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Abstract

Knowledge Distillation (KD) is a model com-
pression algorithm that helps transfer the
knowledge of a large neural network into a
smaller one. Even though KD has shown
promise on a wide range of Natural Language
Processing (NLP) applications, little is un-
derstood about how one KD algorithm com-
pares to another and whether these approaches
can be complimentary to each other. In this
work, we evaluate various KD algorithms on
in-domain, out-of-domain and adversarial test-
ing. We propose a framework to assess the
adversarial robustness of multiple KD algo-
rithms. Moreover, we introduce a new KD al-
gorithm, Combined-KD 1, which takes advan-
tage of two promising approaches (better train-
ing scheme and more efficient data augmen-
tation). Our extensive experimental results
show that Combined-KD achieves state-of-the-
art results on the GLUE benchmark, out-of-
domain generalization, and adversarial robust-
ness compared to competitive methods.

1 Introduction

Pre-trained language models have achieved impres-
sive results on a wide variety of NLP problems (Pe-
ters et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2020; Radford and Narasimhan,
2018; Radford et al., 2019). The rapidly increas-
ing parameter size, however, has not only made
the training process more challenging (Ghaddar
and Langlais, 2019), but has also become an ob-
stacle when deploying these models on edge de-
vices. To address the over-parameterization and
computation cost of state-of-the-art (SOTA) pre-
trained language models, KD (Hinton et al., 2015)
has emerged as a widely used model compression
technique in the literature (Rogers et al., 2020).

Recent work on improving KD can be catego-
rized into two directions: 1) Designing a better

1We will release our code at https://github.com/huawei-
noah/KD-NLP.

training scheme to help the student model learn ef-
ficiently from the teacher model. E.g., matching the
student model’s intermediate weights and attention
matrices with the teacher’s during the training (Sun
et al., 2019; Wang et al., 2020; Passban et al., 2020)
or designing progressive or curriculum based learn-
ing (Jafari et al., 2021; Sun et al., 2020; Mirzadeh
et al., 2020) to overcome capacity gap (Mirzadeh
et al., 2020) between teacher and student models.
2) Employing data-augmentation (Jiao et al., 2020;
Fu et al., 2020; Rashid et al., 2021; Kamalloo et al.,
2021) to improve KD by using more diverse train-
ing data. It is difficult to compare these methods
since, typically, the teachers and students are ini-
tialized differently.

The robustness of KD also requires further in-
vestigation. Recent studies have revealed that the
strong performance of neural networks in NLP can
be partially attributed to learning spurious statisti-
cal patterns in the training set and even the SOTA
models can make mistakes if a few words in their
input are replaced (Jin et al., 2019; Li et al., 2020;
Gao et al., 2018; Li et al., 2019). As a result, even
though KD has achieved good performance in dif-
ferent downstream tasks (Jiao et al., 2020; Sanh
et al., 2020; Sun et al., 2020), it is desirable to
investigate if these KD methods learn semantic
knowledge and are robust enough to retain their per-
formance on an out-of-domain (OOD) dataset (Mc-
Coy et al., 2019; Zhang et al., 2019a) or under
an adversarial attack (Jin et al., 2019; Gao et al.,
2018). It would also be desirable to evaluate if dif-
ferent KD algorithms are complimentary and can
be combined successfully.

Our contributions in this paper are as follows:

1. We compare KD algorithms for BERT com-
pression initialized with the same teacher and
student, and rank them against one another on
the GLUE benchmark.

2. We conduct OOD and adversarial evaluation
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to investigate the robustness of KD methods.

3. We propose a unified adversarial framework
(UAF) that can evaluate adversarial robustness
in a multi-model setting to fairly compare dif-
ferent models.

4. We introduce a new KD method named
Combined-KD (ComKD) by taking advantage
of data-augmentation and progressive train-
ing. Results show that our proposed ComKD
not only achieves a new SOTA on the GLUE
benchmark, but is also more robust compared
to competitive KD baselines under OOD eval-
uation and adversarial attacks.

2 Related Work

2.1 Unsupervised pre-training
Unsupervised pre-training (Devlin et al., 2019; Liu
et al., 2019; Yang et al., 2020) has been shown to be
very effective in improving the performances of a
wide range of NLP problems. Model performance
has scaled well with larger number of parameters
and training data (Raffel et al., 2020; Brown et al.,
2020; Radford et al., 2019).

2.2 Knowledge distillation (KD)
Knowledge distillation (Hinton et al., 2015; Bu-
ciluǎ et al., 2006; Gao et al., 2018; Kamalloo et al.,
2021; Rashid et al., 2020) has emerged as an im-
portant algorithm in language model compression
(Jiao et al., 2020; Sanh et al., 2020; Sun et al., 2020).
In the general setting, a larger model is employed
as the teacher and a smaller model as the student,
and the knowledge of the teacher is transferred to
the student during the KD training. Specifically, in
addition to a supervised training loss, the student
also considers a distillation loss over the soft target
probabilities of the teacher.

Sun et al. (2019) proposed distilling intermedi-
ate layer representation in addition to the regular
distillation loss. Since the teacher typically has
more layers than the student, the algorithm has to
decide which layers to distil from and which to
skip. Passban et al. (2020) overcome this challenge
by designing an attention mechanism which fuses
teacher-side information and takes each layer’s sig-
nificance into consideration. Jafari et al. (2021)
identifies the capacity gap problem (Mirzadeh et al.,
2020) i.e., as the teacher increases in size (and per-
formance), the performance of a fixed size student
will initially improve and then drop down. They

propose to improve KD by using temperature to
anneal the teacher’s output gradually, then the stu-
dent will be trained following the annealed output.
Rashid et al. (2021) proposed adversarial data aug-
mentation to improve KD. They train a generator
to perturb data samples so as to increase the diver-
gence between the student and teacher output.

2.3 Model Robustness Evaluation

It has been demonstrated that models which are
SOTA on different NLP applications, such as ma-
chine translation and natural language understand-
ing, can be brittle to small perturbations of the
data (Cheng et al., 2019; Belinkov and Bisk, 2017;
McCoy et al., 2019). In our work we consider OOD
tests and adversarial attacks.

2.3.1 Out-of-Domain test
The purpose of the OOD test is to change the dis-
tribution of dataset by applying fixed patterns to
the original dataset. E.g., McCoy et al. (2019) used
three heuristic rules to modify the MNLI evalua-
tion set. Zhang et al. (2019a) proposed well-formed
paraphrase and non-paraphrase pairs with high lexi-
cal overlap based on the original QQP (Wang et al.,
2018) dataset. Glockner et al. (2018) introduced
a natural language inference (NLI) test set by re-
placing a single word of a training instance using
WordNet (Miller, 1995).

2.3.2 Adversarial Attack
Adversarial examples, which were first identified in
computer vision (Goodfellow et al., 2015; Kurakin
et al., 2016; Labaca-Castro et al., 2021), are small
perturbations to data which are indiscernible for
humans but can confuse a neural network classifier.
The standard approach is to add gradient-based per-
turbation on continuous input spaces (Goodfellow
et al., 2015; Kurakin et al., 2016). Recently, stud-
ies also explore the use of adversarial examples on
NLP tasks, e.g., using adversarial examples to mea-
sure robustness against an adversarial attack (Jin
et al., 2019), or adding adversarial examples during
training process to help models improve in robust-
ness and generalization (Zhu et al., 2020; Ghad-
dar et al., 2021a,b; Rashid et al., 2021). Jin et al.
(2019) proposed a model dependent framework,
textfooler, to generate adversarial samples to at-
tack existing models. Different from previous rule-
based frameworks, textfooler can automatically re-
place the most semantically important words based
on a specific model’s output.
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Figure 1: Different model evaluations for Natural Lan-
guage Inference. The model is evaluated on in-domain,
out-of-domain and adversarial samples and makes an
error on the latter two.

3 Methodology

First, we evaluate different KD algorithms on three
kinds of test sets. In-domain testing where the
training and test sets are from the same distribution,
OOD test where the test set is specially designed
to diagnose whether the model overfits to spurious
lexical patterns and an adversarial test set to mea-
sure robustness to adversarial examples. Then we
present our ComKD algorithm.

In figure 1, we present an example from Natural
Language Inference where the model can predict an
in-domain sample correctly, but makes mistakes on
OOD (HANS) and adversarial (UAF) evaluation.
Specifically, in this example, the HANS sample
changes the object and the subject whereas the UAF
sample replaces the most semantically important
word.

3.1 In-domain test

We train on the GLUE benchmark (Wang et al.,
2018) and use the provided evaluation sets as our
in-domain test datasets. We evaluate both on the
GLUE dev set and the test set.

3.2 Out-of-Domain test

We employ HANS (Zhang et al., 2019a) and
PAWS (Zhang et al., 2019b) as our OOD test set.
Models are trained on MNLI and QQP datasets
respectively.

Figure 2: Unified Adversarial Framework

3.3 Adversarial Test
Adversarial attack is an effective way to test the
robustness of a model. Current adversarial attacks,
however, focus on single model attacks which can
not be used to draw a comparison between different
models directly. To deal with this, we propose a
unified adversarial framework (UAF), presented in
figure 2, which can help us fairly compare different
KD algorithms with the same adversarial attack.

After selecting the adversarial algorithm and
source dataset, each model that is used in the eval-
uation will apply the same adversarial algorithm
to generate adversarial samples. To keep the qual-
ity of generated samples during the generation, a
quality score will be employed to rank the adver-
sarial samples. The quality score will be computed
follow the function below:

Score = cos(Modeln(X),Modeln(X
′)), (1)

Where Modeln is the model that generates the ad-
versarial sample, X is the original sample, X ′ is
the generated adversarial sample. We calculate the
cosine distance between the hidden state of the
two [CLS] tokens to get the quality score. Intu-
itively, adversarial examples are not expected to
be too similar to the original sample or the models
can easily distinguish it. On the other hand, the
adversarial example can not be too distant from
the original sample, as it will compromise model
quality. As a result, for the sample filter step, two
threshold values λup and λdown will be used to fil-
ter the adversarial samples. Only the sample with
a quality score in the range of (λdown, λup] will be
kept. Finally, we collect top K best samples from
each sample filter to complete our adversarial test
set.
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3.4 Combined Knowledge Distillation

According to the current results in the literature,
MATE-KD (Rashid et al., 2021) and Annealing-
KD (Jafari et al., 2021) are two of the best methods
from the two family of KD algorithms. We will
attempt to combine their strengths and evaluate
whether it will improve the performance overall.

The teacher logit annealing of Annealing-KD is
specially interesting because it addresses the ca-
pacity gap problem. Pre-trained language models
are constantly increasing in size and larger model
tend to perform better on downstream tasks. As
demonstrated by Mirzadeh et al. (2020), the per-
formance of a fixed student does not necessarily
scale with a better teacher. The adversarial algo-
rithm in MATE-KD, on the other hand, augments
data which is designed to probe parts of the teacher
function not explored by the training data. Other
advantages of these methods are that they only dis-
til the teacher logits (as opposed to the weights
and attention maps), do not introduce additional
hyper-parameters, and perform well empirically.

We employ a masked language model (MLM)
generator for data augmentation. The generator is
trained to produce samples which maximize the
divergence between the teacher and the student
logits. Additionally, the generator fixes most of
the text and only generates the masked tokens so
that the text does not diverge too much from the
training distribution.

The object function can be formulated as:

X ′ = Gφ(Mask(X)) (2)

max
φ

(LG(φ)) = DMSE(T (X
′), Sθ(X

′)), (3)

where X = {xi}Ti=1 is the input sequence and
i is sequence length. Mask(.) is a function that
randomly masks tokens of the input sequence X .
In practice, we mask 30% percent of tokens. Gφ(.)
is the adversarial generator network with parame-
ter φ, T (.) and Sθ(.) are the teacher and student
respectively, DMSE is the mean squared error.

The student is trained in two phases. During
phase 1, the student model will only learn from
the teacher. During phase 2, however, the student
model will learn from the ground-truth label.

In phase 1, we anneal the teacher logits inspired
by Jafari et al. (2021). Note that the student log-
its are not annealed. The annealing schedule pro-
gressively moves from a lower temperature to a

Figure 3: llustration of the maximization and minimiza-
tion steps of ComKD. For Maximization step, a gener-
ator will be trained to generate adversarial samples to
maximize the difference between teacher model’s and
student model’s output. For the minimization step, the
annealing training scheme will be employed and the
student model will learn to match the teacher output
on both the original and the perturbed input.

temperature of 1. We thus move from a smoother
distribution to a sharper softmax distribution. For
phase 1, we train to minimize the following losses:

LADV = DMSE(t · T (X ′), Sθ(X
′)), (4)

LKD = DMSE(t · T (X), Sθ(X)), (5)

where T is the teacher network, S is the student
network, θ is the set of student parameters, X ′ is
the augmented sample and t is the temperature. A
maxT hyperparameter will be introduced to calcu-
late t. If the epoch number during the training is
smaller than maxT , then t = epoch

maxT
2; otherwise,

t = 1. The total loss in this phase is LADV + LKD.
For phase 2, the student model Sθ(.) will only

learn from original data, and we employ cross en-
tropy (CE) loss as our objective function. The
complete algorithm can be found in Appendix B.

4 Experiment

4.1 Data
For in-domain test, we evaluate previous KD mod-
els as well as our proposed ComKD model on nine

2During the training, epoch is from 1 to Epochmax that
set as hyperparameter.
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datasets of the General Language Understanding
Evaluation (GLUE) (Wang et al., 2019) benchmark
which includes classification and regression tasks.
These datasets can be broadly divided into 3 fam-
ilies of problems: 1) Single sentence tasks which
include linguistic acceptability (CoLA) and sen-
timent analysis (SST-2). 2) Similarity and para-
phrasing tasks which include paraphrasing (MRPC
and QQP) and a regression task (STS-B). 3) Infer-
ence tasks which include Natural Language Infer-
ence (MNLI, WNLI, RTE) and Question Answer-
ing (QNLI).

For OOD test, we employ HANS (Zhang et al.,
2019a) and PAWS (Zhang et al., 2019b) as our
OOD test set. Models are first trained on MNLI
and QQP dataset respectively.

For UAF test, we used GLUE benchmark dev set
as our source data, and textfooler (Jin et al., 2019)
as our adversarial algorithm. λdown is set to 0.5 and
λup is set to 0.99. Please note that the textfooler
can only be applied to classification tasks, so we
do not include results on STS-B. We also exclude
WNLI because the dataset size is too small. The
statistics of the UAF test sets are shown in Table 1.
It’s it notable that the size of UAF test set for BERT-
base and RoBERTa-large is different because the
number of models that participate in the test is also
different.

4.2 Evaluation metrics

On GLUE, we follow the setting of the GLUE
leaderboard (Wang et al., 2019). Specifically,
CoLA is evaluated by Matthews correlation co-
efficient (MCC), STS-B is evaluated by Pearson
correlations, MRPC is evaluated by F1 score, and
the rest of the datasets are evaluated by accuracy.
UAF on GLUE employs the same metrics. For
OOD test, both F1 score and accuracy are used
to evaluate QQP and PAWS dataset, and we use
accuracy on HANS and MNLI.

CoLA MNLI MRPC QQP QNLI RTE SST-2
BERT-base 1200 6000 1200 6000 6000 1200 1200

RoBERTa-large 1000 5000 1000 5000 5000 1000 1000

Table 1: Dataset size for the UAF test sets

4.3 Experimental Setting

We evaluate the different KD methods on two set-
tings. In the first setting, the teacher model is
BERT-base (Devlin et al., 2019) and the student
model is initialized with the weights of DistilBERT

(Sanh et al., 2020), which consists of 6 layers with
a hidden dimension of 768 and 8 attention heads.
We find two student model initialization strate-
gies in the literature. Methods such as PKD (Sun
et al., 2019) and ALP-KD (Passban et al., 2020)
initialize the weights of the student model with
a subset of the teacher weights. Other methods
such as Annealing-KD (Jafari et al., 2021) and
MATE-KD (Rashid et al., 2021) initialize the stu-
dent model with a pre-trained one such as Distil-
BERT. We also present a version of ALP-KD which
is initialized with a pre-trained model. The pre-
trained models are taken from the authors release.
The teacher and student are 110M and 66M param-
eters respectively with a vocabulary size of 30,522
extracted the using Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016) tokenization method.

On the second setting, the teacher model is
RoBERTa-large (Liu et al., 2019) and the student
is initialized with the weights of DistillRoBERTa
(Sanh et al., 2020). RoBERTa-large consists of 24
layers with a hidden dimension of 1024 and 16 at-
tention heads for a total of 355 million parameters.
We use the pre-trained model from Huggingface
(Wolf et al., 2019). The student consists of 6 layers,
768 hidden dimension, 8 attention heads, with 82
million parameters. Both models have a vocabu-
lary size of 50,265 extracted using BPE. The model
hyperparameter and training details are listed in
Appendix A.

For the UAF tests we set K to be 1000 for the
larger datasets (MNLI, QQP and QNLI) and 200
for the rest.

5 Evaluation

5.1 In-domain test

On Table 2, we present the result of the KD al-
gorithms on GLUE when the teacher is BERT-
base. We present an additional baseline for data
augmentation following Rashid et al. (2021) that
adds the data augmentation from TinyBERT (Jiao
et al., 2020) to Vanilla-KD. We observe that all the
methods improve on the Vanilla-KD results. On
the methods which introduce intermediate layer
distillation, ALP-KD performs better than PKD.
Moreover, initializing ALP-KD with DistilBERT is
better than initializing it with the teacher weights.
MATE-KD, which employs adversarial data aug-
mentation, performs the best among baseline meth-
ods followed by Annealing-KD which anneals the
teacher weights. Our proposal, ComKD, which
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Method CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Avg. score

Baseline
BERT-base 59.5 84.6 90.6 91.5 91.0 68.2 93.1 88.4 80.3
DistilBERT 51.3 82.1 90.1 89.2 88.5 59.9 91.3 86.9 77.3
Vanilla-KD 47.3 82.8 89.5 89.9 90.5 66.0 90.4 86.7 77.7

New training PKD 45.7 82.1 89.3 89.3 90.7 68.2 91.5 88.6 77.9
ALP-KD 47.0 81.9 89.2 89.7 90.7 68.6 91.9 88.6 78.2

scheme ALP-KD (DistilBERT) 51.8 82.9 89.9 89.9 91.2 67.5 91.4 87.3 78.7
Annealing-KD 55.2 83.8 90.2 89.8 91.2 67.9 92.1 87.5 79.3

Data Tinybert + Aug 55.2 82.1 87.0 89.7 89.5 68.6 91.9 87.8 78.7
augmentation MATE-KD 60.4 84.5 90.5 91.2 91.4 70.0 92.2 88.5 80.5

Ours ComKD 59.4 84.7 91.4 90.7 91.4 71.8 91.7 89.1 80.7

Table 2: GLUE dev result for different KD models (BERT). The score for the WNLI task is 56.3 for all models
and is included in Avg. score. Bold number are the best performance reached by 6-layer models in this table.

RoBERTa-large DistilRoBERTa Vanilla-KD Annealing-KD MATE-KD ComKD (Ours)
CoLA 68.1 59.7 60.9 61.7 (54.0) 65.9 (56.0) 67.4 (58.6)
RTE 86.3 69.7 71.1 73.6 (73.7) 75.0 (75.0) 80.1 (76.6)

MRPC 91.9 90.1 90.2 90.6 (86.0) 91.9 (90.2) 93.0 (89.7)
STS-B 92.3 88.3 88.8 89.0 (86.8) 90.4 (88.0) 91.5 (88.5)
SST-2 96.4 89.8 92.5 93.1 (93.6) 94.1 (94.9) 95.2 (95.1)
QNLI 94.6 89.1 91.3 92.5 (90.8) 94.6 (92.1) 91.7 (92.6)
QQP 91.5 90.4 91.6 91.5 (81.2) 91.5 (81.2) 91.9 (81.4)

MNLI-m 90.2 81.9 84.1 85.3 (84.4) 85.8 (85.2) 87.2 (85.9)
WNLI 56.3 56.3 56.3 56.3 (65.1) 56.3 (65.1) 56.3 (65.1)

Avg. score 85.3 79.5 80.8 81.4 (79.8) 82.7 (80.8) 83.9 (81.5)

Table 3: Dev set results on GLUE benchmark (RoBERTa). Annealing-KD, MATE-KD and ComKD results in
paranthesis is the leaderboard test result. Bold number are the best performance reached by 6-layer models in this
table.

MNLI-m (Dev) HANS QQP-dev (Acc) PAWSqqp(ACC) QQP-dev (F1) PAWSqqp (F1)
RoBERTa-large 90.2 78.2 91.5 43.3 88.8 48.8
DistilRoBERTa 83.8 58.6 91.2 34.8 88.2 44.1

MATE-KD 86.3 63.6 92.0 38.3 89.2 46.4
Annealing-KD 84.5 61.2 91.6 35.8 88.7 44.6
ComKD (Ours) 87.2 68.6 91.6 35.2 88.7 45.0

Table 4: OOD test result ( Bold numbers are the best performance reached by 6-layer models in this table)

combines both adversarial data augmentation and
annealing training scheme outperforms all these
methods. The results of MATE-KD indicate that
data augmentation is a successful strategy on all
datasets and performs particularly well on the
smaller ones such as CoLA, STS-B and RTE.

We evaluate the best performing baselines,
Annealing-KD and MATE-KD, as well as our
method on the RoBERTa setting. Here, the teacher
is RoBERTa-large and the student is initialized with
the weights of DistilRoBERTa. Table 3 presents
the dev set results and the test set results (in paran-
thesis) on GLUE. We see two interesting trends;
First, the results follow the same pattern as the pre-
vious setup where ComKD is the best, followed by
MATE-KD, Annealing-KD and Vanilla-KD. Sec-
ond, we see a larger gap between our algorithm and

MATE-KD. In contrast to MATE-KD we anneal
the teacher logits and this has shown to alleviate
the capacity gap problem (Jafari et al., 2021), i.e. a
larger capacity difference between the teacher and
the student makes distillation more difficult. When
learning from a larger teacher, annealing the logits
as well as data augmentation both improve KD.

5.2 Out-of-Domain test

We conduct OOD test for RoBERTa-large teacher
setting and the are results shown in Table 4.

Specifically, ComKD performs better than
MATE-KD on HANS dataset. MATE-KD get bet-
ter performance on PAWS. To some extend, data
augmentation does help the model perform good
on OOD tests. Here, we see that the gap between
the teacher and student is much larger on the OOD
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BERT-base DistilBERT
ALP-KD

Annealing-KD MATE-KD ComKD (Ours)
(DistilBERT)

CoLA 39.2 24.6 26.8 25.8 35.5 39.7
MNLI 89.8 87.3 89.4 90.6 91.7 90.9
MRPC 91.8 91.0 89.0 92.0 91.3 92.1
QNLI 91.1 87.9 89.6 90.0 90.8 90.1
QQP 90.3 86.1 84.1 85.6 85.5 87.4
RTE 74.5 72.4 77.3 81.2 75.9 74.7

SST-2 84.4 82.3 82.1 83.8 83.8 84.5
Avg. score (by dataset) 80.2 75.9 77.0 78.4 79.2 79.9

Avg. score (by sample size) 86.6 83.0 83.8 84.9 85.6 85.9

Table 5: Unified adversarial framework test for BERT-base teacher. Bold number are the best performance reached
by 6-layer models in this table.

RoBERTa-large DistilRoBERTa Annealing-KD MATE-KD ComKD (Ours)
CoLA 14.7 5.0 2.4 6.6 4.9
MNLI 37.0 36.6 36.6 37.0 37.5
MRPC 94.9 90.7 88.7 94.2 93.4
QNLI 94.2 90.8 92.4 92.9 92.8
QQP 89.3 86.2 87.9 87.2 88.1
RTE 77.4 69.7 73.4 69.2 71.5

SST-2 87.6 81.8 81.8 82.9 84.0
Avg. score (by dataset) 70.7 65.8 66.2 67.1 67.5

Avg. score (by sample size) 72.5 69.2 70.0 70.4 70.8

Table 6: Unified adversarial framework test for RoBERTa-large teacher. Bold number are the best performance
reached by 6-layer models in this table.

datasets compared to the in-domain testing. Thus,
when evaluating the performance of KD and eval-
uating the gap between teacher and student, we
should consider perturbed datasets in addition to
the in-domain testing.

To further compare the ComKD and MATE-KD,
we introduce the UAF tests which the evaluation
sets are generated by each model itself.

5.3 Adversarial Attack

In order to compare the adversarial robustness of
each KD method, we conduct UAF tests.

As introduced in Section 3.3 and Section 4.1, we
use GLUE datasets as source data and textfooler
as the adversarial algorithm. The textfooler algo-
rithm, for a given trained model and dataset, first
computes an importance score of the tokens in a
sentence. A token is more important if removing it
has a greater impact on the model output. Then, it
replaces the important tokens with its closest syn-
onyms. In our setting, textfooler will replace at
most 15% of the tokens in a sequence with their
synonyms.

Different from OOD tests which is pre-defined,
the evaluation set for UAF test is generated by the

tested models themselves. A robust model is ex-
pected to handle both adversarial samples that are
generated by itself and adversarial samples gener-
ated by other models. It is notable that the results
on BERT setting cannot be compared with the re-
sults on RoBERTa setting, because the test sets are
different.

To fairly compare the model’s performance, we
also show two kind of average scores. The first
is average by dataset and this is similar to how
GLUE evaluates by averaging the performance on
all datasets. The second one is average by sample
size where we do a weighted average and weigh
the result on each dataset by its size. Thus, larger
datasets receive a greater weight.

Tables 5 and 6 present the UAF results for
the BERT-base teacher setting and the RoBERTa-
large teacher setting respectively. We observe that
ComKD outperforms other 6-layer methods on av-
erage for both settings and achieves a higher score
on four out of seven datasets on the BERT setting
and three out of seven on the RoBERTa setting.
Similar to the OOD results, we observe that the
gap between the teacher and student is larger on
the UAF test compared to the in-domain test. On
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Index Sample Label RoBERTa-large DistilRoBERTa Annealing-KD MATE-KD ComKD (Ours)

1
P: Yes , you ’ve done very well , young man

C C C C C CH: No , you have not done very adequately

2

P: All of the islands are now officially

E N N N N E
and proudly part of France , not colonies
as they were for some three centuries
H: The island agreed to join France
instead of being colony

3
P: I guess history repeats itself , Jane

E N N N E EH: I truely think the past situation shown
history repeats itself

4
P: Case study evaluations

E E N N N NH: Independent cases studies assessments

5
P: Pretty good newspaper uh

E N N N N NH: I thinks this is a good newspaper ,
and the comics section is my favourite

Table 7: Some error sample from RoBERTa-large teacher setting UAF test (MNLI). C is contradiction, N is neutral,
E is entailment.

RoBERTa large DistilRoBERTa Annealing-KD MATE-KD ComKD (Ours)
Add end mark 36.4 36.0 36.3 36.4 36.7

Remove end mark 37.1 36.7 36.5 37.1 37.4

Table 8: Model performance on UAF (MNLI) after remove or add end mark. (RoBERTa-large)

the BERT setting ComKD and MATE-KD achieved
a higher score than the teacher.

The performance of all the KD algorithms is
consistent with the trend on the in-domain testing.
ALP-KD performance is again lower than the other
techniques. Overall, our experiments conclude that
structural approaches for fine-tuning are not as ef-
fective as data-augmentation and progressive learn-
ing.

5.4 Error Analysis

In this section, we analyze the error of UAF
(MNLI) test.

Table 7 shows some of the UAF samples gen-
erated by RoBERTa based models on MNLI. For
the sample 2, only ComKD can predict correctly.
Even though this sample has overlap between the
premise and hypothesis, these models don’t predict
entailment directly, which indicates the prediction
decisions don’t only rely on the word overlap. The
semantics of words are also important.

For sample 3, both MKD and ComKD can pre-
dict correctly, and other models, however, can
not. In this sample, there is a length mismatch
of premise and hypothesis, as a result, it is harder
to predict. For sample 4, Only RoBERTa-large can
predict correctly. To get the correct prediction in
this sample, the models need to understand that
“evaluations” has the same meaning here as “assess-
ments”. Sample 5 is a sample that none of models
predict correctly. Again, there is a length mismatch

of premise and hypothesis.
We also investigate the influence of punctuation

on the RoBERTa-large teacher setting. As shown in
table 8, we make two variants of the UAF (MNLI)
dataset. For the first setting, we add “.” for all
the samples that don’t have end mark. For the
second setting, all the samples’ end mark will be
removed. According to the table, the end marks
do influence the performance of models. Again
ComKD perform better than other models in both
settings. We also list some samples to show the
influence of punctuation in Appendix C.

5.5 Further Discussion

To find out how KD methods work differently, we
looked at the UAF test result (Shown in Figure 9) of
MNLI dataset, and further analysed the contradic-
tion, entailment and neutral classes. We can see that
data augmentation based KD methods (ComKD
and MateKD) have higher precision on Contradic-
tion label samples, which means that these model
can not be easily confused by negation words since
the recall is close for most of KD methods. We
see a higher precision in entailment class for ALP-
KD, Annealing-KD and ComKD. We also found
that KD models perform better than finetune stu-
dents on each label’s f1 score. In summary, data
augmentation based KD tend to classify Contra-
diction labels, on the other hand, better training
scheme KD models prefer to classify Entailment
labels. We also see the same trend on In-domain
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UAF
Contradiction Entailment Neutral
R P F1 R P F1 R P F1

ALP-KD 0.926 0.894 0.907 0.829 0.965 0.892 0.923 0.839 0.879
Annealing-KD 0.946 0.893 0.919 0.858 0.960 0.894 0.917 0.875 0.895
BERT-base 0.937 0.882 0.908 0.844 0.949 0.894 0.907 0.864 0.885
ComKD (Ours) 0.940 0.903 0.921 0.856 0.961 0.905 0.929 0.869 0.897
DistilBERT 0.924 0.859 0.890 0.819 0.923 0.868 0.881 0.847 0.864
MATE-KD 0.946 0.918 0.932 0.878 0.948 0.911 0.923 0.885 0.904

Table 9: Models detailed performance on UAF (MNLI) test.

In-domain
Contradiction Entailment Neutral
R P F1 R P F1 R P F1

ALP-KD 0.847 0.850 0.848 0.812 0.892 0.850 0.831 0.753 0.790
Annealing-KD 0.857 0.847 0.852 0.839 0.885 0.861 0.818 0.782 0.799
BERT-base 0.867 0.858 0.862 0.840 0.895 0.867 0.833 0.788 0.810
ComKD (Ours) 0.859 0.861 0.860 0.842 0.899 0.870 0.840 0.783 0.811
DistilBERT 0.837 0.824 0.831 0.824 0.865 0.844 0.795 0.767 0.781
MATE-KD 0.858 0.864 0.861 0.855 0.876 0.866 0.819 0.793 0.806

Table 10: Models detailed performance on In-domain (MNLI) test.

test result (Shown in Figure 10). In both UAF and
In-domain results, data augmentation based KD
methods outperform better training scheme KD
methods, which indicates that the student trained
with data augmentation can achieve a better robust-
ness compared with new training scheme strategy.

5.6 Conclusion

In this work, we conduct in-domain, OOD and
UAF test to investigate the robustness of current
KD methods. Results show that the KD models’
are more robust than fine-tuned student models but
less robust than teacher model. In general, the
robustness ranking of each KD methods is consis-
tent with GLUE benchmark average score. Specif-
ically, the student trained with data augmentation
can achieve a better robustness compared with new
training scheme strategy. Moreover, we also ver-
ify that the two strategies of KD methods can be
combined together to get a more robust KD model.
Our newly proposed ComKD not only outperforms
all of the KD methods and achieves SOTA results
on the GLUE benchmark, but can also achieve bet-
ter robustness according to the OOD and the UAF
tests.
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A Model training details

For all of the baseline models (Annealing-KD,
MATE-KD, ALP-KD, PKD, Vanilla-KD) men-
tioned, we strictly follow the hyperparameters that
are introduced in the original paper. For the Dis-
tilBERT student ALP-KD, we only change the ini-
tialization of student. The training manner and
hyperparemeter tuning is in consistence with origi-
nal ALP-KD. For the hyperparameters of ComKD
that are listed in table 11, we manually tuned these
based on MateKD. Adam optimizer will be applied
to train the ComKD. The generator model that
employed in ComKD is following setting of the
MATE-KD. Specifically, for BERT-base teacher
setting, a 4-layer Bert-mini model is used. For
RoBERT-large teacher setting, a distilroberta-base
model is used. We trained all models using a sin-
gle NVIDIA V100 GPU. All experiments were run
using the PyTorch 4 framework.

batchsize lr ep1 ep2 T
CoLA 32 7e-6 100 10 10
MNLI 32 2e-5 30 10 10
MRPC 32 7e-6 200 10 10
QNLI 32 2e-5 100 10 10
QQP 32 2e-5 30 10 10
RTE 32 6e-6 200 10 10

SST-2 32 1e-5 100 10 10
STS-B 32 2e-5 100 10 10

Table 11: Hyperparameters for ComKD. ep1 and ep2
is corresponding to the training epochs of phrase 1 and
phrase 2. T is max temperature

B Combined-KD Detailed Algorithm

In this section, we list Combined-KD details in
algorithm 1.

C Discussion of the influence of
punctuation

Some samples of prediction label change of
add/remove end mark are shown on Table 12. Most
models will not change the prediction after we re-
move or add a end mark except for Annealing-KD
and DistilBERT.

Interestingly, the Annealing-KD can handle the
sample 1 and sample 2 correctly after we add the
end mark. DistilBERT will also give correct answer
for sample 4 and sample 5. These phenomenons
indicate that punctuation will give the models a
hint to correctly do a classification, and the models
make use of it.

4https://pytorch.org/

Algorithm 1: Combined Knowledge Distillation

Finetuned Teacher: T (·)
pre-trained Student: S(·; θ)
Generator model: G(·;φ)
dataset: D
/* Generator training steps, every S steps, max

temperature, learning rate */

Parameter: Sg , S,maxT , η
step← 0
/* learning temperature */
temp← 1

for batch← D do
X, Y ← batch ;

step← step mod S
# Adversarial Step ;
Xm ←

X=[x1,...,xn]

p ∼ unif(0, 1),Mask(xi ∈ X, pi) ;
/* predict logit only for the masked tokens */
Xlogits ← G(Xmφ) ;
X′ ← Gumbel-Softmax(Xlogits) ;
if step < Sg then

LG ← MSE(T (X′), S(X′; θ)) ;
/* update generator parameters */

φ← φ− η
∂LG
∂φ

;

else
# Knowledge Distillation ;
if Phase = 1 then

TX′ ← temp
maxT

T (X′)

LADV ← MSE(TX′ , S(X′; θ)) ;

TX ←
temp
maxT

T (X)

LKD ← MSE(TX , S(X; θ)) ;

L ← 1
2
LADV + 1

2
LKD ;

θ ← θ − η
∂L
∂θ

;

if temp 6= maxT then
temp← temp + 1

end
else

L ← CE(S(X; θ), Y )

L ← CE(Sθ(X), Y ) /* update student
parameters */

θ ← θ − η
∂L
∂θ

;

end
decay η ;

end

end
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Index Sample Label BERT DistilBERT ALP-KD* AKD* MKD* ComKD

1 P: I just stopped where I was E E N N N N NH: He felt very sick
1 P: I just stopped where I was . E E N N E N N(Add end mark) H: He felt very sick .

2
P: the census of 1931 served as an alarm signal for the

C C N N N C Cmalay national consciousness
H: there was n’t any censuses in malaysia prior to 1940

2 P: the census of 1931 served as an alarm signal for the
C C N N C C Cmalay national consciousness .

(Add end mark) H: there was n’t any censuses in malaysia prior to 1940 .

3 P: oh , what a fool i feel ! C E N N N C CH: I am beyond pride
3 P: oh , what a fool i feel ! C E E N N C C(Add end mark) H: I am beyond pride .

4 P: No , don’t answer E E C E E E EH: Don’t say a word .
4 P: No , don’t answer . E E E E E E E(Add end mark) H: Don’t say a word .

5 P: how long has he been in his present position E E N E E E EH: what length of time has he held the current position ?
5 P: how long has he been in his present position E E E E E E E(remove end mark) H: what length of time has he held the current position

Table 12: Details of prediction label change of add/remove end mark. ALP-KD* is ALP-KD (DistilBERT), AKD*
is Annealing-KD and MKD* is MATE-KD.


