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Abstract

Aiming at discovering the event evolution, the
narrative event prediction is essential to mod-
eling sophisticated real-world events. Exist-
ing studies focus on mining the inter-events
relationships while ignoring how the events
happened, which we called circumstances.
However, we observe that the circumstances
indicate the event evolution implicitly, and
are significant for the narrative event predic-
tion. To incorporate circumstances into the
narrative event prediction, we propose the
CircEvent, which adopts the multi-head at-
tention to retrieve circumstances at the local
and global levels. We also introduce a regu-
larization of attention weights to leverage the
alignment between events and local circum-
stances. The experimental results demonstrate
that CircEvent outperforms existing baselines
by 12.2%. Further analysis demonstrates the
effectiveness of our multi-head attention mod-
ules and regularization. Our source code
is available at https://github.com/
Shichao-Wang/CircEvent.

1 Introduction

The Narrative event chain, which is similar to the
classical notion of the script (Schank and Abelson,
2013), is a structural knowledge that captures the re-
lationships between event sequences and their par-
ticipants in the given scenario. Figure 1 describes
a scenario of "going to the restaurant.". Model-
ing the narrative event chain can help the AI sys-
tems to understand sophisticated real-world events
and benefit many downstream applications (Han
et al., 2021), such as financial analysis (Yang et al.,
2019). This paper focuses on modeling the narra-
tive event chain and predicting what will happen
next, which is called the Multiple Choice Narra-
tive Cloze (MCNC) (Granroth-Wilding and Clark,
2016). As shown in Figure 1, the MCNC evaluation
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leave(Peter, home), drive(Peter, car), walk(Peter, restaurant), _______

?(a) greet(Peter, Jenny) 
(b) ask about(Peter, seats) 
(c) seated(Peter, _) 
(d) order(Peter, meat)

Event Chain

Candidate Choice

Figure 1: An example of multiple choice narrative
cloze (MCNC). It aims to predict the correct next event
from the candidates events given context events.

aims to choose the correct event from the candidate
choices set given a sequence of historical events.

Early studies learn event representation with the
rule-based (Schank and Abelson, 2013), count-
based (Chambers and Jurafsky, 2008; Pichotta
and Mooney, 2016), and deep learning (Modi and
Titov, 2014a,b; Granroth-Wilding and Clark, 2016)
method. Recently, more and more studies attempt
to incorporating external knowledge into event
representation. Li et al. (2018) builds the Narra-
tive Event Evolutionary Graph (NEEG), which de-
scribes event evolutionary principles and patterns.
FEEL (Lee and Goldwasser, 2018) introduces a
feature enriched event embedding. Despite the sub-
ject, predicate, and object, FEEL also considers
sentiment and animacy as the parts of events. Lee
and Goldwasser (2019) regards event embedding
learning as a multi-relational problem and captures
different relations of events pairs, such as the cause
and contrast. Zheng et al. (2020b) builds a het-
erogeneous event graph to mining subordinated
relations between events and words.

In addition to the previous events that have al-
ready happened, particular situations also affect
the event evolution, which are defined by circum-
stances in this paper. The event circumstances
include detailed descriptions of the event situation
such as the weather, the place status, and the protag-
onist behavior. As the example shown in Figure 1,

https://github.com/Shichao-Wang/CircEvent
https://github.com/Shichao-Wang/CircEvent
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Circumstance 1 
Peter find Jenny is waiting him.  
 
(a) greet(Peter, Jenny) 

Circumstance 2 
It was rather popular.  
 
(b) ask about(Peter, seats) 

Circumstance 3 
There were a few people. 
 
(c) seated(Peter, _) 

walk(peter, restaurant)

Figure 2: Examples of event circumstance. Different
circumstance is boxed in different color, and the possi-
ble next event is placed at the bottom of the box.

existing works tend to predict choice (c) or (d)
based on previous events or historical knowledge
for the event walk (Peter, restaurant). Given differ-
ent circumstances shown in Figure 2, they could not
make a different decision based on the restaurant’s
environment, such as described in circumstances
2 and 3. Peter is more likely to get seated if the
restaurant has a few customers. He will ask the
waiter about the available seats if the restaurant is
popular, meaning it is crowded. Circumstances,
such as the crowdedness of the restaurant, weather,
or the protagonist action et al., will influence the
event evolutionary, while existing works do not
consider them.

In this paper, we propose CircEvent to represent
events together with their circumstances. Follow-
ing previous studies (Chambers and Jurafsky, 2008;
Lee and Goldwasser, 2019), events in this paper are
also extracted from the unstructured text corpus,
and each event belongs to one specific sentence
in the text. The extracted event only contains the
minimum information of an event, e.g., the subject,
predicate, and object. The contextual information,
environment description, and semantics, which we
discussed as circumstances, are left in the original
sentence. We attempt to collect event circumstance
information from the unstructured text. However,
the unstructured text contains so much information
that not all contribute to the event evolution.

To tackle this challenge, we develop two multi-
head attention-based networks to incorporate event
representation and its circumstance into narrative
event prediction at the local and global levels. At
the local level, events come from a specific sen-
tence, containing the most related circumstance.
We develop the a multi-head attention to retrieve

the local circumstances for events. Moreover, the
context local circumstances also contribute the
event representation. We develop another multi-
head attention to get the global circumstances by
aggregating the context local circumstances adap-
tively.

After the circumstances retrieval, we adopt the
transformer as backbone to encode the context
events and circumstances. The transformer decoder
is used to compute the similarity scores of candi-
date events. The candidate events are compared
implicitly inner the transformer decoder benefited
from its architecture.

Our contributions in this paper are three folds:

1. We propose the CircEvent to incorporate
event circumstances into narrative event pre-
diction with the transformer architecture.

2. We introduce two multi-head attention to re-
trieve the event circumstances from the corpus
at the local and global levels.

3. Our proposal outperforms the existing base-
lines by 12.2% on the MCNC task, and our
further analysis proves the effectiveness of
event circumstances.

2 Related Work

2.1 Narrative Event Representation
In the literature, the methods to get event represen-
tation can be categorized in two: the self-contained
and the external knowledge enriched.

In the self-contained event representation re-
search work, they only use the events and cor-
responding connection relation. Event-Comp
(Granroth-Wilding and Clark, 2016) employed dis-
tributed representation, word2vec (Mikolov et al.,
2013), to learn the word representation of argu-
ments that appear in the event, and the event
representation is the linear combination of these
arguments representation. RoleFactor (Weber
et al., 2018) proposed a scalable tensor-based com-
position model for event representations, which
composite event argument in a hierarchical struc-
ture. The UniFA-S (Zheng et al., 2020a) adopted
Variational AutoEncoder architecture(Kingma and
Welling, 2014) with a unified fine-tuning method
to learn event representation from intra- inter-event
and scenario level. HeterEvent (Zheng et al.,
2020b) proposed a heterogeneous graph neural net-
work that models discontinuous event segments
explicitly.
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Figure 3: The architecture of CircEvent. The context events and circumstances are concatenated and fed into the
transformer encoder, at the top-left corner. The similarity scores of candidate events are output by the transformer
decoder with a linear pooling layer at the bottom-right. The event circumstance representation method is detailed
in Sec 3.2.

In the external knowledge enriched representa-
tion research line, researchers have attempted sev-
eral external knowledge into event representation.
FEEL (Lee and Goldwasser, 2018) injects senti-
ment and animacy information into event embed-
ding. (Yang et al., 2019) enrich event representa-
tion with news information. EventTransE (Lee and
Goldwasser, 2019) regards event embedding learn-
ing as a multi-relational problem and incorporates
relationships among events into event representa-
tion learning. (Ding et al., 2019) leverage common-
sense knowledge about intent and sentiment into
the event, which can be found in the knowledge
bases such as Event2Mind (Rashkin et al., 2018)
and ATOMIC (Sap et al., 2019). In this paper, we
attempt to incorporating event circumstances into
event representation.

2.2 Attention Mechanism in Narrative Event
Prediction

Since (Bahdanau et al., 2015) firstly adopt atten-
tion mechanism in neural machine translation. The
attention mechanism has shown its effectiveness in
many NLP applications. Many previous works on
the narrative event prediction (Wang et al., 2017;
Li et al., 2018; Lv et al., 2019) also apply attention
mechanism to the context events, as they assume
different context events have different weights for
choosing the correct subsequent event. Besides,
Lv et al. (2019) employs a self-attention mecha-

nism (Lin et al., 2017) to represent the event chain
in diverse event segments within the chain implic-
itly. Zheng et al. (2020b) adopt the graph atten-
tion network (Velickovic et al., 2018) to aggregate
neighborhood events information. We employ the
multi-head attention (Vaswani et al., 2017) to ex-
tract circumstance representation from the event
sentence and aggregate circumstances in the global
level adaptively.

3 Model

This section introduces our CircEvent neural net-
work in four modules: the event representation,
the circumstance representation, the event chain
encoder and the prediction module.

3.1 Event Representation
Each event consists of three arguments, i.e., subject,
predicate, and object. Each argument has nargs
words. We follow (Zheng et al., 2020b) to apply
a max-pooling and an average pooling layer on
argument word embeddings and then concatenate
them to get the event argument embeddings. The
subject, predicate and the object representaion are
denoted as s(e), p(e), o(e) ∈ R2de . For the subject,
its representation s(e) follows:

s(e) = [max(ws); avg(ws)]

where ws ∈ Rnarg×dh is the sequence of subject
word embeddings. The max, avg, and [; ] refer to
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Figure 4: The circumstance representation module. The local circumstance is placed at the left side. The vector in
yellow represent a single event embedding, and the matrix in blue is the corresponding sentence hidden states. The
global circumstance is at right side. The event matrix in yellow is the context event embeddings, and the purple
one is the local circumstances. Our regularization is applied on the Global Weights matrix.

the max pooling, average pooling and concatena-
tion operation respectively. The predicate and the
subject representation are obtained similarly.

The event embedding e(e) is the linear combi-
nation of its argument vectors. Formally, the event
embedding e(e) definition follows:

e(e) = g(Wss(e) +Wpp(e) +Woo(e) + b)

Ws,Wp,Wo ∈ Rdh×2de , and b ∈ Rdh are learn-
able parameters in our model. g(·) is a non-linear
function, we employ a dense layer followed by a
tanh(·) activation here.

3.2 Event Circumstance Representation

This section details three methods to get the event
circumstance representation c(e).

Local As we described in Section 1, the event
circumstance can be extracted from the sentence
that contains the event. We first adopt a bidirec-
tional recurrent neural network (BRNN) (Schuster
and Paliwal, 1997) to retrieve the contextualized
sentence hidden states. We adopt the multi-head at-
tention (Vaswani et al., 2017) to aggregate sentence
hidden states by corresponding event representa-
tion.

Suppose we have a sentence s = [s1, . . . , sns ],
which has ns tokens, represented in the word em-
bedding sequence. si is the word embedding vector
of ith token in the sentence. To equip each word
with context information, we use bidirectional re-
current neural network to encode word embeddings
to hidden states:

−→
hi =

−−→
RNN(si,

−−→
hi−1)

←−
hi =

←−−
RNN(si,

←−−
hi+1)

We use LSTM (Sak et al., 2014) as our recurrent
neural network (RNN).

−→
hi is the ith word forward

hidden state, and
←−
hi is the backward. The forward

and backward hidden state are concatenated to form
the output hidden state hi = [

−→
hi ;
←−
hi ] ∈ Rdh . We

stack all the output hidden states to get the hidden
states matrix H = [h1, h2, . . . , hns ] ∈ Rns×dh .

Inspired by (Vaswani et al., 2017), we use event
embedding to query circumstances from contex-
tualized sentence hidden states. The multi-head
attention follows:

headi = softmax

(
QiK

T
i√

dh

)
Vi

MultiHead(Q,K, V ) = [head1; . . . ; headnh
]WO

(1)

where Q ∈ Rnq×dh , K ∈ Rnl×dh , V ∈ Rnl×dh ,
WO ∈ Rnh·dh×dh are learnable parameters. nq
refers to query sequence length, nl refers to context
sequence length. The local event circumstance
representation follows:

cl(e) = MultiHead(e(e)WQ
l , HW

K
l , HW

V
l )

where WQ
l ,W

K
l ,W

V
l ∈ Rdh×dh . H is the hidden

states matrix of the corresponding event sentence.
Thus the local circumstance is highly related to the
event. We can use that local circumstance embed-
ding as the final circumstance embedding.

Global Instead of limited in the local circum-
stance, we claim that the context event circum-
stances also contribute to the event. We adopt an-
other multi-head attention module to obtain the
global circumstance from local circumstances.

The global circumstance computation follows
Eq. 1 but with different Q, K, V . The global cir-
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cumstance embedding follows:

cg(e) = MultiHead(EWQ
g , ClW

K
g , ClW

V
g )

where E ∈ Rn×dh is the sequence of context event
embeddings. Cl = [cl(e1), cl(e2), . . . , cl(en)] ∈
Rn×dh is the sequence of context event local cir-
cumstances. Under the global circumstance setting,
the contribution weights of context circumstances
are obtained via the attention mechanism. However,
collecting information from complicated context
events with an attention mechanism is not reliable
and ignores the alignment between events and sen-
tences. Based on this assumption, we equip the
global circumstance with a regularization.

Global + Regularization We observe that each
event belongs to a specific sentence, and a sentence
may contain multiple events. This aligned infor-
mation can be formulated into a binary matrix Y .
If the continuous events from i to j belongs to the
same sentence, the sub-matrix Yi:i+j,i:i+j are set to
1. Figure 6c is a visual example, in which event
2, 3 and event 4, 5 belong to the same sentences
respectively. We apply a regularized method on
the attention heads, leading the event to aggregate
more local circumstances of homologous events,
which is extracted from the same sentences. The
regularization computations follow:

L(A) =− 1

n2

n∑
i=1

n∑
j=1

(Yi,j logAi,j

+ (1− Yi,j) log(1−Ai,j))

A =
1

nh

nh∑
i=1

softmax

(
QiK

T
i√

dh

)
where Ai,j is the average attention weights of ith

event to the jth sentence. The nh is the number of
heads in the multi-head attention.

3.3 Event Chain Encoder
The encoder network structure refers to the Trans-
former Encoder proposed in (Vaswani et al., 2017).
In the encoder, the event embedding and the cir-
cumstance embedding are concatenated to form the
encoder inputs x = [e(e); c(e)]. The circumstance
embedding c(e) can be either cl(e) or cg(e). The
formal formula follows:

C = Encoder([x1, x2, . . . , xn])

where xi is the ith composed embedding. C ∈
Rn×dh is the representation of the event chain.

3.4 Prediction Layer

We adopt the Transformer Decoder (Vaswani et al.,
2017) as our prediction layer. The candidate events
are fed into the decoder as queries. The transformer
decoder contrasts the candidates events based on
the event chain context. We adopt a dense layer to
pool out the similarity scores of candidate events.
The prediction layer follows:

O = Decoder([e(c1), . . . , e(cnc)], C)

[s1, . . . , snc ] = woO
T + b

where ci is the ith candidate event, and e(ci) is
the ith candidate event embedding. The si is the
similarity score of ith candidate event, and the
wo ∈ Rdh is a learnable vector.

We select the event choice with the highest score
as the possible event to take place. There are
five candidate events for each chain, and we ap-
ply softmax(·) to normalize and get the final score
of each choice. We select the candidates with the
maximum probability as the predicted event:

P (eci |e1, e2, . . . , en) =
exp (si)∑
j exp (sj)

where eci is the ith candidate event.

3.5 Training Object

Our main training object is to minimize the cross-
entropy loss between the gold event and the pre-
dicted event. The main loss follows:

L(Θ) =− 1

N

N∑
k=1

logP (ecg |e1, e2, . . . , en)

+
λ

2
||Θ||22

where Θ is the model parameters. The ecg refers to
the ground truth event. The λ is the L2 regulariza-
tion factor of model parameters. Moreover, Under
the Global + Reg setting, the penalty on attention
weights is also included with an α factor:

L = L(Θ) + αL(A)

4 Experiment

In this section, we describe the dataset and the pre-
processing pipeline. We evaluate our model in the
MCNC task and report the accuracy score.



4845

Train Develop Test

# Document 1,038,031 103,583 103,805
# Chain 419,106 52,328 52,811

Table 1: The statistic of NYT portion of Gigaword.

4.1 Dataset
Following Lee and Goldwasser (2019), we extract
events from the NYT portion of the Gigaword cor-
pus (Graff and Cieri, 2003). We use the Stanford
CoreNLP (Manning et al., 2014) for POS tagging,
dependency parsing, and coreference resolution.
The extraction pipeline is detailed in the follow-
ing paragraph. The event chains are split into the
train set, develop set, and test set based on the doc-
uments split provided by Granroth-Wilding and
Clark (2016). The detailed dataset statistics are
shown in Table 1.

Event Chain Extraction In this paper, we de-
scribe an event in a triplet (pred, subj, obj), which
means verb, subject, and object, respectively. We
first use the POS tagger, dependency parser, and
coreference resolver in Stanford CoreNLP (Man-
ning et al., 2014) to annotate the raw corpus. Events
are extracted following entities’ coreference chain.
We retrieve their predicate, subject, and object from
the dependency parse tree for each mention in the
coreference chain. We constraint the event argu-
ments, e.g. subject, object, and predicate, length to
narg = 15. For the sake of compatibility, we use a
special token UNK for the missing arguments.

Take Peter find Jenny is waiting him. He walks
into the restaurant. as an example. After the event
extraction pipeline, there will have an event chain
that contains walk (Peter, restaurant) and another
contains wait (Jenny, Peter).

Candidate Event Generator For each ground
truth event, we follow (Lee and Goldwasser, 2019)
to generate distractive events. We first collect all
the events to construct an considerable event pool.
An distract event is randomly sampled from the
event pool, and then we randomly replace one of its
arguments with that of the ground truth event. The
ground truth and four distract events are combined
and shuffled, serving as candidate events.

4.2 Baselines
We compare our model with following baselines:

• Event-Comp (Granroth-Wilding and Clark,

2016) is a neural network based on intra-
events relationship.

• SGNN (Li et al., 2018) incorporates inter-
events information by constructing a narra-
tive event evolutionary graph (NEEG), which
describes the event evolution patterns.

• SAM-Net (Lv et al., 2019) is an attention
based model that captures event segments im-
plicitly, and modeling the candidate events at
the event-level and the chain-level.

• EventTransE (Lee and Goldwasser, 2019) is
an representation learning method that ex-
plores discourse relations among events.

• HeterEvent[W+E] (Zheng et al., 2020b) is a
representation learning method, which adopts
heterogeneous event graph to capture the dis-
continuous event segments explicitly.

• UniFA-S (Zheng et al., 2020a) is a representa-
tion learning method based on the variational
auto-encoder, which fine-tunes the pre-trained
BERT (Devlin et al., 2019) on the NYT corpus
and the event chains in multi-steps.

• SAM-NetOur We extend the SAM-Net to deal
with the full event argument words rather than
the headword and remove preposition from
the event arguments for the comparability.

4.3 Experiment Configuration
The pre-trained Glove (Pennington et al., 2014)
is used for word embedding, and the dimension
de is set to 100. The input sentence length ns is
truncated to 60. For the transformer, the number
of attention heads nh is set to 4, and the number of
encoder layer and decoder layer are set to 1. We
set the batch size to 128. Adam (Kingma and Ba,
2015) is used to optimizing our model parameters.
The learning rate set is to 1e-4, the λ is set to 1e-5,
and the α is set ot 0.8. The model size dh is set
to 128. All the hyper-parameters are searched on
validation set. The training process employs the
early-stopping strategy on validation accuracy.

4.4 Results
We report the performance of the proposed
CircEvent model and other baseline models on the
NYT portion of the Gigaword corpus on the MCNC
task in Table 2. The CircEvent shows outstand-
ing performance and achieves the best accuracy
score in the MCNC task.

We first zoom into the comparison among base-
lines. SAM-Net and our CircEvent are supervised
learning methods in the narrative event prediction.
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Method Accuracy(%)

Event-Comp 46.3
SGNN 52.3
SAM-Net 54.3
EventTransE 63.7
HeterEvent[W+E] 64.4
UniFA-S 66.3
SAM-NetOur 72.4

CircEvent 84.6

Table 2: Performance on the MCNC test set. Our pro-
posal CircEvent exceeds the best baselines by 12.2%

However, the origin SAM-Net accepts the head-
word of event arguments, which lead to the corrupt
event. Thus we re-implement it with the same rep-
resentation layer use in CircEvent to solve the prob-
lems, serving as SAM-NETOur, which performs the
best of existing models.

Next, we compare our CircEvent with baselines.
Our CircEvent achieves the best performance on
the MCNC task, which is a definite 12.2% improve-
ment over the best baselines. We discuss the con-
tribution of each part further in Sec 4.5.

4.5 Ablation Study
In this part, we perform an ablation study to demon-
strate the effectiveness of our neural network archi-
tecture. We depart our model in three parts, Event,
Local, and Global refers to the event embedding,
the local embedding, and the global embedding,
respectively. We conduct the ablation studies based
on them, and the results are shown in Table 3. Our
ablation studies include the following two aspects:

Influence of Additional Circumstances We
first study the influence of the additional local cir-
cumstances. We compare the result between the
Event + Local and the Event. In the Event + Local
experiment, the event embedding is concatenated
with circumstance embedding. The event embed-
ding is duplicated and concatenated in the Event
experiment. The experiment results show that the
local circumstances improve the accuracy score by
2.96%, which demonstrates the local circumstances
containing valuable information to the next event.

Similar to the local circumstances, we compare
the results between the Event + Global and the
Event, which demonstrate that the additional global
circumstance also contribute to the narrative event
prediction. With the global circumstance embed-

Method Accuracy(%) ∆

Event + Global + Reg 84.64 -
Event + Global 83.60 - 1.04
Event + Local 84.32 - 0.32
Event 81.36 - 3.28
Global 81.51 - 3.13
Local 83.40 - 1.24

Table 3: Ablation studies on the event circumstances.
The Event represents the event embedding, the Global
and Local are the global and local circumstances, and
Reg is the attention regularization.

ding, the accuracy score increase by 2.24%. Com-
paring with the local and global circumstances, the
local benefit more to the accuracy score. The atten-
tion matrix in global circumstance shows that all
the context events relay on the last circumstance
sentence most, because it is the closest one to the
target event. We discuss it further in Sec 4.6.

Influence of Independent Circumstances The
experiments above include event embedding. In
this part, we would like to evaluate the quality of
circumstance embedding independently. We re-
move the event embedding from the event chain
encoder’s input and use the local circumstances
or the global circumstances to represent the event
chain. The result is shown as Local and Global in
Table 3. In these two experiments the event embed-
ding is used as distantly supervised information,
which aggregates the sentence hidden states and
the local circumstances. From the result, we can
conclude that the local and the global circumstance
contains valuable information. With the distantly
event embedding information, the Global and Local
experiment results outperform that of the Event.

4.6 Qualitative Analysis

In this section, we provide a qualitative analysis of
local circumstances and global circumstances.

Figure 5 is the visualization of local circum-
stance attention weights. Each row is a pair of
the event and the sentence contains the event. The
context events describe men were judged because
of harvesting the abalone illegally. All of the last
four events notice the word abalone, which is an
important topic or element in the context but does
not appear in the events. However, in the first sen-
tence, the abalone is concatenated with the May
creating an out-of-bag word. We blame this atten-
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arrest (official, men)
State Fish and Game officials arrested the men with 468 red abaloneMay
20 when they landed Ward ’s urchin boat .

admit (men, ) The men admitted they harvested and planned to sell the abalone.
harvest (men, abalone) The men admitted they harvested and planned to sell the abalone.

ban (judge, men)
A Mendocino County judge forever banned two SouthernCalifornia men
from fishing , and sent them toprison for being caught with the largest
single illegal abalone haulin California in 15 years .

send (judge, men)
A Mendocino County judge forever banned two SouthernCalifornia men
from fishing , and sent them toprison for being caught with the largest
single illegal abalone haulin California in 15 years .

Figure 5: The event chain and the local circumstance heat map example. The left side is the context events, which
happen from the top to the bottom. The sentence that contains the event is placed directly right to the event. Words
are wrapped in red color boxes. The deeper the shade of red, the more attention weight the word got.

circ 1
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Figure 6: The global attention weights matrices for the example given in Figure 5. The deeper the shade of red,
the more attention it is. Figure 6a and Figure 6b show the attention weights without and with the regularization
respectively. Figure 6c formulates the alignment between events and circumstances.

tion loss on the incorrect sentence tokenization. In
the homologous events admit (men, _) and harvest
(men, abalone), which come from the same sen-
tence, pay attention to the different parts of the
sentence. The harvest event not only cares about
the harvest predicate itself but also considers the co-
ordinate verb planned. In the last two homologous
events, the attention weights are incredibly similar.
Despite the predicate itself, they also pay attention
to the other words full of semantics, such as largest,
illegal, and the topic abalone. Since, we use the
linear combination to construct the event embed-
ding, we think there is a lack of event expression
that leads to similar heat maps.

We also visualize the global attention weights
matrices in Figure 6. The attention weights lean
to the last circumstance without our regularization.
Thus, the Global and the Event + Global experi-
ment results are worse than the Local and the Event
+ Local, respectively. With our regularization, the
global attention weights align with the target ma-
trix, which describes the alignment between the
events and the circumstances. The leading diag-

onal elements have the prominent weight in each
row in the regularized weights matrix. It means
all the events pay attention mainly to their local
circumstances. In the meantime, events also aggre-
gate the information from context circumstances,
especially the homologous events. The homolo-
gous events pay more attention to each other than
to other events, such as the event 2, 3 and the event
4, 5 shown in Figure 6b. The results confirm our
intuition that the circumstances have a significant
influence on the narrative event prediction.

5 Conclusion

This paper develops multi-head attention modules
to capture the circumstances from event text at lo-
cal and global levels. We utilize the transformer
architecture, encode context events and circum-
stances. The standard evaluation shows that our
model achieves the best accuracy score compared
to other baselines. The visual analysis on the atten-
tion heat map shows the effectiveness of circum-
stances.
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