
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), pages 68–72
August 5–6, 2021. ©2021 Association for Computational Linguistics

68

GOT: Testing for Originality in Natural Language Generation

Jennifer Brooks
Department of Computer Science

The George Washington University
Washington, DC

jtbrooks@gwu.edu

Abdou Youssef
Department of Computer Science

The George Washington University
Washington, DC

ayoussef@gwu.edu

Abstract

We propose an approach to automatically test
for originality in generation tasks where no
standard automatic measures exist. Our pro-
posal addresses original uses of language, not
necessarily original ideas. We provide an algo-
rithm for our approach and a run-time analy-
sis. The algorithm, which finds all of the origi-
nal fragments in a ground-truth corpus and can
reveal whether a generated fragment copies
an original without attribution, has a run-time
complexity of θ(n log n) where n is the num-
ber of sentences in the ground truth.

1 Introduction

This research addresses an ethical consideration for
Natural Language Generation, namely, plagiarism.
The Oxford English Dictionary defines original (ad-
jective) as “present or existing from the beginning;
first or earliest” and “created directly and person-
ally by a particular artist; not a copy or imitation”.
But, if we apply the definitions of “original” to
language, then there are two ways in which a piece
of generated text may be original. For one, the
text may express an “original idea”, such as Ein-
stein did in 1905 with “E = mc2”. On the other
hand, a non-original idea may be expressed in an
original way, via, for example, figurative language.
Our proposed approach addresses original uses of
language. It does not necessarily address original
ideas.

How do we protect intellectual property when it
comes to language generators that are trained on a
world-wide-web of data? Our language generators
have to be held accountable. They should also be
protected. What if a language generator generates
an original analogy? What if it writes a poem that
is so great that it ends up in the history books?
Multiple language generators may be trained on
the same ground truth (e.g., Wikipedia) with the

same embedding vectors (e.g., BERT (Devlin et al.,
2018) and GPT (Vaswani et al., 2017; Radford
et al., 2018)) and the same technologies (deep neu-
ral networks, LSTM cells (Hochreiter and Schmid-
huber, 1997), transformers (Vaswani et al., 2017)).
It will become a question of ”Whose generator said
it first?” With automatic language generation, we
need a way to automatically measure, store, and
reference original ideas and language. We propose
one possible solution to these originality-related
problems.

For the purposes of our analyses, we define
ground truth as the set of sentences that are com-
pared with the generated sentences. The ground
truth may be larger than the training set, but should
include the training set. The gound truth would
also, ideally, grow. For example, the ground truth
could start out as the training set, but as new sen-
tences are generated with a trained model, then the
new sentences may be added to the ground truth.
We also claim that generated sentences should only
be added to the ground truth if they are original or
include citations where appropriate.

2 Background

Our criteria and basis for evaluating measurements
of originality are:

1. Can we tell whether a generated sentence is
an original use of language?

2. Can we tell whether the sentence contains a
fragment from the ground truth that is a can-
didate for protection as intellectual property?

Therefore, when measuring generation original-
ity by comparing the generated sentence with the
sentences in the ground truth, then the answers to
numbers 1 and 2 above are binary. Either the gener-
ated sentence is an original use of language or it is
not. Either the generation is at risk of plagiarism or



69

it is not. However, if we consider that the ground
truth may not be representative of all the sentences
that have ever been generated, then there is a mea-
sure of uncertainty that may be added to the binary
outcome.

There are no standard automatic measures for
novelty and originality in stylized language genera-
tion (Mou and Vechtomova, 2020). High perplex-
ity (PPL) and a low BLEU (Papineni et al., 2002)
score may suggest novelty, but they are not suffi-
cient for testing for originality. High PPL and a
low BLEU score may be achieved when there is lit-
tle overlap between the generated language and the
ground truth, but nonesense and off-topic sentences
are rewarded. While nonesense sentences may be
novel, they may be grammatically incorrect, and
sentences that are grammatically correct will likely
have some overlap with fragments (n-grams) in the
ground truth, such as using phrases like “she said
that”. So, we want a generation originality test that
doesn’t penalize n-gram overlap. (An original use
of language may combine common n-grams in a
new way.) We also want a generation originality
test that flags potential plagiarism of original frag-
ments in the ground truth, which neither BLEU nor
PPL does.

We propose a generation originality test (GOT)
that addresses original uses of language. It does not
necessarily address original ideas. GOT is equally
appropriate for stylized text generation, where nov-
elty is desirable, and for other generation tasks
where there is not an imposed style but the genera-
tion is open-ended, including summarization tasks.

3 Proposed Approach

Our proposed generation originality test (GOT) de-
termines whether:

1. any fragment in a generated sentence equals
an “original” fragment in the ground truth, in
which case the generation may be in violation
of a copyright law, if no citation of the original
source is included; or,

2. the generated sentence is “original”, per Defi-
nition 1, below.

Definition 1 (Original Sentence). A sentence,
whether generated or in the ground truth, of n to-
kens is original if there exists an original k-gram
within the sentence for some k≤n. The originality
of k-grams is defined next.

The definition of originality of a fragment (or
k-gram) depends on whether we are referring to a
generated fragment or to a fragment in the ground
truth. Generated fragments are tested against the
ground truth. If the generated fragment does not
appear in the ground truth, then the generated frag-
ment is considered original. If it appears once in
the ground truth, then it is considered not original
and so a citation may be needed. See Table 1 for a
summary of the criterion for each type of fragment
to be true. In Table 1, C equals the number of times
that fragment appears in the ground truth.

Type Criterion
Ground Truth

Fragment
Original C = 1

Not Original C ≥ 2

Generated
Fragment

Original C = 0
Not Original,

Citation Needed
C = 1

Not Original,
No Citation

Needed
C ≥ 2

Table 1: Criterion per fragment type, where C is the
number of times the fragment appears in the ground
truth. Note, C is always with respect to counts in
the ground truth, even when evaluating generated frag-
ments.

Ground-truth fragments that appear once and
only once in the ground truth are considered orig-
inal.1 Likewise, fragments that appear more than
once in the ground truth are considered “not origi-
nal”. For example, “lengthened shadow” appeared
twice in our ground truth and so it is not considered
an original phrase in the ground truth. Combining
non-original fragments to generate a new idea or
analogy, however, could be considered an original
use of language. For example, “the writer is the
lengthened shadow of a man” contains the frag-
ments “the writer is” and “the lengthened shadow”
and “of a man” which are not original fragments in
our ground truth. However, the way in which they
are combined in this example creates an original
use of language – in this case, a metaphor. (Exam-
ples of fragments that appeared many times in our

1For simplicity of explanation, we qualify a fragment as
“original”, and therefore a candidate for protection of intellec-
tual property, if it appears “once and only once” in the ground
truth. However, with very large datasets, it may be necessary
to relax the criteria from “once and only once” to a relatively
small number of occurrences, in order to consider a fragment
a candidate for protection of intellectual property.



70

training set are “it is” and “human life”.)

Here is one possible use of GOT. If a generated
sentence contains a fragment that appears once
and only once in the ground truth (after duplicate
sentences are removed from the ground truth), then
the generated sentence may be discarded because
it contains a fragment from the ground truth that is
a candidate for protection as intellectual property.
In other words, the sentence may be in violation
of a copyright law. Otherwise, the sentence could
include a citation of the source for the original
fragment.

The definition of ground-truth original fragments
actually calls for more nuance, which we will elabo-
rate and explain how to compute next. We maintain
a count per fragment that is incremented each time
the fragment appears in a new sentence in a new
document or by a different author (if the author
can be determined in both instances) in the ground
truth. In other words, if a fragment in the ground
truth is repeated in the same document, or by the
same author across documents, then the count for
that fragment is incremented only once. (Therefore,
an author, if known, should also be stored for each
fragment, at least until the count for that fragment
is greater than 1. When the count for a fragment is
greater than 1, then it has already been determined
that the fragment was seen a second time in a dif-
ferent document by a different known, or unknown,
author.) The count for a fragment will be 1 if it
occurs just once in the ground truth, or if all of its
occurrences are in the same document or by the
same author; otherwise, the count will be greater
than 1. Now, a ground-truth fragment is said to be
original if and only if its count is 1.

See Algorithm 1 for psuedo-code to test for orig-
inality and find all original fragements in a dataset.

To examine fragments, we use a window length
of wl varying between 2 and the sentence length,
where wl is the number of words in the fragment.
If the first or last word in the window is a deter-
minant (e.g., ‘a’ or ‘the’), any use of the verbs
to be and to have (‘is’, ‘are’, ‘am’, ‘was’, ‘were’,
‘has’, ‘had’, ‘have’), punctuation mark, or preposi-
tion/subordinating conjunction (e.g., ‘to’, ‘of’, or
‘from’), the window is moved one step to the right.
(Shortening the window to get rid of the determi-
nant, special verb, special character, or preposition
would result in a window size already covered in
the previous step.) All words and characters are
allowed in the other positions of the window, so,

for example, a comma or preposition may appear
in the middle of a window of size 3 or more.

3.1 Runtime Complexity
The following complexity analysis is with respect
to Algorithm 1. We are representing F and O with
balanced binary search trees (e.g., red-black tree
(Guibas and Sedgewick, 1978; OKASAKI, 1999))
where the comparator is lexicographic ordering.
Searching, insertion and deletion in such trees take
θ(log n) comparisons. Since the length of frag-
ments is assumed to be constant on average, then
each comparison takes constant time, implying that
each search/insert/delete operation in O and F take
θ(log n) time.

Given our representation of F and O with bal-
anced binary search trees, consider the following
time complexity analysis:

• Let n = number of sentences in the dataset.
The first for-loop (line 1) iterates n times.

• Let c = the average length (i.e., number of
tokens) of a sentence in our ground truth. We
found that c = 25, a fairly small constant.
Therefore, the two for-loops in Steps 4 and 5
iterate on average a constant number of times.

• The binary search in F (line 10) has a runtime
complexity of θ(log n).

• Depending on the result of the binary search
of F (line 10) there may be an insertion to F
(line 14) which has a runtime complexity of
θ(log n).

• Then the number of calculations in lines 1-20
is the following function of n: 2c2n log n.

• The code segment of lines 21-26 takes θ(n)
time because the number of wl-token frag-
ments in the ground truth dataset (of n sen-
tences where each sentence consists of c to-
kens on average) is at most cn.

• Therefore, the runtime complexity is:
θ(n log n).

This algorithm would be executed before gener-
ation tasks, but may also be executed whenever the

2If the first or last word in the window is a determi-
nant (e.g., ‘a’ or ‘the’), special verb (‘is’, ‘are’, ‘am’, ‘was’,
‘were’, ‘has’, ‘had’, ‘have’), punctuation mark, or preposi-
tion/subordinating conjunction (e.g., ‘to’, ‘of’, or ‘from’), the
window is moved one step to the right.



71

Algorithm 1 Find Original Fragments in the Ground Truth
Require: Input S, the sentences in the ground truth to evaluate
Require: Input F , list of fragments already discovered, may be empty set;
Require: Input CountPerFrag(f), for all f ∈ F
Require: O, list of original fragments . Count per o ∈ O should always be 1

1: for each s ∈ S do
2: l = number of tokens in sentence s
3: sentParts = set of tokens in s
4: for each wl in range 2 to l do . wl = length of window
5: for each i in range 0 to l − wl + 1 do . assume zero-based indexing
6: if sentParts[i] or sentParts[i+ wl − 1] = special token2 then
7: Continue to next i
8: else
9: frag = sentParts[i : i+ wl]

10: if frag ∈ F then . binary search of F
11: CountPerFrag[frag] = CountPerFrag[frag] + 1
12: Break from for-loop in line 5
13: else . frag was not found in F
14: Add frag to F
15: CountPerFrag[frag] = 1
16: end if
17: end if
18: end for
19: end for
20: end for
21: Set O to the empty set;
22: for each frag in F do
23: if CountPerFrag[frag] == 1 then
24: Add frag to O;
25: end if
26: end for

reference set changes or is updated (for example,
based on generated language).

4 Example: Results on One Application

To see how GOT performed on a generation task,
we applied it to a metaphor generator that we built,
based on an RNN (Elman, 1990) architecture with
LSTM cells (Hochreiter and Schmidhuber, 1997)
for training a language model on the language of
metaphors, using only metaphors and their topics
as input. (A topic was inserted at the beginning of
each input sentence.)

The model was trained to predict the next word
in the sentences from our ground truth—a set of
22,113 quotes, where each quote contains at least
one metaphor and is labeled with a topic. There
are 1,684 unique topics (e.g., “animals”, “fear”,
“fishing”, “grandparents”, “happiness”, ”motives”,
“politics”, and more examples listed in Table 2) and
the dataset is currently available to the public online
as part of “Dr. Mardy’s Dictionary of Metaphorical
Quotations” (Grothe, 2008).

To the trained language model, we apply an in-
ference engine that uses weighted random choice
with a “constraining factor” to encourage language
coherence and originality in the output, and pat-

terns of metaphors to encourage the generation
of grammatically correct metaphors (Brooks and
Youssef, 2020). The constraining factor, c (for
c ≥ 1), causes the inference engine to select—with
a probability of 1

c—the most likely word to ap-
pear next. Otherwise, and with a probability of
1− 1

c , the inference engine will make a weighted
random selection. Selecting the most likely next
word encourages language coherencey in the out-
put, while weighted random selection encourages
originality. (We found that a constraining factor of
3 or 4 worked best with our model.)

A generated sentence failed the GOT if a frag-
ment of at least 2 words appeared as an “original”
fragment in the training set; that is, if the fragment
appeared just once in the ground truth. Using our
metaphor generator, we generated 500 metaphors
from randomly chosen topics. Applying GOT on
each of the 500 generated metaphors, we found that
only 32 repeated an “original” fragment from the
training set. From this experiment, we conclude
that out of the 500 generated metaphors, 468 of
them, or just over 93%, can be considered origi-
nal. (Table 2 provides examples from our metaphor
generator on randomly generated topics.)



72

Topic Generated Metaphor
tears The arrested waters shone and danced.
fathers Expectations are premeditated resentments.
character Today is the companion of genius.
friends Assumptions are the termites of relationships.
writers The writer is the lengthened shadow of a man.
world This world is the rainbow of us.
truth The brain is the eden of a star.
innocence The cure for silence is the salt of speech.
imagination Success is the only deadline.

Table 2: Examples of Generated Metaphors

5 Conclusion

Our approach to originality testing includes two
contributions:

• An automatic test, where no standard existed,
for originality in generated language

• An automatic test, where no standard existed,
for identifying where generators are in viola-
tion of copying an original use of language
without attribution

The first contribution tells us whether a gener-
ation is an original use of language. The second
contribution tells us whether a generation is, at
least, not at risk of committing plagiarism. For
example, the sentence “A bird built a nest” is not
an original use of language; however, it is at least
probably not in violation of plagiarism since it does
not contain a fragment that is so rare that it should
be protected as an original use of language.

References

Jennifer Brooks and Abdou Youssef. 2020. Discrimi-
native pattern mining for natural language metaphor
generation. In Proceedings of the Discriminative
Pattern Mining Workshop.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jeffrey L. Elman. 1990. Finding structure in time.
COGNITIVE SCIENCE, 14(2):179–211.

Mardy Grothe. 2008. I Never Metaphor I Didn’t Like:
A Comprehensive Compilation of History’s Greatest
Analogies, Metaphors, and Similes. Harper Collins.

Leo J. Guibas and Robert Sedgewick. 1978. A dichro-
matic framework for balanced trees. In 19th An-
nual Symposium on Foundations of Computer Sci-
ence (sfcs 1978), pages 8–21.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9:1735–1780.

Lili Mou and Olga Vechtomova. 2020. Stylized text
generation: Approaches and applications. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics: Tutorial Ab-
stracts, pages 19–22, Online. Association for Com-
putational Linguistics.

CHRIS OKASAKI. 1999. Red-black trees in a func-
tional setting. Journal of Functional Programming,
9(4):471–477.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. pages 311–318.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.18653/v1/2020.acl-tutorials.5
https://doi.org/10.18653/v1/2020.acl-tutorials.5
https://doi.org/10.1017/S0956796899003494
https://doi.org/10.1017/S0956796899003494
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

