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Abstract

Personalized response generation is essential
for more human-like conversations. How-
ever, how to model user personalization in-
formation with no explicit user persona de-
scriptions or demographics still remains under-
investigated. To tackle the data sparsity prob-
lem and the huge number of users, we uti-
lize tensor factorization to model users’ per-
sonalization information with their posting his-
tories. Specifically, we introduce the person-
alized response embedding for all question-
user pairs and form them into a three-mode
tensor, decomposed by Tucker decomposi-
tion. The personalized response embedding is
fed to either the decoder of an LSTM-based
Seq2Seq model or a transformer language
model to help generate more personalized re-
sponses. To evaluate how personalized the
generated responses are, we further propose a
novel ranking-based metric called Per-Hits@k
which measures how likely are the generated
responses come from the corresponding users.
Results on a large-scale English conversation
dataset show that our proposed tensor factor-
ization based models generate more personal-
ized and higher quality responses compared
to baselines. We have publicly released our
code at https://github.com/GT-SALT/

personalized_response_generation.

1 Introduction

Building human-like conversational systems has
received much attention in artificial intelligence
communities, and personalized response genera-
tion is one essential step towards this goal, as more
personalized responses are often associated with
increased user engagement (Shum et al., 2018;
Huang et al., 2020). To this end, we focus on
the task of personalized response generation in
this work, and argue that incorporating personal-
ization into text generation can benefit many down-

stream applications such as social chit-chat chat-
bots (Zhang et al., 2018) and auto-complete re-
sponses like Smart Replies (Kannan et al., 2016).

Prior text generation work on modeling person-
alization mainly relied on explicitly given persona
or demographic information. For instance, (Zhang
et al., 2018; Wolf et al., 2019; Xu et al., 2020) uti-
lized a set of persona sentences to profile users,
and other line of research leveraged demographics
to model user personalization (Zheng et al., 2019,
2020). Despite its effectiveness, such approaches
are limited when it comes to real world scenar-
ios. First, explicit persona or demographic infor-
mation is often not available. Second, collecting
such personalization information is usually costly
and time-consuming, which also suffers from ei-
ther artificially designed persona descriptions from
third-party annotators or subjective and unreliable
self-reports from users themselves (Stone et al.,
1999). Although such explicit personalization in-
formation is often unavailable, content that users
produce is generally ubiquitous and can indicate
their preferences, personal information, styles, and
knowledge in a relatively implicit but objective
manner. Our work thus utilizes these posts and
comments users made to learn latent representa-
tions of their personalization information.

Different generation models have been designed
to learn user personalization information and fur-
ther impose such representation on text generation.
For instance, Li et al. 2016 proposed the Speaker
model based on Seq2Seq framework by introduc-
ing trainable speaker embedding for each user and
feeding it to decoder at each step of decoding. How-
ever, there are always a large number of distinct
users and users often participate in only a few con-
versations; as a result, the speaker embedding may
be under-fitted given the limited data points asso-
ciated with a user. Another line of research uses
generative memory network (Zhang et al., 2018),

https://github.com/GT-SALT/personalized_response_generation
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which first retrieves some most relevant responses
to a user’s input as the memory and then encodes
them into an embedding. The difference between
the embedding from memory network and speaker
embedding is that the former encodes both informa-
tion of question and user, while the latter represents
only users. Nevertheless, the set of observable
question-user pairs and their responses is still a
small subset of the whole user and question sets,
leading to the sparsity issue.

Matrix Factorization (MF) has been widely used
to infer latent relationships between users and items
in recommender systems, especially for data spar-
sity issues (kumar Bokde et al., 2015). Motivated
by this, we propose to model latent interactions
between questions and users by looking at who
participated in which conversations, and infer user
personalization information from data automati-
cally, for personalized response generation tasks.
Differently, as the score or rating used in recom-
mender system usually denotes users’ preferences
towards items, such scalar is not enough to repre-
sent the semantic meaning of a response. Thus,
we introduce a response vector to indicate the re-
sponse content that a user will make for a given
conversation, i.e., personalized response embed-
ding, resulting in a tensor form representation for
all question-user pairs. Decomposing this tensor
(tensor factorization, TF) will lead to the factorized
representations for each user, question, and dimen-
sion of the response embedding. We propose to
augment response generation models with such TF-
induced modules, which are model-agnostic and
can be applied to many different generation mod-
els. Specifically, we introduce a TF module based
framework on top of LSTM-based Seq2Seq model
and transformer language model for personalized
response generation, and further train them together
in an end-to-end fashion. Evaluating response gen-
eration usually considers content relatedness and
language quality to ensure that generated text is
grammatically correct and fluent, using BLEU and
Perplexity. However, evaluating personalization
in personalized response generation is relatively
challenging as there lacks effective metrics.

To this end, we propose a novel evaluation metric
Per-Hits@k to model personalization , which for
the response of a user first calculates its perplexity
values via language models of all users, and then
ranks the perplexity via this user’s language model
to examine whether it is ranked as top-k, based

on a pre-trained GPT-2 language model (Radford
et al., 2019) for each user. Our contributions are:

• propose a tensor factorization based frame-
work to model personalization for response
generation task;

• introduce a metric Per-Hits@k, to evaluate the
personalization of the generated responses;

• experimental results on a large-scale person-
alized Reddit dataset show that our TF-based
framework outperforms previous methods sig-
nificantly in terms of both content generation
quality and personalization.

2 Related Work

Personalized Response Generation Personal-
ization has received much attention in the natural
language processing community, such as person-
alized image captioning (Chunseong Park et al.,
2017), personalized machine translation (Rabi-
novich et al., 2017), personalized response genera-
tion (Li et al., 2016), personalized intent classifica-
tion and personalized slot tagging (Liu et al., 2016).
Prior studies formulate the task of response gener-
ation as generating an output given an input text,
mainly based on either the sequence-to-sequence
(Seq2Seq) models (Vinyals and Le, 2015) or the
pretrained models like GPT-2 (Radford et al., 2019)
and BART (Lewis et al., 2019). When it comes to
personalized response generation, Speaker model
(Li et al., 2016) extended traditional response gen-
eration models by assigning each user with a train-
able speaker ID embedding. Another line of re-
search focuses on leveraging persona descriptions
or demographic attributes (Zheng et al., 2020; Qian
et al.; Wolf et al., 2019; Luo et al., 2019), building
on recent personalized dialogue datasets such as
PERSONA-CHAT (Zhang et al., 2018) and Per-
sonalDialog (Zheng et al., 2019). For instance, Xu
et al. (2020) utilized the predefined user persona
description together with their semantically corre-
lated content for generating personalized responses
in dialogue systems.

Different learning paradigms have also been in-
troduced for personalized response generation such
as reinforcement learning (Mo et al., 2016; Yang
et al., 2018; Xu et al., 2020) and transfer learn-
ing to benefit from a source domain with suffi-
cient training data (Yang et al., 2017). However,
most aforementioned approaches require explicit
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persona or demographic information which is of-
ten unavailable in real world scenarios. To fill this
gap, we propose to learn latent representation of
personalized user information from users’ posts
and model personalization jointly together with
traditional generation methods for personalized re-
sponse generation.

Evaluation Metrics for Personalized Response
Generation Current automatic evaluation met-
rics for response generation can be broadly cat-
egorized into three classes. (1) Content related-
ness measures how related a generated response
is with its corresponding ground-truth, with repre-
sentative metrics such as BLEU (Papineni et al.,
2002), NIST (Doddington, 2002), and METEOR
(Lavie and Agarwal, 2007). Speaker sensitive
responses evaluation model (SSREM) (Bak and
Oh, 2020) enhances the relatedness score with a
context-response classifier. (2) Language quality
mainly refers to the fluency and diversity, where
the former is measured via perplexity (Chen et al.,
1998) and the latter is assessed via distinct diversity
(Li et al., 2015; Yang et al., 2020) that indicates how
diverse the generated responses are. (3) Style ad-
herence aims to evaluate the adherence of the gener-
ated responses’ language style to the user’s own lan-
guage style; example metrics include the average
negative log-likelihood (NLL) of one poet’s gen-
erated lyrics on it’s poet specific language model
(Vechtomova et al., 2018), stylistic alignment (Syed
et al., 2020) that looks at the language style align-
ment at the surface, lexical and syntactic level, and
Hits@1/N (Dinan et al., 2019) that measures how
accurate the generated response can be classified to
its corresponding user by a classifier. Our proposed
Per-Hits@k metric thus belongs to the style adher-
ence class, a more fine-grained metric compared to
the average NLL metric (Vechtomova et al., 2018).

3 Preliminaries

3.1 Tucker Decomposition
To learn latent association between users, questions
and responses for personalized response genera-
tion, we choose Tucker decomposition, one widely
used tensor factorization algorithm. Tucker de-
composition (Tucker, 1966) decomposes a given
3-mode tensor X ∈ RI×J×K into a core ten-
sor G ∈ RR1×R2×R3 and three factor matrices
A ∈ RI×R1 , B ∈ RJ×R2 , C ∈ RK×R3 :

X ≈ G ×1 A×2 B×3 C

Here, ×i denotes the mode-i product of a tensor by
a matrix (i ∈ {1, 2, 3}). Any element X(i,j,k) in X
can be approximated by:

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

G(r1,r2,r3)A(i,r1)B(j,r2)C(k,r3)

3.2 LSTM-based Seq2Seq Model

LSTM-based Seq2Seq model consists of an en-
coder LSTM, a decoder LSTM, and attention mech-
anism (Yao et al., 2015). Suppose the source text
is S = (x1, x2, . . . , xm) and the target text is
T = (xm+1, xm+2, . . . , xN ), the encoder LSTM
first encodes S into hidden vector he

m and cell vec-
tor cem, then the decoder LSTM has its initial hid-
den vector hd

0 and cell vector cd0 as:

hd
0 = he

m

cd0 = cem

The hidden vector of decoder at time step t is:

hd
t = g(hd

t−1, c
d
t−1,y

∗
t ),

where g is the LSTM cell operation and y∗t is the
embedding of the input token at time step t.

Standard Seq2Seq models are not personalized,
because there is no mechanism to incorporate user-
specific information into their input. Speaker
Model (Li et al., 2016) alleviates this by explic-
itly concatenating a trainable speaker embedding
vj to y∗t for user j. Therefore, the hidden vector of
decoder of Speaker model at time step t is:

hd
t = g(hd

t−1, c
d
t−1, [y

∗
t ;vj ]),

3.3 Transformer Language Model

DialoGPT (Zhang et al., 2020) is a pre-trained con-
versational response generation model. Based on
the architecture of GPT-2 (Radford et al., 2019),
DialoGPT is trained on 147M Reddit discussions.
For a question-user pair (i, j) with source input
S and target response T , DialogGPT generates re-
sponses by modeling the conditional probability:

P (T | S) =
N∏

n=m+1

P (xn | x1, x2, . . . , xn−1)
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Figure 1: LSTM-based Seq2Seq model with our proposed tensor factorization module. The cell vector cem from
the encoder and the attention mechanism are omitted for brevity.

4 Method

We formulate the task of personalized response
generation as follows: given a set of question-user
pair (q, u) ∈ Sq × Su where Sq and Su refer to
the question set and user set respectively, generate
a response r for this question-user pair (q, u), i.e.,
posted by user u for question q. The overall model
architecture is described in Figure 1.

4.1 Tensor Factorization Module

To enable personalized response generation, we
first need to automatically infer personalized sig-
nals that users demonstrate in their participation
such as questions that they might interact with, as
such signatures are often not explicitly available.
To this end, we introduce personalized response
embedding pi,j , a K-dimensional vector, to repre-
sent the latent relationship between a question i and
a user j. We then form a tensor using all pi,j over
all question-user pairs and factorize this tensor, to
learn latent interactions between questions, users,
and their responses.

Formally, for a dataset with I = |Sq| questions
and J = |Su| users, we have a tensorP ∈ RI×J×K

where P(i,j,:) = pi,j denotes each (i, j) pair. The
notation P(i,j,:) refers to the mode-3 fiber (or tube)
of the tensor P . P can be further formulated via
Tucker Decomposition as follows:

P = G ×1 Q×2 U×3 R

Here Q ∈ RI×R1 , U ∈ RK×R2 , R ∈ RK×R3

are the factor matrices, and G ∈ RR1×R2×R3 is a
core tensor. Once these factor matrices and core
tensor are determined, the personalized response
embedding pi,j for any question-user pair (i, j) can

be calculated as:

pi,j = P(i,j,:) = RG(3) (uj ⊗ qi)
>

where qi and uj denote i-th and j-th row vector of
Q and U respectively. ⊗ is the Kronecker product
of two matrices.

Next, we introduce different mechanisms to in-
corporate TF modules especially pi,j into tradi-
tional LSTM-based models and Transformer Lan-
guage Models. This is essential to train better TF
modules since it is impossible to directly supervise
pi,j as no ground truth is available.

4.2 LSTM-based Model with TF Module
To utilize TF module for standard LSTM-based
Seq2Seq models, we propose to incorporate pi,j

into the initial hidden vector and cell vector of the
LSTM decoder to help generate more personalized
response, as personalized response embedding pi,j

is expected to also encode the target response:

hd
0 = (1− λ) · he

m + λ · pi,j

cd0 = (1− λ) · cem + λ · pi,j ,
(1)

Here λ is a coefficient to balance the information
from the LSTM encoder and the personalized re-
sponse embedding. Note that our TF module is
agnostic to encoder-decoder frameworks, and can
be applied to any Seq2Seq model similarly, includ-
ing but not limited to Seq2Seq, Speaker model
(Li et al., 2016), Seq2Seq with memory network
(Zhang et al., 2018), and Speaker model with mem-
ory network. Figure 1 describes how the TF mod-
ule is integrated with an LSTM-based Seq2Seq
model. The TF module is randomly initialized and
trained together with the Seq2Seq model. This al-
lows TF module to access the supervision from the
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output response, thus learn the latent interaction
between users and questions and produce personal-
ized response embedding for the decoder.

4.3 Transformer with TF Module

Recent success of DialoGPT (Zhang et al., 2020)
on conversational response generation shows the
potential of (pre-trained) transformer language
model for the task of response generation. Thus
we propose to incorporate TF module with trans-
former language model, (DialoGPT in specific) for
personalized response generation. Since DialoGPT
is a language model rather than a Seq2Seq model,
it does not have a encoder-decoder architecture but
only one transformer model. Thus we cannot uti-
lize pi,j as the initial hidden vector for decoder
like that in Eq. 1. Instead, we propose to add per-
sonalized response embedding pi,j with the input
token embedding, token type embedding and posi-
tional embedding together as the input embedding
to DialoGPT model. As shown in Figure 2, the
personalized response embedding pi,j is added to
token “<EOS>”, “klein” and “bleu” in the input
to decode the j-th user’s response for the i-th ques-
tion. The TF module that produces pi,j is also
trained together with the DialoGPT model in an
end-to-end fashion.

5 Experiments

5.1 Dataset

To study the task of personalized response gen-
eration with no explicit personalization informa-
tion, we used a personalized Reddit dataset PER-
CHAT, consisting of 200,156 responses that users
posted to different questions, from r/AskReddit1

(Wu et al., 2021). Building upon Wu et al. (2021),
we used active users who joined more than av-
erage discussions, and popular questions that re-
ceived more comments. This led to 4724 users
under 39,187 questions. These users and questions
were sampled because they were active users who
joined more discussions or popular questions that
received more comments. We filtered all forms
of url links, emails and digits into unique tokens
“url”, “email” and “digit”. Replicated words and
punctuation were processed to their standard forms.
We sampled 3 responses for each user for users in
the validation and test set, and the rest are used
for training. The proportion of split size of train,
validation, test is 171812 : 14172 : 14172.

1https://www.reddit.com/r/AskReddit/

DialoGPT
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Figure 2: Input representation for DialoGPT model with TF
module. TF module’s personalized response embedding pi,j

is added with response token’s word embedding, token type
embedding and positional embedding.

5.2 Baselines and Our Models

We introduced several baselines for comparison
with our proposed models. We introduced several
baselines for comparison with our proposed mod-
els. (1) DialoGPT: A response generation model
based on DialoGPT-medium provided in Zhang
et al. 2019; (2) Seq2Seq: A standard Seq2Seq
model with attention mechanisms with no person-
alization information; (3) Speaker model: Our im-
plementation of the speaker model (Li et al., 2016).
Following (Kottur et al., 2017), the Speaker em-
beddings were not initialized randomly but set as
the average sentence embeddings from a user’s all
historical responses via sentence-BERT (Reimers
and Gurevych, 2020); the dimension was reduced
to 30 by principal component analysis. (4) Mem-
ory network: Our implementation of the generative
memory network (Zhang et al., 2018) based on our
Seq2Seq model with attention. We retrieved top-10
most relevant responses from a user for each ques-
tion as the memory in the memory network; (5)
Memory+Speaker: The generative memory net-
work (Zhang et al., 2018), together with the use of
the speaker embedding (Li et al., 2016).
Our models were based on the aforementioned
baseline models by further incorporating our
proposed TF module, i.e., the personalized re-
sponse embedding from the TF module. Di-
aloGPT+TF is a DialoGPT model with person-
alized response embedding added to each time
step at the decoding stage shown in Figure 2.
Seq2Seq+TF, Speaker+TF, Memory+TF, Mem-

https://www.reddit.com/r/AskReddit/
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ory+Speaker+TF are constructed on top of our
baseline models with personalized response em-
bedding added to the decoder as Eq. 1.

5.3 Evaluation Metrics
We evaluated different models with F1, BLEU,
Distinct-N, perplexity (PPL), and our proposed Per-
Hits@k. Here, F1 (Dinan et al., 2019) refers to the
harmonic mean of precision and recall computed
based on the tokens between generated and ground
truth response. BLEU (Papineni et al., 2002) was
first proposed for machine translation but is also
widely used for evaluating response generation.
Distinct-N (Li et al., 2015) aims to evaluate lexical
diversity and we tested distinct unigrams (Distinct-
1) and bigrams (Distinct-2). We used perplexity to
evaluate the fluency of the generation model.
Per-Hits@k for Personalization Evaluation To
evaluate the personalization in generated responses
for a user, one needs to have a good understand-
ing of that particular user who might sometimes
have a very long posting history (500 responses per
user on average in our dataset), making it hard for
annotators to evaluate how personalized the gen-
erated response is for a user. Besides, not every
response from a user will reveal their personaliza-
tion information. Thus, we propose an automatic
evaluation metric to evaluate the personalization
degree of different generation models called Per-
Hits@k. Suppose we have N users and there are
Mi responses generated for user i to be evaluated.
We firstly train a user-specific language model LMi

for each user i on all their responses in training set.
We then test the j-th response’s perplexity of user
i on all users’ language models, and denote its per-
plexity on user-n’s language model as pplni,j . We
rank the perplexity of user i’s j-th response over
N user language models (the lower the perplex-
ity, the higher rank), and denote the ranking of the
perplexity on user i’s language model LMi with
rank(pplii,j). We define the value of Per-Hits@k
in Per-Hits@k metric as:

Per-Hits@k =
1∑N

i=1Mi

N∑
i=1

Mi∑
j=1

1x≤k(rank(ppl
i
i,j))

This measures how likely the generated response
will be ranked as top-k with its corresponding user
language model among N users. In our implemen-
tation, we fine-tuned GPT-2 (small) (Radford et al.,
2019) for each user i to instantiate this user i’s lan-
guage model LMi. To ensure the quality of LMi,

we only consider a subset of users (N = 500) and
choose these users who have the most responses.

5.4 Implementation Details
We implemented our models with PyTorch (Paszke
et al., 2019). For TF module, the core tensor
is of size 50 × 50 × 50, dimension of personal-
ized response embedding is 512 for all Seq2Seq-
based models with TF module (denote as Seq2Seq-
based+TF), while it is 1024 for the DialoGPT+TF
model. For any Seq2Seq-based+TF model, both
encoder and decoder have 2 LSTM layers with
hidden size of 512, while DialoGPT+TF model is
based on the pre-trained medium DialoGPT model
with hidden size of 1024. Any word appears more
than three times were included in the vocabulary
of Seq2Seq-based+TF models, and the size of the
vocabulary is 30K. DialoGPT+TF model uses the
pre-trained Byte-Pair-Encoding (BPE) tokenizer
of size 50,257. The λ coefficient in Eq. 1 is set
to 0.2. Adam (Kingma and Ba, 2014) is used as
the optimizer and the learning rate was set to 1e-3
for TF-Speaker model and 1e-5 for TF-DialoGPT
by grid search. Top-k (k = 2) sampling (Fan
et al., 2018) was used without any re-scoring tech-
niques to generate response at test stage. We se-
lected models with the highest average Per-Hits@k
(k = 1, 2, 3, 4, 5) on validation set.

5.5 Results
As shown in Table 1, we reported F1, BLEU,
Distinct-N and Per-Hits@k on test data. Distinct-
N and Per-Hits@k on ground truth test data and
Per-Hits@k on random ranking were also reported.
Overall, we found that TF based models signif-
icantly improved the personalization metric Per-
Hits@k compared to all baselines, with comparable
and even better performances in terms of other met-
rics. Specifically, our proposed Seq2Seq+TF model
had an average hist@k score 4 times higher than the
Seq2Seq baseline and the Memory+Speaker+TF
model had the highest personalization score. This
demonstrates that our proposed TF module can
model users’ personalization well using users’ post-
ing history. Furthermore, 1) Per-Hits@k on ground
truth data was far below its upper bound 100%
but still much higher than Per-Hits@k of genera-
tion models, showing the effectiveness of our Per-
Hits@kmetric to evaluate user personalization. For
example, a Per-Hits@1 score of 9.47% indicated
that 9.47% of the ground truth responses were
ranked as top-1 by its users’ language model over
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Method F1 BLEU Distinct-N % PPL Per-Hits@k %
% % D-1 D-2 1 2 3 4 5 Avg.

Random ranking - - - - - 0.20 0.40 0.60 0.80 1.00 0.60
Ground truth - - 7.25 45.51 - 9.47 15.73 19.93 23.00 25.40 18.71

DialoGPT 13.64 0.86 3.24 18.68 27.20 0.40 0.67 1.00 1.27 1.60 0.99
Seq2Seq 14.42 1.22 0.66 4.01 92.24 0.60 0.87 1.00 1.20 1.53 1.04
Speaker 15.34 1.41 2.79 14.27 98.75 1.00 1.93 2.93 3.40 3.80 2.61
Memory 14.42 1.28 3.34 16.36 108.27 1.27 2.20 2.73 3.20 3.67 2.61

Memory+Speaker 14.60 1.11 3.52 17.64 110.31 1.53 2.73 3.47 4.33 5.00 3.41

DialoGPT+TF 13.61 0.80 3.61 20.40 27.01 0.53 1.00 1.27 1.67 1.73 1.24∗

Seq2Seq+TF 15.40∗ 1.58∗ 3.20∗ 15.95∗ 105.21 2.07∗ 3.20∗ 4.53∗ 5.40∗ 5.80∗ 4.20∗

Speaker+TF 15.33 1.59 3.35∗ 17.19∗ 107.88 2.07∗ 3.33∗ 3.80 4.67 5.40∗ 3.85∗

Memory+TF 14.99∗ 1.38∗ 3.52 16.69 107.46 2.40∗ 3.33∗ 4.00∗ 5.00∗ 5.60∗ 4.07∗

Memory+Speaker+TF 14.99∗ 1.40∗ 3.34 16.29 107.55 2.60∗ 4.00∗ 4.93∗ 6.00∗ 6.53∗ 4.81∗

Table 1: Performance comparison with baselines. A Wilcoxon signed-rank test was performed for Per-Hits@k and
paired t-test was performed for other metrics, the significant ones (p < 0.05) over its baseline are marked as ∗.

Method F1 BLEU Distinct-N % PPL Per-Hits@k %
% % D-1 D-2 1 2 3 4 5 Avg.

Ground truth - - 26.51 73.31 - 100 100 100 100 100 100

DialoGPT 15.67 0.11 28.33 65.18 20.96 1.41 2.11 2.82 2.82 2.82 2.39
Seq2Seq 16.05 0.47 21.69 52.29 60.10 2.11 2.11 2.82 4.93 4.93 3.38
Speaker 19.69 4.40 19.42 48.47 55.81 3.52 6.34 9.15 9.86 9.86 7.75
Memory 19.02 4.33 23.08 54.56 60.44 4.23 7.04 8.45 9.15 9.86 7.75

Memory+Speaker 19.89 3.18 22.98 58.51 59.03 4.93 7.75 11.97 14.79 16.20 11.13

DialoGPT+TF 15.11 0.17 30.29 65.19 21.30 2.11 2.82 2.82 3.52 3.52 2.96∗

Seq2Seq+TF 22.98∗ 5.77 20.43 49.75 57.38 9.86∗ 13.38∗ 16.90∗ 16.90∗ 17.61∗ 14.93∗

Speaker+TF 20.70 4.16 22.72∗ 53.02∗ 56.50 10.56∗ 13.38∗ 14.08 15.49 15.49 13.80∗

Memory+TF 21.31∗ 3.10 23.45 55.10 57.65 11.27∗ 12.68 13.38 15.49 16.20 13.80∗

Memory+Speaker+TF 20.79 2.31 23.67 58.58 57.64 10.56∗ 14.08∗ 15.49∗ 16.90∗ 18.31∗ 15.07∗

Table 2: Performance comparison with baselines on top-1 focused test set. A Wilcoxon signed-rank test was performed for
Per-Hits@k and paired t-test was performed for other metrics, the significant ones (p < 0.05) over its baseline are marked as ∗.

the 500 users. One explanation why Per-Hits@1
on ground truth data was far below 100% might
be that these responses from a user do not neces-
sarily always reveal their persona. 2) Although
both Seq2Seq and DialoGPT did not model user
personalization explicitly, they had higher than ran-
dom Per-Hist@k. 3) Compared to Seq2Seq, both
Speaker and Memory model had about double Per-
Hits@k and some degree of improvements over
BLEU, F1, and Distinct-N. Combining the Mem-
ory and Speaker models led to further improve-
ment on Per-Hits@k. Seq2Seq model with per-
sonalized response embedding form TF module
(Seq2Seq+TF) achieved higher Per-Hits@k than
all baselines, and our Memory+Speaker+TF model
showed the highest Per-Hits@k score, demonstrat-
ing the effectiveness of our proposed TF module
in capturing user personalization by learning the
latent interactions between questions, users, and
their responses. 4) Compared to Seq2Seq model,
DialoGPT performed worse on content related-
ness measures like BLEU and F1 and personal-

ization measure Per-Hits@k. But our TF module
still improved the personalization on top of Di-
aloGPT model, as well as the diversity measure
Distinct-N. Note that the perplexity could not be
compared between DialoGPT and LSTM-based
models since they have different vocabulary sets.
5) Memory+Speaker model had better Per-Hits@k
but lower BLEU than Seq2Seq model, while our
TF module improved Memory+Speaker model’s
BLEU and Per-Hits@k at the same time. Due to
the open-ended nature of these discussions, we
observed relatively low BLEUs across different
models, in line with prior work on personalized
generation (Zheng et al., 2020; Li et al., 2016).

Since we have relatively high Per-Hits@k on
the ground truth test set, we hypothesize that those
top ranked responses in the ground truth test set by
Per-Hits@k might be more likely to contain user
personalization information. In other words, for
certain question-user pairs, a user is more likely to
respond with some personalized content that could
be better recognized by their language model. We
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Method F1 BLEU Distinct-N % PPL Per-Hits@k %
% % D-1 D-2 1 2 3 4 5 Average

Random 15.45 1.36 3.09 14.90 97.05 1.33 1.73 1.87 2.53 2.93 2.08
History 15.34 1.41∗ 2.79 14.27 98.75 1.00 1.93 2.93∗ 3.40 3.80 2.61
TF-u 15.24 1.48∗ 2.48 12.52 101.77 1.07 1.60 2.40 2.73 2.93 2.15

History+TF-u 15.60∗ 1.59∗ 3.02 15.42∗ 101.30 1.33 2.67 3.67∗ 4.20∗ 4.93∗ 3.36∗

Table 3: Speaker model with different speaker embedding initialization methods. A Wilcoxon signed-rank test was performed
for Per-Hits@k and paired t-test was performed for other metrics, the significant ones (p < 0.05) over Random are marked as ∗

top-m Per-Hits@k from Seq2Seq+TF
1 2 3 4 5 Avg.

1 9.86 13.38 16.90 16.90 17.61 14.93
2 6.78 9.32 11.86 11.86 12.71 10.51
3 6.35 8.36 11.04 11.37 12.04 9.83
4 5.51 7.54 9.86 11.01 11.59 9.10
5 4.99 6.82 8.92 9.97 10.50 8.24

500 2.07 3.20 4.53 5.40 5.80 4.20

Table 4: Per-Hits@k on different top-m focused test sets.

denote these question-user pairs that are ranked
top-k by the Per-Hits@k from the test set as the
top-m focused set. We evaluated Per-Hits@k of
Seq2Seq+TF on different top-m (m = 1, 2, 3, 4, 5)
test set in Table 4. Note that top-500 is the full test
set we used for Per-Hits@k in Table 1. Per-Hits@k
was higher on smaller top-m test set, showing the
effectiveness of our Per-Hits@k measure, because
Per-Hits@k of the same Seq2Seq+TF model was
higher on the focused question-user subset when
m is small, while lower on the larger and general
test set. We then evaluated the baselines and our
proposed models on top-1 focused test set in Ta-
ble 2. Compared to the results on the full test set
(Table 1), the gaps between our models and base-
lines on BLEU, F1, and Per-Hits@k are larger on
this top-1 test set. This suggests that our TF mod-
ule can help generate more personalized response
for a user, especially in a context where a user is
more likely to write personalized response.

5.6 Analysis and Ablation Studies

The Rank of Tucker Decomposition We first
studied the influence of the rank of Tucker decom-
position used in our TF module, i.e. the shape
of the core tenser G. We trained Seq2Seq+TF
model with core tensor of shape R×R×R,R ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. From Fig-
ure 3(a), we found that Per-Hits@k first increased
along with the rank, indicating that TF mod-
ule with higher rank might better model latent
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Figure 3: Per-Hits@k of Seq2Seq+TF model with (a):
different Tucker’s rank; (b): different balancer λ.

user-questioninteractions. When the rank reaches
around 50, there seems to be limited averaged gains
on Per-Hits@k. Thus, we chose core tensor of
shape 50× 50× 50 for our TF module.

The Balancer λ We then studied the influence of
the λ coefficient in Eq 1 which is used to balance
the question information from the encoder and per-
sonalized response embedding from the TF mod-
ule. We varied Seq2Seq+TF model’s λ from 0 to
1, as shown in Figure 3(b). Note that Seq2Seq+TF
with λ = 0 is the Seq2Seq baseline. We observed
that Per-Hits@k increased a lot when λ changed
from 0 to 0.1, confirming the effectiveness of our
proposed TF module in modeling user personaliza-
tion. Moreover, TF module was not sensitive to
the hyper-parameter λ as Per-Hits@k were stable
for λ ∈ [0.1, 0.4]. Per-Hits@k decreased when λ
was larger than 0.4, suggesting the importance to
balance the encoder and TF module.

User Factor Matrix To examine whether the TF
module has learned user personalization informa-
tion in user factor matrix U, we trained a Speaker
model that initialized the speaker embeddings with
user embeddings in U and other initialization meth-
ods. Specifically we studied the user factor matrix
(TF-u) from the Seq2Seq+TF model in Table 1 and
compared it with: 1) random speaker embeddings
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Figure 4: Per-Hits@k calculated by GPT2 and KenLM for
different models. Pearson correlation r=0.941, with p < .001.

(Random) and 2) average sentence embeddings of
each user’s historical responses (History) which
is used in our Speaker model baseline; 3) we fur-
ther concatenated the history embeddings and our
user embeddings in U to be the initial Speaker em-
beddings (History+TF-u). The results of the four
variants of Speaker model are shown in Table 3.
We found that both History and TF-u initialization
improved Per-Hits@k over Random to some extent,
suggesting that our TF module has learned some
degree of user personalization in its user factor ma-
trix U. Although TF-u had smaller Per-Hits@k
improvement over Random, History+TF-u has the
best Per-Hits@k, indicating that the personaliza-
tion information learned by TF module is different
to that from users’ posting history.

Robustness of Personalization Metric To test
the robustness of our Per-Hits@k metric, we
trained trigram language models with the KenLM
toolkit (Heafield et al., 2013) for the user spe-
cific language models used in Per-Hits@k. While
GPT-2 is a transformer-based language model pre-
trained on large corpus and can be fine-tuned on
each user’s corpus, KenLM is impossible to follow
this approach because it can only be trained in an
end-to-end way, i.e. language models of KenLM is
directly trained on each user’s corpus. Thus we had
two Per-Hits@k variants: Per-Hits@k-GPT2 (the
one we used in previous sections) and Per-Hits@k-
KenLM. We evaluated Per-Hits@k-GPT2 and Per-
Hits@k-KenLM for all the models we trained with
different settings and plot all (Per-Hits@k-KenLM,
Per-Hits@k-GPT2) pairs for k ∈ {1, 2, 3, 4, 5} in
Figure 4. With a correlation of 0.941 between two
variants, we conclude that Per-Hits@k is robust

because it produces consistent and similar judge-
ments regardless of which language model it uses.

6 Conclusion and Discussion

This work proposed a tensor factorization module
to model user personalization from users’ posting
history for the task of personalized response gener-
ation, where explicit persona or demographic infor-
mation is unavailable. To automatically evaluate
the personalization of generated response, we pro-
posed a new evaluation metric called Per-Hits@k.
Extensive experiments on a large-scale dataset
show that our proposed TF module outperforms
previous methods significantly in terms of its con-
tent generation quality and also the personalization
of generated responses. Our ablation studies fur-
ther demonstrated the effectiveness and robustness
of our TF based generation framework.

One limitation to note for our work is that our
tensor factorization based framework to model per-
sonalization has only been tested on a corpus de-
rived from Reddit (Wu et al., 2021). We acknowl-
edge that potential user population bias might be
introduced in this process. Another limitation of
our results lies in dealing with new users, i.e., the
cold start problem. Future research could further
examine these issues, build upon our work to ex-
amine how different types of implicit information
such as social knowledge and commonsense might
be learned together with these user profiles in this
tensor factorization manner, and model personal-
ization in multi-turn dialogue systems.
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