire dataset.
Now the failure rates of Aug-i were recorded on the
held out test set (data points coming from the same
templates but disjoint from the training augmented
data) of TS-i and the entire data from the rest of
the template sets.

All template sets were generated by annotators
with expertise of English language and were cross-
checked for correctness. The number of templates
in each template sets ranged from 18-25 distributed
among the different capabilities. The number of
examples generated from template sets that were
added to retraining of the model (including per-
turbed examples for robustness test) were close to
50k for each of the augmented models. There were
no templates that were exactly the same in any pairs
of template sets, though, there were some templates
that were similar. The overlap in terms of exam-
ples generated was less than 0.02% between any of
the sets. The lexicon keywords had some common
vocabulary. However, this can be expected due to
the specificity of the task and the words that are

commonly used in such offensive statements.

3.3.4 Performance on Multiple Template Sets
We report the average failure rates in Table 3. The
reported average is the weighted average of failure
rates across different capabilities, weighted accord-
ing to the number of examples the template set has
for that capability. The results across template sets
vary, and we discuss the challenge of ascertaining
template quality in detail in section 4.3.

We found that for all our augmented models,
the failure rates between the base and augmented
model significantly differed for the test holdout
of its own template set. Further, the augmented
models showed better performance than the base
model across all examples from all other template
sets that were generated independently by different
annotators. In fact, we saw improvements up to
15-20% in multiple cases (e.g. Aug-1 on Ts-3 and
Ts-5) . This indicates that the model did learn
some generalizable capabilities irrespective of the
template set used for augmentation.

Grouping the results by capability, we found a
general trend of lower failure rates in augmented
models. There were no clear trends of a particu-
lar capability consistently benefitting more or less.
The failure rates of Template Sets 2-5 on the Aug-
mented models 2-5 and base model grouped by
capabilities are in the Appendix.

4 Challenges and Open Questions

Our case study was an experiment of using Check-
list to debug NLP systems. It presents optimistic
findings for using human-in-loop for improving
model performance. However, using this technique
for evaluation and improvement is not straight-
forward or foolproof. In this section, we discuss
some nuances and challenges that we observed
while conducting these experiments.

4.1 Resource Requirement

The process, while effective, is intensive in both
human and computational resources.

Generating templates from scratch required a
significant amount of annotator hours. In our ex-
periments, it took 1 hour to create 5-7 templates
spanning 1-2 capabilities. This time can vary from
person to person. A single annotator required a
minimum of half of a workday4 and a maximum
of 2 workdays to come up with template sets. The

4a workday is taken as 8 hours
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time may also vary based on the task for which
templates are being generated.

Once the template sets are created, generat-
ing Checklist reports for evaluation is computa-
tionally cheap, the cost of model inference not-
withstanding. However, using the insights of this
evaluation to carry out the targeted data augmenta-
tion procedure can be compute-heavy. Retraining
the model can cost significant time, money, and en-
ergy. Fine-tuning, though computationally cheaper
can lead to over-fitting on template sets, which is
why we chose not to take the approach. Further,
going through the iterative and parallel versions
of the process would require further investment of
human and computational resources to generate
more template sets, employ more annotators, and
repeated retraining of the model.

4.2 Methods to Improve the Model
In the current version of the process, we used a
simple but effective iterative data augmentation
procedure. While this is effective in our case it
can lead to over-fitting or catastrophic forgetting
in deep learning models. Furthermore, as stated
earlier, the process itself is compute-expensive.

Data augmentation may not be the only (or the
most optimal) solution. Some other methods that
can be utilized are continual training or fine-tuning.
Furthermore, there can be more than one way to
combine the initial training and template generated
datasets to yield better performance. Thus, the ef-
fective use of the insights from Checklist evaluation
still remains an open question for future studies.

4.3 Template and Template Set Quality
An important question for any evaluation technique,
whether static benchmark or human-generated tem-
plates, is its quality. In both cases, it is difficult to
quantify quality.

The main reason why it is important to estimate
the quality of template sets is evident from the re-
sults of Table 3. None of the augmented models
are better for all the template sets across the board,
and performance on the same template set can vary
significantly for different augmented models cre-
ated by augmenting different data points. Thus, the
templates that humans come up with and the exam-
ples that those templates generate can significantly
impact how much the model improves.

Quality can be viewed in two ways, absolute
quality, and relative quality. Absolute quality of
a template refers to easily quantifiable measures

such as the number of examples it generates and
the capabilities it covers. On the other hand, two
templates are compared for their quality in the case
of relative quality. In this case, the higher qual-
ity template would intuitively be one that can find
more bugs or result in higher failure rates in the
model. It is important to note that higher absolute
quality may not always result in higher relative
quality. A template can generate more examples
and cover more capabilities and give low failure
rates, leading to finding fewer bugs than another
template that generates fewer examples or spans
fewer capabilities.

Relative template quality is a more effective way
for quality analysis of templates because it is driven
by failure rates of the model on the template com-
pared to other templates, and this is the basis of
finding bugs using Checklist. However, whether a
template is ‘tougher’ (hence, of higher quality with
respect to relative quality evaluation) or ‘easier’
is subjective to the model and its training data. In
other words, a template that results in higher failure
rates for a particular model as compared to another
template of the same capability can show lower
failure rates when used with another model and
vice versa. Furthermore, human analysis of tem-
plate quality may not always sync with the model
performance. That is, a template that a human may
deem to be ‘tougher’ for a model may not be so.

Following the definition of template quality for
individual templates may not always extrapolate to
a template set’s quality. That is, while comparing
the quality of two template sets, it can be possible
(and in fact, often observed in our study) that a
template set may contain some templates that are
of a higher relative quality and some templates
that are of lower relative quality as compared to
the templates of another template set. This makes
it even more difficult to quantify even the relative
quality of template sets that span multiple templates
and capabilities.

Further, template generation by humans is an
endless process; one can keep on generating more
and more templates given time. In fact, in the ex-
treme situation, it is possible that the an iteration of
Checklist evaluation may not reveal any actionable
bugs, in such a scenario, it would be unclear as to
how many iterations would be needed in order to
claim that the model does not have any bugs.

Moreover, within template sets, multiple capa-
bilities are covered by putting together different
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templates by annotators. Our results show that this
does not lead to consistent improvements across
capabilities. Thus, obtaining the best combination
of different templates is not straight-forward. A
detailed study into what constitutes better quality
templates can help ascertain a more effective selec-
tion process from a large set.

Finally, multiple templates can be combined to
form template sets, and how to put together tem-
plate sets that uniformly benefit all capabilities is
unclear. Thus, techniques to find the optimal and
representative template sets generated with little
human effort and can be relied upon for holistic
evaluation are an imminent challenge and makes
quality estimation of templates and template set an
important open question.

4.4 Experience of Annotators

Since annotators are an indispensable part of this
study, it was important to understand their perspec-
tive. We thus interviewed the annotators in order
to gain insight into their experience.

For our study, the annotators can be considered
as ‘experts’ 5. The common feedback we received
was that it was difficult to come up with the tem-
plate sets from scratch. On further probing, this
difficulty could be broken down into multiple steps.

First, generating offensive content templates
needs specific vocabulary, also known as lexicons
in Checklist. Creating these lexicons from scratch
can be subject to creativity and offensive language
usage. Further, using these lexicons to generate
templates is again subject to creativity, which varies
from person to person, and can be difficult to repli-
cate from a scientific perspective. This difficulty
can be ported to almost any task for which tem-
plates are to be generated as it would need the
creation of specific lexicon vocabulary and their
combinations.

Secondly, it is not easy to ascertain what set of
templates is best. As discussed in the template
quality section, while the quality of individual tem-
plates can be judged by failure rates, for an anno-
tator developing templates in a limited time-frame,
the template set generated may not always be opti-
mal, or the best possible set that finds the maximum
bugs. Thus, without instant model feedback, decid-
ing which templates are good and which are not is

5educated in English and having understanding equivalent
to graduate-level courses in natural language processing and
machine learning

difficult, and finding the most optimal template set
may not be feasible.

Finally, from the perspective of this particular
task of the case-study, offensive content itself is
a topic open to interpretation from perspectives
of communities coming from varied socio-cultural
backgrounds and individual sentiments, philosophy,
and beliefs. What one person may find offensive,
another person may not, and vice versa. As a result,
despite well-documented qualitative guidelines of
expectations from the models, individual examples
can have debatable annotation. This ambiguity is
also carried into the template generation process,
where an annotator’s individuality may reflect in
the offensive templates that they generate.

Typically, it is easier for humans to verify an-
notations or explanations rather than generating
them from scratch. This can be extended to judg-
ing whether a template is correct and useful. Thus
developing techniques that can be utilized for au-
tomated template creation from small seed data
followed by verification and labeling by humans
can be an important future research direction.

4.5 Multilinguality

Given the rapid adoption of massive multilingual
systems in NLP, there is an increasing need for
evaluation in other languages. Thus it is intuitive to
feel the need to use Checklist for multilingual mod-
els. However, template generation would typically
need a native or fluent speaker of the language.
It can often be difficult for researchers building
massive multilingual systems to find experts flu-
ent in multiple or specific languages. While the
open-source Checklist framework provides limited
capability of generating multilingual templates, it
is not powerful enough to automate the process
for different languages without sufficient human
supervision. Thus, developing ways to create multi-
lingual Checklists using Checklists in one language
easily has immense scope.

5 Conclusion

State-of-the-art systems have been known to break
down when deployed in the wild because of heavy
reliance on static evaluation benchmarks that fail to
holistically test the system. Several non-standard
forms of evaluation into specific aspects of the mod-
els can lead to insights that might otherwise go
unnoticed. Human-in-loop processes have been
known to aid better explainability, trust, debugging,
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and improvement of NLP models by combining
automation with human-expertise of language use.
The Checklist framework introduced a behavioral
testing approach for finding bugs in NLP models,
which showed that state-of-the-art systems fail on
the simplest of capabilities.

We presented a case study of using Checklist
to debug an English offensive content detection
system. The process we utilized was two-staged:
First, we employed a human annotator to generate
templates for evaluating specific model capabilities.
These results were leveraged to find bugs, or capa-
bilities in which the model is not performing as per
expectation. The second step was to augment the
data generated from these templates and re-train
the model. This led to targeted bug-fixing and bet-
ter performance not just on the test sets created
from the same templates, but more generally, on
independently created template sets.

Using this technique led to not only improved
models but also a better understanding of the lim-
itations and capabilities of the model in context
of specific requirements. Our findings add to the
growing optimism of using human expertise and
non-standard evaluation to improve performance,
better explainability, and increase trust in NLP sys-
tems deployed in real-world uncontrolled usage
environments.

We also discuss various challenges of employing
such a human-in-loop strategy. These include re-
source requirements, different methods to improve
the model, determining the quality of templates and
template sets, finding the optimal and representa-
tive template set, the difficulty for human subjects
to create templates from scratch, and extension
of the paradigm to languages other than English.
This leads to the conclusion that the process, even
though beneficial, leaves many open questions that
need to be addressed.

We hope that our work further increases atten-
tion to the Checklist paradigm and motivates re-
searchers to evaluate and improve black box NLP
models using non-standard and explainable human-
in-loop evaluation and investigate its challenges.
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Model Characterization Negation Violence Unsafe Robustness
Base 21.23 2.59 0.2 28.3 24.17
Aug-2 0.01* 0* 0* 0.06* 0.00*
Aug-3 19.93 1.35 0.2 28.25 17.24
Aug-4 11.85 2.19 0.3 6.27 11.49
Aug-5 19.22 1.82 0.2 29.02 17.84

Table 4: Failure Rates (%) of grouped capabilities on Template Set - 2. (* refers to tested on the test holdout set
such that the testing examples are disjoint from training data of the augmented model but come from the same
template set)

Model Characterization Negation Violence Unsafe Robustness
Base 21.21 18.27 20.98

Annotator did not create Template

35.26
Aug-2 16.88 3.90 12.43 24.22
Aug-3 0* 0* 0* 0.01*
Aug-4 23.56 9.15 15.69 32.04
Aug-5 15.03 7.24 17.35 22.88

Table 5: Failure Rates (%) of grouped capabilities on Template Set - 3. (* refers to tested on the test holdout set
such that the testing examples are disjoint from training data of the augmented model but come from the same
template set)

Model Characterization Negation Violence Unsafe Robustness
Base 12.99 21.01 32.98 56.03 32.63
Aug-2 8.50 12.56 9.65 33.12 13.68
Aug-3 13.46 17.64 12.73 50.35 30.38
Aug-4 0* 0.01* 0* 0* 0*
Aug-5 9.43 11.89 15.28 43.5 21.99

Table 6: Failure Rates (%) of grouped capabilities on Template Set - 4. (* refers to tested on the test holdout set
such that the testing examples are disjoint from training data of the augmented model but come from the same
template set)

Model Characterization Negation Violence Unsafe Robustness
Base 14.41 24.21 98.48

Annotator did not create Template

37.29
Aug-2 6.57 9.58 97.79 29.07
Aug-3 3.85 3.70 96.98 25.07
Aug-4 8.32 16.01 72.22 33.35
Aug-5 0* 0* 0* 0.01*

Table 7: Failure Rates (%) of grouped capabilities on Template Set - 5. (* refers to tested on the test holdout set
such that the testing examples are disjoint from training data of the augmented model but come from the same
template set)


