
MXX@FinSim3 - An LSTM–based approach with custom word embeddings for
hypernym detection in financial texts

Nadine Kroher1∗ , Aggelos Pikrakis1 , Simon White1 , Joe Lyske1
1MXX

{nadine, aggelos, simon, joe}@mxx.ai,

Abstract
In this paper, we present our submission to the Fin-
Sim3 Shared Task, which introduces several im-
provements to a common approach to term classi-
fication. Specifically, in order to learn a robust and
representative word embedding on domain specific
text, we employ a series of established text pre-
processing stages and increase the scope of train-
ing data to cover a plurality of financial text cor-
pora. Then, instead of training a shallow classi-
fier on word embeddings that are subsequently av-
eraged over all words over the input text, we train
a stacked recurrent neural network that takes the
full sequence of word embeddings as input and as-
sociates it with a hypernym. The official task re-
sults show that these modifications yield a signif-
icant performance improvement compared to the
baseline and outperform all other competing algo-
rithms.

1 Introduction
The third edition of the FinSim task ([El Maarouf et al.,
2021], [Mansar et al., 2021]) provides a framework for the
comparative evaluation of hypernym detection methods tar-
geting the financial domain. More specifically, participating
systems are tasked with automatically associating a given fi-
nancial term with the most relevant hypernym from a prede-
fined set of concepts.

While text classification and hypernym detection are well-
studied problems in the Natural Language Processing (NLP)
community ([Nguyen et al., 2017], [Aggarwal and Zhai,
2012]), this particular task poses a series of additional chal-
lenges which exclude a trivial application of off-the-shelf
methods. Most importantly, the domain-specific language
of the financial sector, with its unique terminology, results
in poor generalisation of pre-trained word and sentence em-
beddings. While state of the art deep learning based em-
bedding networks, such as Google’s Universal Sentence En-
coder (USE) [Cer et al., 2018], BERT [Devlin et al., 2018] or
SBERT [Reimers and Gurevych, 2019], are generally power-
ful tools that are capable of encoding semantic similarity be-

∗Contact Author

tween words and sentences, they are trained on large generic
text corpora which lack generalisation capabilities to finan-
cial language. In addition, the manually curated training data
for the task is rather sparse compared to other NLP data sets
which can often be obtained in a fully automatic manner by
scraping appropriate online resources (i.e. [Krapivin et al.,
2009], [Dunn et al., 2017] or [Wang et al., 2020]).

Our approach to this task involves two stages. First, we
train a custom Word2Vec [Mikolov et al., 2013] embedding
on a large amount of financial text. Specifically, we augment
the training data by combining prospectuses supplied by the
task organisers with text scraped from domain-specific web
resources and terms from the training dataset. Furthermore,
we apply a series of standard text preprocessing methods to
the data to increase coverage and robustness of the resulting
tokens. At a second stage, we train a recurrent neural network
to associate a given term with its corresponding hypernym.
The network takes as input the sequence of word embeddings
extracted from the term to be classified and outputs a class
probability for each of the target hypernyms. The official task
results show that our method outperforms the baseline meth-
ods and all other submissions to the task.

The rest of this paper is organised as follows: Section 2
provides a brief overview of related approaches to the task. A
detailed technical description of our method is given in Sec-
tion 3 and the our task results are summarised in Section 4.
Finally, are drawn in Section 5.

2 Related work
The first edition of the FinSim hypernym detection task
[El Maarouf et al., 2021] resulted in a variety of approaches
to the problem, including a method that operated on sparse
word representations [Berend et al., 2020] and a system that
used off-the-shelf USE embeddings as input [Anand et al.,
2021]. The system that won [Keswani et al., 2020] had
broadly followed the two-stage approach described in the
previous section. In particular, for the first stage, the use
of custom context-free Word2Vec embeddings and context-
dependent BERT embeddings was investigated. For the sec-
ond stage, they compared the performance of different shal-
low classifiers. In all setups, the input to the classifier was
the averaged embedding over all words contained in the term.
The second best performing system [Saini, 2021], augmented
the training data with additional resources scraped from the

36
Proceedings of the Third Workshop on Financial Technology and Natural Language Processing

(FinNLP@IJCAI 2021), pages 36-39, Online, August 19, 2021.

Figure 1: System overview

web and used hand-crafted features together with bi-gram
TF-IDF features as input to a linear support vector machine.

3 Method
Our method follows the two-stage framework employed by
the winning system of the previous edition of the task de-
scribed in Section 2. At a first stage, we train a custom word
embedding which maps words to vectors and is specifically
trained to cover the unique terminology and use of language
encountered in financial texts. The resulting word embed-
dings are then used to train a stack of Long Short Term Mem-
ory (LSTM) [Greff et al., 2016] networks to map a sequence
of word embeddings to the corresponding hypernym. An
overview of the method is shown in Figure 1.

We selected this approach for two important reasons.
Firstly, because it can operate on embedding sequences of ar-
bitrary lengths rather than being restricted to a singled input

vector, as it is the case with most shallow classifiers and sim-
ple feed-forward neural networks. In related approaches (see
Section 2), the word embeddings extracted from individual
words of a term are usually averaged to obtain a single em-
bedding vector. Averaging is often, however, a simplification.
For example, if only one out of five words is crucial to make
a classification decision, its importance will be demoted by
the averaging procedure. Furthermore, LSTMs are capable
of learning temporal sequences and can thus leverage impor-
tant information contained in the ordering of words within the
term representation. In addition, LSTMs have relatively few
trainable parameters compared to other fully-connected deep
networks with many dense layers and can therefore be trained
on smaller data sets with reduced over-fitting risk.

Below, the two stages of our method are described in more
detail.

3.1 Custom word embedding
In order to generate a custom word embedding, we train the
well-known Word2Vec algorithm, which can learn a mapping
from a word to a vector in an unsupervised manner using un-
structured text.

As training data, we use all sentences from the set of
prospectuses and the flat FIBO ontology definitions supplied
by the task organisers. In addition, we scraped all term defini-
tion from Investopedia 1, an online lexicon for financial terms
and added those sentences to the training data. We further-
more added all terms from the training data of the classifica-
tion task to the training set. The latter was done to ensure that
frequently occurring words and expressions will be added as
tokens in the embedding model, as it is for example the case
with the word ”iTraxx” which appears frequently in terms of
the ”Credit Index” class.

We furthermore applied a cascade of standard NLP prepro-
cessing steps to the raw text to obtain more representative and
robust word embeddings:

• we converted all characters to lower case
• we removed common stopwords
• we excluded terms which contain non-alphabetic char-

acters
• we applied lemmatization to retain only the root form of

each word
The resulting sentences were then used to train a Word2Vec

model using the skip-gram algorithm and a 128-dimensional
embedding vector.

3.2 Data augmentation
Even though the parameter count of our network architecture
(see Section 3.3) is relatively low (approx. 150k parame-
ters) compared to other deep, fully-connected architectures,
the availability of training instances is also rather limited (ap-
prox. 1000 annotated terms were provided in the context of
the task). We therefore augmented the training data using two
mechanisms.

First, we identified a few web resources which con-
tain additional terms that belong to a particular class

1https://www.investopedia.com

37

https://www.investopedia.com

with a high degree of certainty and can thus be easily
scraped. For example, the website www.advfn.com/nyse/
newyorkstockexchange.asp contains a list of companies that
are listed in the NYSE index and therefore belong with a
high degree of confidence to the class ”stock corporation”.
Similarly, the website www.bis.org/regauth.htm lists numer-
ous terms belonging to the ”regulatory agency” class. In this
way, we managed to gather additional instances for some of
the target classes.

Secondly, we applied the text data augmentation method in
[Marivate and Sefara, 2020] to expand the amount of training
instances even further. More specifically, we created several
variants of each term by replacing one of its words with the
most similar word according to the custom Word2Vec model.
For example, one augmentation of the term ”S&P Global En-
ergy Sector Index”, results in ”S&P Global Agriculture Sec-
tor Index”. The example shows that the augmentation strat-
egy yields additional instances that are mostly fictional but
preserve characteristic word patterns and sentence structures.
A more detailed description of this process can be found in
[Marivate and Sefara, 2020].

After this procedure was completed, a total of 8000 train-
ing instances were available. We used 100 of the original
terms supplied by the organisers as a validation set during the
training procedure.

3.3 LSTM stack
The sequences of word embeddings are fed as input to a stack
of two Bi-directional LSTMs, 64 units each. The first layer
returns all intermediate hidden states (i.e., one per input em-
bedding) and passes them to the second layer which returns
the last hidden state only as a 64-dimensional output vector.
This output is further connected to a dense softmax layer with
one output node per class (17 output nodes in total).

The model is trained by minimizing the categorical cross-
entropy loss using the Adam [Kingma and Ba, 2014] opti-
miser with an initial learning rate of 0.0001. We employ an
early stopping criterion which stops the training process if
the validation loss fails to improve over a patience period of
5 epochs.

At run time, we can interpret the output of the softmax
layer as class-specific probabilities and rank our predictions
accordingly, e.g. the predicted class is the class with the high-
est output value, followed by the one with the second highest,
etc.

4 Results
The methods submitted to the competition are evaluated
based on two metrics, i.e., accuracy, which describes the
percentage of correctly predicted tags and mean rank, which
stands for the average rank of the correct class in the list of
predicted labels.

On the held-out validation set, our method achieves an ac-
curacy of 0.96 and an average rank of 1.06. The official re-
sults of the actual challenge test set show that our method ob-
tained an accuracy of 0.941 and a mean rank of 1.113 on the
test set, thus outperforming the two baseline methods (base-
line 1: accuracy= 0.564 and mean rank= 1.941; baseline 2:

team mean rank accuracy
Baseline 1 1.941 0.564
Baseline 2 1.75 0.669

dicoe 1 1.180 0.889
dicoe 2 1.162 0.904
lipi 1 1.257 0.886
lipi 2 1.22 0.895
lipi 3 1.156 0.917

MiniTrue 2 1.315 0.865
MiniTrue 1 1.346 0.855
MiniTrue 3 1.337 0.825

MXX 1.113 0.941
yseop 1 1.236 0.883
yseop 2 1.141 0.917

Table 1: Mean rank and accuracy across different algorithms from
the official task results

accuracy= 0.669 and mean rank= 1.75) as well as all other
submitted approaches. It can be observed that the results of
our method on the test set are only slightly inferior to the
training stage results, which can be interpreted as an indica-
tion of our method’s robustness to over-fitting phenomena.

For the sake of completeness, the results of the baseline
and all participating methods are summarised in Table 1.

5 Conclusions
We described a two-stage scheme for the classification of
terms from the financial domain with respect to hypernym
affinity. At a first stage, we extracted a custom Word2Vec
embedding trained on domain-specific text that was pre-
processed using a cascade of standard NLP methods. At a
second stage, a stack of LSTMs was designed to take as in-
put the sequences of word embeddings of a term and predict
class probabilities for each of the possible hypernyms. We
have also demonstrated that simple methods can be used to
automatically gather additional data and augment the exist-
ing training corpus, thus permitting more complex networks
to be trained with a reduced over-fitting risk. The official
results of the task show that our approach outperforms both
baseline methods as well as all other participating systems.

Acknowledgements
The authors would like to thank Naomi Clarke for providing
insightful discussions on data gathering and ontology inter-
pretation procedures.

References
[Aggarwal and Zhai, 2012] Charu C Aggarwal and ChengX-

iang Zhai. A survey of text classification algorithms. In
Mining text data, pages 163–222. Springer, 2012.

[Anand et al., 2021] Vivek Anand, Yash Agrawal, Aarti Pol,
and Vasudeva Varma. Finsim20 at the finsim task: Making
sense of text in financial domain. In Proceedings of the
Second Workshop on Financial Technology and Natural
Language Processing, pages 104–107, 2021.

38

www.advfn.com/nyse/newyorkstockexchange.asp
www.advfn.com/nyse/newyorkstockexchange.asp
www.bis.org/regauth.htm

[Berend et al., 2020] Gábor Berend, Norbert Kis-Szabó, and
Zsolt Szántó. Prosperamnet at the finsim task: Detecting
hypernyms of financial concepts via measuring the infor-
mation stored in sparse word representations. 2020.

[Cer et al., 2018] Daniel Cer, Yinfei Yang, Sheng-yi Kong,
Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Con-
stant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Dunn et al., 2017] Matthew Dunn, Levent Sagun, Mike
Higgins, V Ugur Guney, Volkan Cirik, and Kyunghyun
Cho. Searchqa: A new q&a dataset augmented
with context from a search engine. arXiv preprint
arXiv:1704.05179, 2017.

[El Maarouf et al., 2021] Ismail El Maarouf, Youness
Mansar, Virginie Mouilleron, and Dialekti Valsamou-
Stanislawski. The finsim 2020 shared task: Learning
semantic representations for the financial domain. In
Proceedings of the Second Workshop on Financial Tech-
nology and Natural Language Processing, pages 81–86,
2021.

[Greff et al., 2016] Klaus Greff, Rupesh K Srivastava, Jan
Koutnı́k, Bas R Steunebrink, and Jürgen Schmidhuber.
Lstm: A search space odyssey. IEEE transactions on
neural networks and learning systems, 28(10):2222–2232,
2016.

[Keswani et al., 2020] Vishal Keswani, Sakshi Singh, and
Ashutosh Modi. Iitk at the finsim task: Hypernym detec-
tion in financial domain via context-free and contextual-
ized word embeddings. arXiv preprint arXiv:2007.11201,
2020.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Krapivin et al., 2009] Mikalai Krapivin, Aliaksandr Au-
taeu, and Maurizio Marchese. Large dataset for keyphrases
extraction. 2009.

[Mansar et al., 2021] Youness Mansar, Juyeon Kang, and Is-
mail El Maarouf. The finsim-2 2021 shared task: Learning
semantic similarities for the financial domain. In Compan-
ion Proceedings of the Web Conference 2021, pages 288–
292, 2021.

[Marivate and Sefara, 2020] Vukosi Marivate and Tshep-
hisho Sefara. Improving short text classification through
global augmentation methods. In International Cross-
Domain Conference for Machine Learning and Knowl-
edge Extraction, pages 385–399. Springer, 2020.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositional-
ity. In Advances in neural information processing systems,
pages 3111–3119, 2013.

[Nguyen et al., 2017] Kim Anh Nguyen, Maximilian Köper,
Sabine Schulte im Walde, and Ngoc Thang Vu. Hierarchi-
cal embeddings for hypernymy detection and directional-
ity. arXiv preprint arXiv:1707.07273, 2017.

[Reimers and Gurevych, 2019] Nils Reimers and Iryna
Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084,
2019.

[Saini, 2021] Anuj Saini. Anuj at the finsim task: Anuj@ fin-
simı́vlearning semantic representation of financial domain
with investopedia. In Proceedings of the Second Workshop
on Financial Technology and Natural Language Process-
ing, pages 93–97, 2021.

[Wang et al., 2020] Yanshan Wang, Naveed Afzal, Sunyang
Fu, Liwei Wang, Feichen Shen, Majid Rastegar-Mojarad,
and Hongfang Liu. Medsts: a resource for clinical seman-
tic textual similarity. Language Resources and Evaluation,
54(1):57–72, 2020.

39

