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Abstract
Complex question answering over knowledge
base remains as a challenging task because it
involves reasoning over multiple pieces of in-
formation, including intermediate entities/re-
lations and other constraints. Previous meth-
ods simplify the SPARQL query of a question
into such forms as a list or a graph, missing
such constraints as “filter” and “order_by”, and
present models specialized for generating those
simplified forms from a given question. We
instead introduce a novel approach that directly
generates an executable SPARQL query with-
out simplification, addressing the issue of gen-
erating unseen entities. We adapt large scale
pre-trained encoder-decoder models and show
that our method significantly outperforms the
previous methods and also that our method has
higher interpretability and computational effi-
ciency than the previous methods.

1 Introduction

Answering user’s questions via correct relation
paths over a knowledge base may facilitate
machine-human interaction to understand how the
machine gets the answer. The relation path of a
question is defined as the sequence of relations
from the topic entity mentioned in a question to
its answer entity in a knowledge base, which cor-
responds to the semantics of the question. While
answering simple questions whose relation path
has only one relation (or edge) without any other
constraint has been largely resolved (Petrochuk and
Zettlemoyer, 2018), answering complex questions
over a knowledge base (called Complex KBQA)
whose relation path contains more than one rela-
tion and/or other constraints remains as a difficult
task (Zhou et al., 2018; Lan et al., 2019; Sun et al.,
2019; Lan and Jiang, 2020).

Previous works on Complex KBQA cast it as a
graph searching task. Yih et al. (2015), Xu et al.
(2016), and Yu et al. (2017) identify the relation
path of a question, by comparing the question with

each candidate relation path. They should restrict
the set of candidate relation paths (e.g. those with
up to two relations), excluding any other constraints
(e.g. filter, order_by), due to too big search space
of all potential candidate relation paths. The meth-
ods thus show limited coverage for such datasets as
ComplexWebQuestions, whose relation paths have
up to three relations and other constraints. Sun et al.
(2018, 2019) instead identify intermediate entities
in the relation path iteratively until reaching the
answer entity. However, the methods predict only
one answer entity for a question and thus show
low recall for questions with multiple answer enti-
ties. Chen et al. (2019), Lan et al. (2019), and Lan
and Jiang (2020) extend the previous methods (Yih
et al., 2015; Xu et al., 2016; Yu et al., 2017) by iter-
atively generating a query graph instead of ranking
candidate relation paths. The methods predict one
of the actions ‘extend’, ‘connect’ and ‘aggregate’
to grow a query graph by one more pair of edge
and node, but yet do not cover such constraints as
"filter" and "order_by". Please refer to Appendix
A for detailed discussion of the previous works.

Inspired by the recent progress of adapting nat-
ural language generation (NLG) for various natu-
ral language processing (NLP) applications (Raf-
fel et al., 2020; Brown et al., 2020), we approach
Complex KBQA as a language generation task,
fine-tuning large-scale pre-trained encoder-decoder
models to generate executable SPARQL query
from question. An issue of this approach is to gener-
ate unseen entities for questions of test dataset. The
SPARQL queries in the KBQA datasets represent
entities with their IDs (e.g. “ns:m.08x9_6”), but it
is impractical to learn to generate unseen entity IDs.
To address the issue, we leverage language genera-
tion models to learn the correlation between entity
text labels (e.g. “1980 NBA Finals”) and questions
during the training process so as to generate un-
seen entities’ text labels in the inference process.
Specifically, our method learns to generate entity
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text labels instead of entity IDs, by replacing each
entity ID in a SPARQL query with a placeholder
(e.g. ‘c1’) and adding a string matching filter at the
end of the SPARQL query (e.g. ‘filter(str(?c1) =
“1980 NBA Finals”)’).

The proposed approach has the following advan-
tages over the previous works: 1) The proposed
approach can optimize a model for the whole query
sequence generation, while the iterative graph gen-
eration models are optimized for predicting one
edge (or action) of query graph at a time; 2) the
interpretability of sequence generation models is
higher than that of iterative graph generation mod-
els (see Section 3.4 for details); 3) our method can
utilize a large-scale pre-trained language model
for learning SPARQL query generation, while the
previous works can utilize such a model only for
representing texts (e.q. question, entity and rela-
tion text labels); and 4) our method can learn to
generate any constraints, while the previous works
should define a new action type to deal with another
unaddressed constraint type.

The language generation part of the proposed
approach is in fact semantic parsing, which con-
verts a question into a logical representation or an
executable query (e.g. SQL) (Krishnamurthy et al.,
2017; Dong and Lapata, 2018; Yin et al., 2020;
Zeng et al., 2020). The key difference between
Complex KBQA and semantic parsing is that Com-
plex KBQA assumes a large knowledge base (e.g.
Freebase) for the whole dataset, while semantic
parsing aims at learning dynamic correlation be-
tween a question and any given table or relational
database. Recent methods of semantic parsing (Yin
et al., 2020; Zeng et al., 2020) learn the dynamic
correlation by encoding the whole table together
with the question. However, such knowledge base
as Freebase is too large to be represented by a sin-
gle encoder (see Table 5 for details). Instead, our
method for Complex KBQA has two steps of topic
entity location and executable query generation,
jumping to a candidate topic entity and generating
a SPARQL query starting from the entity.

We conduct experiments on three benchmark
datasets: MetaQA (Zhang et al., 2018), Com-
plexWebQuestions (Talmor and Berant, 2018), and
WebQuestionsSP (Yih et al., 2015). Evaluation re-
sults show that the proposed method significantly
outperforms the state-of-the-art methods over all
metrics on all three datasets. Besides, our method
also outperforms the previous methods in terms of

interpretability and computational efficiency.
We summarize the contributions that will be

shown in this paper as follows:

• We adapt pre-trained language generation
models for generating executable SPARQL
queries for Complex KBQA questions, includ-
ing all constraints (e.g. “filter”, “order_by”)
without additional model architecture.

• We show that the issue of unseen entities
causes simple adaptation of language genera-
tion for KBQA to have low performance and
address the issue by learning to generate entity
text labels instead of entity IDs.

• We show that the proposed method outper-
forms the previous methods in terms of inter-
pretability and computational efficiency.

2 Methodology

Our method first recognises topic entities in a given
question (Section 2.2), and then generates a list of
SPARQL queries given the question and the cate-
gory (or type) of each topic entity by training an
encoder-decoder model (Section 2.3), and finally
identifies the best valid SPARQL query that locates
at least one answer entity in a given knowledge base
at a post-processing step (Section 2.4). A question
may mention multiple entities. Our method con-
siders them all as candidate topic entities of the
question and generates SPARQL queries with each
of the candidate topic entities. If a SPARQL query
has multiple entities, the entity whose ID is the
first element of a triple (e.g. <entity ID, predicate,
?variable>) can be a topic entity. We select one
topic entity at a time, while the other entities are
considered as constraint entities. Our method is
schematically described in Appendix B.1, and Fig-
ure 1 depicts how the method analyzes a question
to generate an executable SPARQL query.

2.1 Data pre-processing
As mentioned in Introduction, our method gener-
ates entity text labels, specifically the text labels
of constraint entities, and detects the position of
topic entity in SPARQL query, while the SPARQL
queries of the Complex KBQA datasets contain en-
tity IDs. We thus modify the entity IDs in SPARQL
queries as follows:

• Topic entity ID: Replaced with a special to-
ken ([ENT]). The query generation module
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Figure 1: An example procedure of converting a question to an executable SPARQL query.

(Section 2.3) only identifies the position of
topic entity ID in the SPARQL query, and the
post-processing module (Section 2.4) replaces
the special token with the ID of the topic en-
tity identified by the topic entity identification
module (Section 2.2).

• Constraint entity ID: Replaced with its text
label surrounded by special tokens [SC] and
[EC], which represent the start and end of the
constraint entity’s text label, respectively. The
query generation module generates the text
label and the post-processing module converts
the generated text labels to identify their IDs.

Another issue is that different SPARQL queries
may have different names of the variable for answer
entity. We thus further modify the variables of
SPARQL queries as follows:

• Answer entity variable: Replaced with ‘?0’

• Intermediate entity variable: Replaced with
‘?n’ (n > 0), where n indicates that it is n-th
hop away from the topic entity

Furthermore, we remove uninformative prefixes
of SPARQL queries. Note that we do not change
the other parts of SPARQL queries in the data pre-
processing step, including operations like filter and
order_by. For instance, Appendix B.2 shows the
original SPARQL query of the question “Who were
the 1980 NBA Finals champions that Lamar Odom
is now playing for?” and its modified version by
the data pre-processing module.

2.2 Topic Entity Identification
We retrieve candidate topic entities from a given
question by using the FreeBase search API1, and

1https://developers.google.com/freebase/v1/search-
overview

then select top-N candidate topic entities e(0)i ,
i ∈ {1, . . . , N} ranked by their scores. For each of
theN candidate topic entities, we look up Freebase
to find its category and use the category together
with the given question as input to our generation
model. If a topic entity is associated with multi-
ple categories, we use the concatenation of all the
categories as input.

2.3 SPARQL Query Generation
Given a question q and the type of a candidate
topic entity e(0)i , we generate a list of SPARQL
queries by using an encoder-decoder model with
beam search. Specifically, we first concatenate q
and e(0)i and encode it to obtain a hidden represen-
tation denoted as hq′i

. Then, a decoder generates a
list of SPARQL queries {oij |j ∈ [1,M ]} by hq′i

.
A decoder then generates a list of M SPARQL

queries oij , j ∈ {1, . . . ,M} given the hidden rep-
resentations of the input string hq′ .

We explore the following encoder-decoder mod-
els for the proposed method: GRU, Bert2Bert,
GPT2GPT2 (Rothe et al., 2020) and BART (Lewis
et al., 2020). The details and the fine-tuning pro-
cess of the pre-trained models are described in Ap-
pendix B.3 and B.4, respectively.

2.4 Post-Processing
To convert the generated SPARQL query into a
valid and executable form, we perform the follow-
ing actions:

• Topic entity: Replace the special token
([ENT]) with the ID of the input topic entity

• Constraint entities: Assume a model generates
C number of constraint entities, where the text
label of each constraint entity is surrounded
by the special tokens [SC] and [EC]. Replace
them with variables (‘?c1’ · · · ‘?cC’) and, for
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Method Beam size MetaQA (3-hop) WebQSP CWQ (test)
hit@1 F1 hit@1 F1 hit@1 F1

Sun et al. (2018) N/A - - 66.4 51.9 - -
Sun et al. (2019)† N/A 91.4 - 68.1 - 45.9 49.3
Yang et al. (2019) N/A 83.4 - - - - -
Lan et al. (2019) N/A - - 68.2 67.9 39.3 36.5

Lan and Jiang (2020) N/A - - 73.3 74.0 44.1 40.4

GRU
100 99.9 99.9 64.4 64.6 33.6 34.5
10 99.9 99.9 63.8 63.9 32.4 33.1
1 99.9 99.9 60.2 60.2 25.2 25.8

BERT2BERT
100 98.2 98.2 74.3 74.4 59.9 61.8
10 98.2 98.2 73.0 73.1 56.9 57.8
1 98.2 98.2 70.3 70.3 50.7 51.3

GPT2GPT2
100 99.9 99.9 72.5 73.6 61.1 62.8
10 99.9 99.9 71.1 71.2 54.7 55.7
1 99.9 99.9 68.2 67.9 48.8 49.6

BART-large
100 99.9 99.9 74.1 74.6 66.4 68.2
10 99.9 99.9 73.1 73.6 60.0 60.9
1 99.9 99.9 67.4 67.5 54.9 55.5

Table 1: Performance comparison with the previous answer prediction methods. † denotes the model using the
manually annotated topic entities.

each of them, add a relation of the Freebase
type “ns:type.object.name” and a ‘FILTER’
statement, as exemplified in Figure 1. The
filter will identify the constraint entities by
exact string match to the generated text labels.

We finally add the common prefix to the SPARQL
query. The final SPARQL query of the proposed
method is shown in Appendix B.2.

3 Experiments

We conducted experiments on the three datasets of
MetaQA, WebQuestionsSP (WebQSP) and Com-
plexWebQuestions (CWQ) (See Appendix C.1 for
detailed descriptions and statistics of the datasets
and their knowledge bases).

3.1 Evaluation Results

Table 1 summarizes the evaluation results of the
proposed method and the existing methods against
the datasets, when comparing their resultant answer
entities against the ground truth. The results show
that our method outperforms the previous methods
on all datasets (e.g. as for Hit@1, MetaQA: 8.5%,
WebQSP: 0.8%, CWQ: 20.5% improvements). We
also evaluated our method with different beam
sizes (1, 10, 100), and the results show that the
larger beam size leads to the higher performance of
the models, though slowing down model inference
speed. In addition, the GRU model uses the vocab-
ulary from the questions and SPARQL queries on
the training set, so the performance is much lower

compared to Transformer models on CWQ (test)
because of many unknown words on the test set.

Our method performs especially well on CWQ.
To understand it well, we divide the questions ac-
cording to the following perspectives: 1) Questions
with 1-hop or 2-hops of relation path; 2) Ques-
tions with or without constraints; and 3) Question
with the two most complex constraint types, fil-
ter and order_by. Table 2 shows the results of
our method and the state-of-the-art method (Lan
and Jiang, 2020) on those question subsets.2 We
find the followings: 1) If a question has a relation
path with more hops, it is more difficult to get its
correct answer, which is intuitive; 2) our method
shows consistent performance for questions with
or without constraints; and 3) our method shows
approximately 25% higher performance over the
state-of-the-art method for the questions with the
two constraint types.

3.2 Ablation Study

To prove that our method is effective in handling
the issue of unseen entities, we evaluated the
method without the data pre-processing module,
which learn to generate the original SPARQL query
with entity IDs. Table 3 summarizes our models’
performance on CWQ (test) and WebQSP in terms
of Hit@1 with different model settings. 1) The
system performance drops significantly (16% for
CWQ, 7%∼8% for WebQSP) without the data pre-

2Note that the results in Table 2 are based on the beam size
of 10 due to the training efficiency.
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Method 1-hop 2-hop non-CONS CONS CONS: filter CONS: order_by
(53.8%) (42.8%) (17.3%) (82.7%) (11.8%) (7.7%)

Lan and Jiang (2020) 41.6 30.6 25.8 38.7 23.3 22.8
BART-large 62.4 58.9 60.6 59.8 52.2 58.5
GPT2GPT2 57.3 52.7 57.5 54.1 45.4 58.5

BERT2BERT 58.3 55.8 52.9 57.4 52.4 60.0

Table 2: Performances for various categories of questions on CWQ (Hit@1). The proportion in parentheses
indicates the ratio of the corresponding category of questions to the total number of questions. The work of Lan and
Jiang (2020) is the state-of-the-art method on CWQ. CONS stands for constraints.

Setting CWQ (test) WebQSP
BERT Bart BERT Bart

Proposed settings 56.9 60.0 74.3 74.1
w/ orig. SPARQL query 41.3 44.0 67.2 66.3
w/o TE type as input 56.1 58.5 73.5 72.4
w/ TE label (not type) 56.3 58.8 73.3 73.2
w/ TE type+label 56.2 59.8 72.6 73.4

Table 3: Performances based on different model set-
tings. ‘TE’ stands for topic entity, and ‘orig.’ stands for
‘original’. ‘BERT’ indicates BERT2BERT model, and
‘BART’ indicates BART-large model.

Error type Proportion (%)
Incorrect Topic Entities 39.0

Incorrect Main Relations 22.3
Incorrect Constraint Relations 24.3

Incorrect Constraint Values 14.4

Table 4: Percentage of errors from BART-large model
for CWQ dataset.

processing module, which learns to generate the
original SPARQL query. These results show that
our proposal of generating entity’s text labels and
retrieving entities by the labels is much better than
directly generating entity IDs, effectively address-
ing the issue of unseen entities. 2) We tested vari-
ants of topic entity input to the query generation
model, including no input of topic entity informa-
tion, using the text label of topic entity instead of
its type, and using both the type and the text label
of topic entity. Using the type of topic entity shows
the best performance.

3.3 Error Analysis
Table 4 shows the proportion of error types on the
CWQ questions for our best performing BART-
large model. The results show that about half of
the errors are due to the incorrect relation path
prediction, while majority of the rest of errors are
due to the external tool of entity linking (FreeBase
search API). We thus plan to work on, for instance,
joint learning of SPARQL query generation and

entity linking to address the latter error type.

3.4 Interpretability and Training Efficiency
Even if a model predicts an answer entity correctly,
it may reach the answer entity accidentally via in-
correct path in a knowledge base. We measure how
well a model identifies relation path from topic
entity and constraint entities to answer entity. Ap-
pendix C.2 shows that our models outperform the
state-of-the-art method (Lan and Jiang, 2020) on
the two datasets of CWQ and WebQSP. In particu-
lar, the Bart-large model shows 9% improvement
over (Lan and Jiang, 2020) in terms of relation
path prediction, compared to 0.8% improvement
in terms of Hit@1. This result may indicate that
(Lan and Jiang, 2020) optimizes for answer predic-
tion, while our method optimizes for relation path
prediction (in fact, for SPARQL query generation).

Our method also shows better training efficiency
than the existing methods because it does not need
to retrieve subgraphs like Sun et al. (2018, 2019).
Please refer to Appendix C.3 for details of the train-
ing efficiency comparison.

4 Conclusion

We propose to improve complex KBQA by utiliz-
ing pre-trained encoder-decoder models to gener-
ate a normalized SPARQL query from questions.
The proposed method outperforms previous mod-
els on all of three complex KBQA benchmarks
and addresses unseen entities by translating entity
IDs to SPARQL queries. In the future, we will
explore combining relation classification with the
constraint generation to reduce the space of beam
search.
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A Related Work

Some works for multi-hop question answering over
knowledge base (KBQA) adapt semantic parsing to
convert question into knowledge base (KB) query
for answer retrieval. Liang et al. (2017) presented
a weakly supervised semantic parsing framework
based on reinforcement learning algorithm, sup-
porting language compositionality by augmenting
seq2seq model with key-variable memory and ex-
ecuting the program of semantic parse in a high-
level programming language for answer generation.
Zhang et al. (2019) adapted the idea of question
decomposition, as a part of end-to-end learning of
semantic parsing. However, their resultant logi-
cal representation of question needs further steps
before being converted into executable SPARQL
queries.

Another approach is to learn matching between
question vector and answer vector, by incremen-
tally updating the question vector using key-value
memory network. Miller et al. (2016) and Das
et al. (2017) adapted key-value memory network
for multi-hop QA, where the memory network
stores knowledge base triples in form of (subject,
relation, object) such that a subject and a relation
are a key, and their object is the value of the key,
and stores a window centered at an entity mention
such that the entity is a key and the window is
a value. The memory network incrementally up-
dates question embedding with a weighted sum of
value embeddings whose keys are relevant to the
current question embedding, and the final updated
question embedding is matched to the best answer
entity embedding. Chen et al. (2019) presented
a bidirectional attentive memory network (BAM-
net) for KBQA, which extends the key-value mem-
ory network to learn two-way interactions between
question and a KB. The approach offers better in-
terpretability and performance with the attention
mechanism of BAMnet than the key-value mem-
ory network (Miller et al., 2016; Das et al., 2017).
However, those methods do not utilize existing se-
mantic representations of known questions, which
may explicitly guide them in the path from topic
entity to answer entity.

The next approach is to identify the sequence of
entities in the path from the topic entity of question
to its answer entity in the KB. Sun et al. (2018)
extracted a subgraph for given question out of the
graph of a KB and documents, in which KB entities
are linked to documents that contain the entity men-

tions, by using personalized PageRank and then
learnt graph node representation conditioned on
the question to classify if each node is an answer or
not and to search the subgraph for the answer of the
question. Sun et al. (2019) upgraded his previous
method (Sun et al., 2018) for multi-hop KBQA by
jointly learning iterative subgraph expansion and
graph node classification, dynamically selecting
the candidate nodes of the next hop. They also
compared the interpretability of the two models by
checking if the identified relation paths from topic
entities to the predicted answers are correct or not
when the predicted answers are correct.

The fourth approach is to explicitly predict re-
lation types of question (Xu et al., 2016; Yu et al.,
2017). Yu et al. (2017) presented a method that
uses hierarchical bi-LSTM to get representations
of question and each candidate relation path, esti-
mates the similarity of the two representations by
using cosine similarity and selects the relation path
with the highest score.

The last approach to introduce is to decompose
a complex question into a sequence of simple ques-
tions and to identify the answer of the complex
question by merging the answers of the simple
questions. Kalyanpur et al. (2012) presented a ques-
tion decomposition framework that utilizes hand-
written rules, which improves IBM Watson’s QA
system for Jeopardy. Talmor and Berant (2018) pre-
sented a seq2seq model, which learns to split a com-
plex question into a sequence of sub-questions by
using ComplexWebQuestions, and a search engine
combined with a reading comprehension model
for answering the sub-questions, and computed
the final answer by applying symbolic operations
such as union and interaction to the answers of the
sub-questions. However, those methods cannot be
straightforwardly adapted for KBQA as they find
the answers of the decomposed simple questions
from relevant documents retrieved by a search en-
gine, but not from a knowledge base.

B Details of Methodology

B.1 Algorithm

The proposed method is schematically described in
Algorithm 1.

B.2 Example SPARQL queries
1. The original SPARQL query of the question

“Who were the 1980 NBA Finals champions
that Lamar Odom is now playing for?” is as
follows:
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Algorithm 1 Relation Path Prediction by Text Generation Method
1: Given a question q, recognize all topic entities {ei} for i ∈ {1, · · · , N}
2: S = [] // Initialize the set of candidate SPARQL queries
3: for i = 1, · · · , N do // for each topic entity
4: tei = retrieve_type (ei) // Retrieve topic entity type
5: q′ = [q, tei ] // Concatenate the question and the topic entity type into a single string
6: {oij}Mj=1 = generate(q′) // Generate M candidate SPARQL queries given the concatenated string
7: for j = 1, · · · ,M do // for each candidate SPARQL query
8: sij = post_process(oij , ei) // Replace a placeholder with the ID of the topic entity
9: S = S + [sij ] // Append the SPARQL query to the candidate set

10: end for
11: end for
12: for Si ∈ {S} do // for each candidate SPARQL query
13: ai = retrieve_answers(Si) // Retrieve the answers with given SPARQL query in the knowledge base
14: if count(ai)> 0 then // Terminate when the answer set is not empty
15: Select ai as final answers for question q
16: break
17: end if
18: end for

SELECT DISTINCT ?x WHERE {
ns:m.02_nkp ns:sports.pro_athlete.

teams ?y .
?y ns:sports.sports_team_roster.team ?

x .
?x ns:sports.sports_team.championships

ns:m.08x9_6 .
}

The “ns:m.02_nkp" is the topic entity named
“Lamar Odom", the ?y denotes the intermedi-
ate entities at the first hop, and the ?x denotes
the target answer entities. The answer entities
are also constrained by the entity “m.08x9_6"
named “1980 NBA Finales".

2. The original SPARQL query is modified by
the data pre-processing module as follows:
SELECT DISTINCT ?0 WHERE {

[ENT] ns:sports.pro_athlete.teams ?1 .
?1 ns:sports.sports_team_roster.team

?0 .
?0 ns:sports.sports_team.championships

[SC] "1980 NBA Finals" [EC]
}

3. The SPARQL query generated by the query
generation modules is modified by the post-
processing module as follows:
SELECT DISTINCT ?0 WHERE {

ns:m.02_nkp ns:sports.pro_athlete.
teams ?1 .

?1 ns:sports.sports_team_roster.team
?0 .

?0 ns:sports.sports_team.championships
?c0 .

?c0 ns:type.object.name ?c00
FILTER(STR(?c00)="1980 NBA Finals")

}

The variables ?0 and ?c0 in the generated SPARQL
query denote the answer entities and the constraint
entities respectively. The query includes a “filter"
statement to filter correct constraint entities using
exact string matching.

B.3 Pre-trained encoder-decoder models
• Bert2Bert (Rothe et al., 2020): The encoder

is a pre-trained BERT-base model (Devlin
et al., 2019). The decoder is another pre-
trained BERT-base model and connected to
the encoder via cross-attention, though fine-
tuned independently from the encoder.

• GPT2GPT2 (Rothe et al., 2020): Both the
encoder and the decoder are pre-trained GPT2
models and connected via cross-attention,
though fine-tuned separately.

• BART (Lewis et al., 2020): This model
is a pre-trained BART-base encoder-decoder
model (Lewis et al., 2020).

B.4 Training details
The learning rate we chose for training the Trans-
former models is α = 5× 10−5, and the learning
rate for GRU model is α = 1× 10−4. We used the
number of epochs E = 45 for Transformer models
and E = 100 for GRU models, and the Adam op-
timizer with ε = 10−8 and β1 = 0.9, β2 = 0.999.
For the BART model, we set the dropout rate to 0
for both activation layers and attention layers. For
the GRU model, we set the dropout rate to 0.4 for
both dense layers and GRU layers. We select the
model with the highest accuracy of SPARQL query
generation on the dev set.

C Details of Experiments

C.1 Datasets
MetaQA: Zhang et al. (2018) constructed more
than 400k single and multi-hop (up to 3-hop) ques-
tions, as an extension of single-hop questions of
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Dataset Number of questions/answers Knowledge base statistics
Train Dev Test KB Entity Relation Triple

MetaQA 3-hop 114,196 14,274 14,274 WikiMovies 43K 9 135K
ComplexWebQuestions 27,623 3,518 3,531 Freebase 7.62M 8,664 33.8M

WebQuestionSP 2848 250 1639 Freebase 10.3M 646 17.45M

Table 5: Dataset and knowledge base statistics.
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Table 6: Top-5 patterns of relation paths and their coverage in CWQ (left) and WebQSP (right).

the WikiMovies dataset Miller et al. (2016). The
MetaQA dataset does not provide SPARQL queries,
but question types from which we can identify
relation paths and write corresponding SPARQL
queries. Note that the SPARQL queries of the
MetaQA dataset do not contain any constraint. We
report evaluation results against the whole dataset
with up to 3-hop questions.

WebQuestionsSP (WebQSP): It contains 4.7k
questions which require up to 2-hops of reasoning
in the KB and are answerable against Freebase (Yih
et al., 2015).

ComplexWebQuestions (CWQ) (v1.1): It con-
sists of multi-hop questions against Freebase,
which are constructed by increasing the complexity
of SPARQL queries from WebQuestionsSP and col-
lecting the corresponding complex questions via
crowdsourcing (Talmor and Berant, 2018). The
questions require up to 3-hops of reasoning on the
KB. We report evaluation results against the test
subset of the dataset.

Table 5 shows basic statistics of those datasets
and their knowledge bases.

C.2 Interpretability

Table 6 shows top-5 frequent patterns of relation
paths in a linear form and their coverage in CWQ
and WebQSP. An arrow denotes a relation, A is a
topic entity, B or Bi is a constraint entity or con-
straint value, ?y and ?z are intermediate entities,
and ?x indicates the answer entity. r(j)0 is the j-th
relation in the relation path from the topic entity
to the answer entity. r(j)i is the j-th relation in the

relation path from i-th constraint entity to one of in-
termediate entities on the path from the topic entity
to the answer entity. As shown in Table 6, most of
the questions in the complex KBQA datasets can be
semantically represented as combinations of rela-
tion paths. We thus evaluate the interpretability of
complex KBQA models in terms of how correctly
the models identify all the relation paths given a
question.

Table 7 summarizes the interpretability evalua-
tion results of our models against the state-of-the-
art method (Lan and Jiang, 2020) on WebQSP and
CWQ, showing that our models outperform (Lan
and Jiang, 2020) on both datasets. In particular,
the Bart-large model shows 9% improvement over
(Lan and Jiang, 2020) in terms of relation path pre-
diction, compared to 0.8% improvement in terms
of Hit@1. This result may indicate that our models
show significantly higher interpretability than (Lan
and Jiang, 2020).

In Table 7, Acc. R indicates the accuracy of iden-
tifying the main relation path from topic entity to
answer entity, and Acc. C indicates the accuracy of
identifying a relation path from a constraint entity
to one of intermediate entities on the path from
topic entity to answer entity. Joint Acc is the accu-
racy of identifying all the relation paths correctly.
For the simplicity of comparison, we do not com-
pare constraint entity or value but only compare
relation types in the paths. For the CWQ dataset,
Lan and Jiang (2020) use a query graph different
from our query graph from the original SPARQL
query. To ensure fair comparison, we consider the
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Method WebQSP CWQ
Joint Acc Acc. R Acc. C Joint Acc Acc. R Acc. C

Lan and Jiang (2020) 57.6 70.7 78.3 24.0 52.5 42.2
Bart-large 66.9 72.2 85.7 67.6 77.9 78.6

BERT2BERT 66.4 71.8 86.1 65.5 77.1 76.6
GPT2GPT2 65.7 71.1 85.3 66.4 77.5 77.5

Table 7: Interpretability evaluation results

Figure 2: Training efficiency of our model compared to
baselines under clock training time.

accuracy of relation paths either from the original
SPARQL query as presented above or from the
gold query graph of (Lan and Jiang, 2020).

C.3 Training Efficiency
Figure 2 depicts the training process speed of our
models and two baselines (Sun et al., 2018, 2019)
as the models grow to show higher performance in
terms of Hit@1. The BART-large model performs
the best but is slower than the BERT2BERT model.
Our methods show better efficiency than other base-
lines because the methods don’t need to retrieve
subgraphs like Sun et al. (2018, 2019). Lan and
Jiang (2020) needs to retrieve subgraphs of query
graphs in every step of the training stage and takes
much longer time to train than the other baselines.
Therefore, we did not include it in the comparison
for training efficiency.


