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Abstract

Generative Adversarial Networks (GANs)
have achieved great success in image synthe-
sis, but have proven to be difficult to generate
natural language. Challenges arise from the
uninformative learning signals passed from the
discriminator. In other words, the poor learn-
ing signals limit the learning capacity for gen-
erating languages with rich structures and se-
mantics. In this paper, we propose to adopt the
counter-contrastive learning (CCL) method to
support the generator’s training in language
GANs. In contrast to standard GANs that
adopt a simple binary classifier to discriminate
whether a sample is real or fake, we employ
a counter-contrastive learning signal that ad-
vances the training of language synthesizers
by (1) pulling the language representations of
generated and real samples together and (2)
pushing apart representations of real samples
to compete with the discriminator and thus pre-
vent the discriminator from being overtrained.
We evaluate our method on both synthetic and
real benchmarks and yield competitive perfor-
mance compared to previous GANs for adver-
sarial sequence generation.

1 Introduction

Unsupervised text generation has achieved great
success in plenty of applications, from dialogue
generation to machine translation (Wu et al., 2016;
Li et al., 2017). Common approaches to language
models are maximizing the log-likelihood of tokens
of discrete sequences given historical observations.
Nevertheless, language models trained with max-
imum likelihood estimation (MLE) can result in
exposure bias issues (Bengio et al., 2015), a dis-
tributional shift between input sequences during
training and inference stages.

Generative Adversarial Networks (GANs) hold
the promise of training language models, as an
alternative method to MLE. GANs learn to sample
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during training so as to avoid the exposure bias
issue, whose aim is to train a language generator
to fool the discriminator that distinguishes the fake
data out of real samples.

Previous innovations adopt various approaches
to enhance the learning signals for generators, such
as leaking information from the discriminator to
the generator (Guo et al., 2017), directly matching
the fake data distribution to that of real data (Zhang
et al., 2017; Chen et al., 2018), learning to rank
samples out of a collection of curated samples (Lin
et al., 2017; Zhou et al., 2020), leveraging more
powerful generator architectures to learning rep-
resentations (Nie et al., 2019), etc. However, the
problem of language GANs’ training is far from
being fully solved.

Inspired by the recent success in contrastive
learning approaches (Chen et al., 2020) in learning
effective representations, we propose a counter-
contrastive learning objective to aid the adversar-
ial learning of sequence generators in language
GANs. Conventional contrastive learning methods
aim at pulling positive samples together and push-
ing away positive samples from negative ones. In
contrast, we propose counter-contrastive learning
(CCL) method that (1) pulls the generated samples
and real samples together (to generate real-looking
data) and (2) pushes away the real samples (to hin-
der the training of the discriminator). Empirical
results on both synthetic and real datasets demon-
strate competitive results compared with previous
language GANs and prove the effectiveness of our
method.

2 Language GANs

Language GANs have attracted extensive interest
due to their ability to mitigate the exposure bias
issue. The objective of language GANs is to train
a language generator G(z; θ(G)) that can output
real-looking text samples that resemble those in
the training data pdata(x). From the game theory
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metaphor, language GANs consist of a generator
and a discriminator playing a two-player minimax
game. The generator network decodes the ran-
domly initialized starting token z into the language
sequence G(z; θ(G)), where the training signal is
provided by the discriminator network D(x;φ(D))
that is trained to distinguish between the samples
drawn from the real data distribution pdata and
those produced by the generator. In this paper, we
adopt the relativistic discriminator loss (Jolicoeur-
Martineau, 2018) as the training objective:

min
θ(G)

max
φ(D)

Ex∼pdata;z∼pz [log σ
(
D

(D)
φ (x;φ(D))

−D(D)
φ (G(z; θ(G)))

)
] (1)

where σ(·) is the sigmoid function.
There have been a large variety of language

GANs that resorted to reinforcement learning (RL)
heuristics with Monte Carlo search to gather the
update rewards from the discriminator. The in-
stability of RL training can further plague the re-
ward sparsity problem. Existing work (Kusner and
Hernández-Lobato, 2016; Nie et al., 2019) demon-
strated that Gumbel-Softmax relaxation (Maddison
et al., 2014) is effective in language GANs, thus
we use the Gumbel-Softmax reparameterization
instead of policy gradient in our experiments.

3 Contrastive Learning

Contrastive learning aims at learning informative
representations by pulling together positive neigh-
bors and pushing way non-neighbors (Hadsell et al.,
2006). Assuming a set of paired examples D =
{(xi, x+i )}Ni=1, where (xi, x

+
i ) are positive pairs.

Let the hi and h+
i denote the representations of xi

and x+i , the contrastive learning training objective
is:

LCL
i = − log

esim(hi,h
+
i )/τ∑N

j=1 e
sim(hj ,h

+
j )/τ

(2)

where τ is the temperature scalar, and sim(·) is the
cosine similarity operator.

4 Methodology

4.1 Counter-Contrastive Learning

In language GANs, the discrimination classifier is
prone to be overtrained, while the generator faces
great challenges to obtain sufficient information for
the update. To mitigate this issue, we propose a

counter-contrastive learning (CCL) objective that
not only renders comparative learning signals be-
tween real and fake samples but prevents the clas-
sifier from being trained too quickly.

It is crucial to construct positive and negative
samples in our method. As for positive ones,
we construct positive pairs by applying disparate
dropout masks to get positive representations for
input real texts sampled from pdata. Specifically,
for the same real sentence, we get positive pair
representations after feed them into the discrim-
inator twice with two different random dropout
operations. Denote hmi = f(xi,m), where m is
the dropout mask and f is the encoder of input
sentences. In our experiments, we take the hid-
den representation of the last-but-one feed-forward
layer in the discriminator as the representation hi
for each input sentence xi.

With different dropout masks, we get the repre-
sentations of positive pairs (hi,h+

i ). For negative
samples, we randomly select fake sentences gener-
ated by the generator network and feed them into
the discriminator to get fake sample representations.
Therefore, we choose one from positive representa-
tions and the other from the negative to construct
negative pairs (hi,h−

i ).
Given the mini-batch of size N , we formulate

the counter-contrastive learning objectives as:

Li = − log
esim(hi,h

−
i )/τ∑N

j=1

(
esim(hj ,h

−
j )/τ + esim(hj ,h

+
j )/τ

)
(3)

where τ is the constant temperature.
Intuitively, this CCL objective aims to (1) force

the fake representations to approach real data (the
numerator), and (2) prevent the discriminator from
learning effective representations of positive pairs
by pushing away semantically close pairs (the right
term in the denominator).

In contrast to contrastive learning that pulling
together the positive neighbors, our CCL objective
aims to draw together the fake and real samples
(to let the generator imitate the real sentences) and
push away the real samples (to fool and hinder the
discriminator training, thereby preventing it from
fast convergence).

4.2 Training Language GANs

When training the language GANs, we keep the
training objective as Eq. (1) unchanged and update
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the generator with Eq. (3) after the generator’s con-
ventional update.

Algorithm 1 illustrates the overall training pro-
cess of the proposed framework. The discriminator
and the generator could reach the Nash Equilibrium
when the generator could fool the discriminator
into accepting its output as being true. Since the
discriminator network is easy to be overtrained, we
do not pretrain it but only pretrain the generator
using MLE for few epochs.

Algorithm 1 Adversarial Training of CCL.
1: Require: generator Gθ; discriminator Dφ;

samples of real data S; generator training step
g; discriminator training step k; the generator
pretraining epochs l.

2: Pretrain Gθ using MLE on S for l epochs
3: repeat
4: for g steps do
5: Sample a minibatch from real data S
6: Generate a minibatch from Gθ
7: Construct positive pairs by feeding the

real samples to Dφ twice with different
dropout masks, and negative samples
from x−i ∼ Gθ.

8: Update Gθ via Eq. (1)
9: Update Gθ via Eq. (3) (CCL training)

10: end for
11: for k steps do
12: Sample a minibatch from real data S
13: Sample a minibatch from the generated

data
14: Train the discriminator Dφ by Eq. (1)
15: end for
16: until convergence

5 Experiments

5.1 Experimental Settings
Dataset Table 1 summarizes the statistics of
benchmark datasets for evaluation. We conduct
experiments on both synthetic and real datasets:

• Synthetic data, which is generated by an ora-
cle single-layer LSTM as in (Yu et al., 2017).
We use a randomly initialized single-layer
LSTM as the oracle, and generate 10,000 dis-
crete sequences of length 20 and 40 respec-
tively as either training or test set.

• Real data. We use MS COCO Image Cap-
tions (Chen et al., 2015) (only caption refer-

ences are used) and EMNLP2017 WMT News
dataset (Guo et al., 2017).

dataset Synthetic data
MS COCO
Image Caption

EMNLP2017
WMT News

vocabulary size 5,000 4,657 5,255
sequence length 20 / 40 37 51
training set 10,000 10,000 278,586
test set 10,000 10,000 10,000

Table 1: Summary of experimental datasets.

Evaluation Metrics For synthetic data, we use
NLLoracle and NLLgen to evaluate the quality and
diversity respectively. Given the real data distribu-
tion pdata and fake data distribution pθ, NLLoracle
measures the negative log-likelihood (NLL) of gen-
erated samples y1···T under the oracle distribution
pdata whilst NLLgen calculates the NLL of real sam-
ples r1···T under the generated data distribution pθ.

NLLgen = −Er1···T∼pdata log pθ(r1···T ) (4)

NLLoracle = −Ey1···T∼pθ log pdata(y1···T ) (5)

For real data, it is infeasible to get an oracle
to compute the NLLoracle. We instead apply the
BLEU scores (Papineni et al., 2002) to evaluate
sample quality, wherein the test data serve as the
reference. Besides, NLLgen is adopted to evaluate
the diversity of generated samples.

Baselines. Baseline models include MLE and
language GANs such as SeqGAN (Yu et al., 2017),
RankGAN (Lin et al., 2017), LeakGAN (Guo
et al., 2017), MaliGAN (Che et al., 2017), Rel-
GAN (Nie et al., 2019), and Self-Adversarial Learn-
ing (SAL) (Zhou et al., 2020).

Model Architecture For the generator network,
we apply the Relational Memory Core (Santoro
et al., 2018), where the memory size is 256, the
memory slot number is 1, the attention head num-
ber is 2. The input embedding dimension is set
to 32. For the discriminator network, we use the
multi-channel convolutional networks using filters
with various window sizes to extract distinct n-
gram features, followed by a max-over-time pool-
ing operation. The input embedding dimension for
the discriminator is set to 64. The filter sizes are
{2, 3, 4, 5} with the number of 300 channels for
each. A max-over-time pooling and a fully con-
nected layer is applied followed by the convolution
layer.
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Optimization We apply Adam optimizer with
β1 = 0.9 and β2 = 0.999. For the initial learning
rate, we set to 1e-2 and 1e-4 for pretraining and
adversarial training respectively for the generator,
and to 1e-4 for the discriminator during adversarial
training. All trainable parameters whose L2 norm
values of gradients exceed 5 are truncated.

Training Settings The following hyperparame-
ters are finetuned: batch size of {32, 64, 128}, the
CCL temperature τ ∈ {0.2, 0.5, 1}. The training
step for the generator and discriminator is set to
g = 1 and d = 5, respectively. We pretrain the
generator for 150 epochs before the adversarial
training. The optimal batch size is set to 128 for
both synthetic and real datasets. All experiments
are conducted on Nvidia Titan RTX GPU with 5
different random seeds.

5.2 Results on Synthetic Data

Model NLLoracle (20/40) NLLgen (20/40) NLLoracle + NLLgen (20/40)

MLE 9.05±0.03 / 9.84±0.02 5.96±0.02 / 6.55±0.02 15.02±0.03 / 16.39±0.01

SeqGAN 8.63±0.19 / 9.63±0.04 6.61±0.22 / 6.98±0.08 15.00±0.03 / 16.35±0.02

RankGAN 8.42±0.31 / 9.52±0.11 7.14±0.34 / 7.05±0.12 15.01±0.02 / 16.37±0.02

MaliGAN 8.74±0.16 / 9.67±0.03 6.62±0.25 / 7.14±0.09 15.03±0.03 / 16.39±0.03

SAL 7.71±0.17 / 9.31±0.03 6.58±0.15 / 6.97±0.05 14.29±0.11 / 16.24±0.03

Ours 6.77±0.34 / 6.65±0.14 6.91±0.62 / 7.68±0.79 13.69±0.36 / 14.33±0.76

Table 2: Performance of different models on the syn-
thetic dataset with the sequence length of 20 and 40,
respectively. For NLL scores, the lower, the better.

For synthetic data, we evaluate the generated
sequence w.r.t. both quality and diversity. We
use the oracle LSTM to evaluate the negative log-
likelihood of our generated samples (denoted as
NLLoracle) to measure the quality, and the negative
log-likelihood of the synthetic dataset (denoted as
NLLgen) measured by the generator during train-
ing. We also report the best NLLoracle+NLLgen
to evaluate the trade-off between quality and di-
versity. It is observed that our model outper-
forms baseline models in terms of quality (mea-
sured by NLLoracle) and quality-diversity trade-off
(measured by NLLoracle+NLLgen), and achieves or
matches the competitive results of baselines w.r.t.
the diversity (indicated by NLLgen).

5.3 Results on Real Data

Table 3 exhibits the final results of the BLEU and
NLLgen scores on different comparison models.
Notably, our model shows a significant improve-
ment over previous methods, consistently achieves
competitive results in terms of the sample quality

Model BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

MLE 0.731 0.497 0.305 0.189 0.718
SeqGAN 0.745 0.498 0.294 0.180 1.082
RankGAN 0.743 0.467 0.264 0.156 1.344
LeakGAN 0.746 0.528 0.355 0.230 0.679
RelGAN 0.849±0.030 0.687±0.047 0.502±0.048 0.331±0.044 0.756±0.054

SAL 0.785±0.02 0.581±0.03 0.362±0.02 0.227±0.02 0.873±0.02

Ours (CCL) 0.871±0.032 0.715±0.050 0.538±0.068 0.399±0.082 0.630±0.103

Table 3: BLEU and NLLgen on MS COCO image cap-
tions. For BLEU scores, the higher, the better.

Model BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

MLE 0.768 0.473 0.240 0.126 2.382
SeqGAN 0.777 0.491 0.261 0.138 2.773
RankGAN 0.727 0.435 0.209 0.101 3.345
LeakGAN 0.826 0.645 0.437 0.272 2.356
RelGAN 0.881±0.013 0.705±0.019 0.501±0.023 0.319±0.018 2.482±0.031

SAL 0.788±0.02 0.523±0.02 0.281±0.02 0.149±0.02 2.578±0.04

Ours 0.903±0.016 0.749±0.022 0.525±0.017 0.324±0.008 2.818±0.499

Table 4: BLEU and NLLgen on EMNLP2017 WMT
News dataset.

(indicated by BLEU scores) while maintaining the
diversity (indicated by NLLgen). Table 4 shows the
same trend on EMNLP2017 WMT News dataset.

5.4 Analysis

Ablation Test To further verify the benefits of
our method, we conduct an ablation test by remov-
ing the CCL update on MS COCO image captions.
It can be seen from Table 5 that ablating the CCL
component can quantitatively decrease the model
performance: the sentence quality decreased (with
the decrease of BLEU scores) and the diversity
drops (with the increase of NLLgen metric).

Model BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

Ours 0.872 0.715 0.531 0.363 0.610
w/o CCL 0.813⇓ 0.630⇓ 0.445⇓ 0.312⇓ 0.683⇑

Table 5: Ablation test. The performance drops after
ablating the CCL method.

Comparison between Generated Samples For
fair comparison, we select the generated sentences
that contain the word “cat” from samples produced
by models with and without the CCL method (see
Table 6). It is observed that GANs with CCL tend
to produce sentences with better diversity. For ex-
ample, with the structure “a cat is sitting on top of
a car”, models w/ CCL can enrich it with different
modifier words. However, after removing CCL, the
model can duplicate words such as “sitting“ regard-
less of its repetitive usage. Moreover, as shown in
the last row of Table 6, with the CCL method, the
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language GANs tend to write semantically mean-
ingful samples in comparison with the counterpart
without CCL.

model Sample sentences

w/o CCL

a cat is sitting on a white plate .
a cat is sitting on a bathroom sink sitting inside of a toilet .
a black and white cat outside decorated in rustic kitchen .
a cat is sitting on a bathroom sink sitting in a bathroom .
a cat is sitting on a bathroom sink sitting on a bathroom counter .
a cat sitting on a gravel ground inside of a bathroom sink .
a cat is sitting on a bathroom sink sitting in a bathroom .

w/ CCL

a cat is sitting on top of a car .
a cat is sitting on top of a car cleaning itself .
a cat is sitting on top of a car roof .
a cat is sitting on top of a car hood .
a cat is sitting on top of a man ’s head in front of a glass door .
a dog sitting on top of a parked car near a cat .
a cat in a white bathroom with a toilet paper beside a child .

Table 6: Comparison between generated sentences
from models with and without counter-contrastive
learning approach.

6 Related Work

A variety of language GANs integrated the RL
paradigm into GANs. SeqGAN (Yu et al., 2017)
firstly takes the text generation as a Markov
decision-making process and trains the language
generator with the policy gradient algorithm.
RankGAN (Lin et al., 2017) and SAL (Zhou et al.,
2020) enrich the restrictive signals by ranking con-
structed pairs. LeakGAN (Guo et al., 2017) leaks
the hidden states of the generator to promote the
generator training.

Another line of previous work either approxi-
mates the categorical sampling or optimizes on con-
tinuous representations, such as Gumbel-Softmax
GAN (Kusner and Hernández-Lobato, 2016),
TextGAN (Zhang et al., 2017), FMGAN (Chen
et al., 2018) and RelGAN (Nie et al., 2019).

Our work aims to integrate the prevalent con-
trastive learning approach in supporting the gen-
erator training, which lies in the line of methods
using comparative signals or ranking classifiers,
such as RankGAN and SAL. From the perspective
of feature matching, the counter-contrastive learn-
ing objective can be considered as a contrastive
signal to draw together the fake and real sample
representations.

7 Conclusion

In this paper, we introduce a counter-contrastive
learning objective to advance the training of lan-
guage GANs. It pulls the representation of gen-
erated and real samples together to promote the

generator training, and pushes apart real sample
pairs to depress the discriminator training as a com-
petitor. Our future work will include extending the
counter-contrastive learning method to other text
generation tasks such as machine translation and
dialogue generation.
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