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Abstract

Deep learning models exhibit a preference
for statistical fitting over logical reasoning.
Spurious correlations might be memorized
when there exists statistical bias in training
data, which severely limits the model per-
formance especially in small data scenarios.
In this work, we introduce Counterfactual
Adversarial Training framework (CAT) to
tackle the problem from a causality perspec-
tive. Particularly, for a specific sample, CAT
first generates a counterfactual representation
through latent space interpolation in an ad-
versarial manner, and then performs Coun-
terfactual Risk Minimization (CRM) on each
original-counterfactual pair to adjust sample-
wise loss weight dynamically, which encour-
ages the model to explore the true causal
effect. Extensive experiments demonstrate
that CAT achieves substantial performance im-
provement over SOTA across different down-
stream tasks, including sentence classification,
natural language inference and question an-
swering. 1

1 Introduction

Large-scale pre-trained language models such as
BERT (Devlin et al., 2019), as one of the recent
breakthroughs, have revolutionized the model de-
velopment paradigm in natural language processing
(NLP) and improved traditional task-specific mod-
els by a large margin. Although the pre-training
and fine-tuning framework has been shown to be
effective in transferring the pre-learned knowledge
to downstream tasks and boosting the model perfor-
mance, it could be a double-edged sword if there
exists statistical bias in the training dataset, espe-
cially in small data scenarios (Yue et al., 2020).
Taking sentiment analysis as an example, the down-
stream classifier can easily mistake a certain person

1Code is available at https://github.com/
ShiningLab/CAT.git

name for a sentimental word if it is imbalanced dis-
tributed in positive and negative samples. Yue et al.
(2020) further show that when the capacity of the
model to certain semantics is strong, it will in turn
strengthen this bias, in which case the large pre-
trained model becomes an amplifier for spurious
features.

Generally, such problem can be better solved
from the perspective of causality (Zhang et al.,
2020). In the context of causal inference, causa-
tion is not correlation but something more essential
with the mechanism of data generation (Pearl et al.,
2009). Statistical bias, also named spurious corre-
lations, is a result of confounder, a variable that
can influence dependent variables and independent
variables simultaneously (Pearl, 2009). The study
of causation aims to find the true causal effects be-
tween variables that help to unveil the true casual
effect behind observation data and realize more
robust inference.

Specifically, counterfactuals are one feasible
way to discover the causation. Counterfactual ex-
amples are defined as the ones that minimally-
different from original ones but lead to different
labels (Teney et al., 2020). Recent work shows that
counterfactual samples can significantly improve
model generalization and boost model performance.
Kaushik et al. (2019) and Teney et al. (2020) use
additional human-labeled or augmented counter-
factual examples to mitigate spurious correlations.
Zeng et al. (2020) proposes a two-stage training ap-
proach for named entity recognition tasks for better
generalization.

Although these methods gain significant im-
provements in model performance, they are lim-
ited in practice since they are either designed for
specific tasks or requiring human-labeled samples.
Additionally, no optimization is conducted on those
counterfactual examples which could further im-
prove the performance shown in our work.
Our work. We revisit the above problem in NLP

https://github.com/ShiningLab/CAT.git
https://github.com/ShiningLab/CAT.git
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domain from a causality perspective. Following
the definition of counterfactual examples, our moti-
vation is to explore the following question: What
would be the minimal intervention that alters the
model output? As a result, we propose CAT,
an end-to-end and task-agnostic Counterfactual
Adversarial Training framework during fine-tuning
to introduce counterfactual representations in train-
ing stage through latent space interpolation.

Concretely, to define our problem, we first in-
troduce Structural Causal Model (SCM) to view
our problem through a casual graph that depicts
the data generation mechanism. To cut off the con-
founder, we conduct do-calculus (Pearl, 1995) for
causal effect adjustments. Specifically, we propose
a counterfactual representation interpolation tech-
nique called CMIX which is a variant of Mixup
(Zhang et al., 2018) to generate counterfactuals and
approximately realize do-calculus in deep learn-
ing framework. For each example x in training
set, CMIX samples a counterpart x′ and generates
a counterfactual representation by interpolating the
representation of x and x′, which is adaptively opti-
mized by a novel Counterfactual Adversarial Loss
(CAL) to minimize the differences from original
ones but lead to drastic label change by definition.
Finally, to connect each original-counterfactual
pair, besides the traditional Empirical Risk Min-
imization (ERM) (Vapnik and Vapnik, 1998), We
extend it to a new counterpart, i.e., Counterfactual
Risk Minimization (CRM), to allow the model to
adjust sample-wise loss weight dynamically so as
to explore the causal effect behind data rather than
simple correlations memorization.

We also extend CAT to other complicated tasks
besides simple classification, which are rarely stud-
ied by other Mixup-based methods. Through ex-
tensive experiments on text classification, natural
language inference and question answering on two
SOTA baselines, BERT and RoBERTa (Liu et al.,
2019), we observe consistent improvement for CAT
in promoting the testing accuracy especially for
small data in an extra-data-free manner.

Our contributions are summarized as follows:

• We investigate the problem of spurious cor-
relations from a causality perspective which
has not been widely studied in conventional
statistical learning.

• We propose CMIX for counterfactual repre-
sentation interpolation to approximate do-

calculus realization in deep learning frame-
work, which is adaptively optimized by a
novel Counterfactual Adversarial Loss. More-
over, we extend the traditional ERM to a
novel Counterfactual Risk Minimization as
a new learning principle connecting original
data representations and counterfactual ones,
which enables CAT to explore causal effects
and debias the spurious correlation.

• We propose CAT as a general framework for
various types of NLU tasks, including sen-
tence classification, natural language infer-
ence and question answering tasks. We show
that CAT outperforms SOTA by a large mar-
gin across different tasks particularly when
data is limited.

2 Related Work

Large-scale Pre-trained Language Model. The
most widely-used solution for alleviating spurious
correlations is using large-scale dataset. Yang et al.
(2019) and Liu et al. (2019) proposed to build the
pre-trained language models utilizing even larger
corpus to reduce the bias.
Data Augmentation. Data augmentation is an-
other solution and has become a de facto technique
used in state-of-the-art machine learning models.
Zhang et al. (2015) performed text augmentation
by replacing words or phrases with their synonyms,
and recently Wei and Zou (2019) proposed more
operations. Using word embedding, (Wang and
Yang, 2015) tried to find a similar word for replace-
ment. In addition, back translations (Sennrich et al.,
2016) and contextual augmentation (Fadaee et al.,
2017; Kobayashi, 2018) techniques have been pro-
posed to replace target words.

Through shrinking the weight of the training
data relative to L2 regularization, mixup (Zhang
et al., 2018) trained a neural network on convex
combinations of pairs of examples and their labels
to generate new samples (x̃, ỹ) from (xi, yi) and
(xj , yj), formally as

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj .
(1)

Followed by mixup, more works (Verma et al.,
2019a,b,c; Berthelot et al., 2019; Yun et al., 2019)
are proposed, mainly focusing on image-format
data. Recently, such regularization techniques were
brought into NLP tasks Chen et al. (2020).
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Adversarial Training. Adversarial training has
been proven to be an effective approach for im-
proving the robustness of neural network models
(Miyato et al., 2017; Madry et al., 2018; Tramèr
et al., 2017; Shrivastava et al., 2017). Specifically,
Miyato et al. (2017) applied adversarial and virtual
adversarial training to text domain by applying per-
turbations to the word embeddings, which achieved
state-of-the-art results on multiple semi-supervised
and purely supervised tasks. By minimizing the
resultant adversarial risk inside different regions
around input samples, Zhu et al. (2019) proposed a
novel adversarial training algorithm, FreeLB, that
is capable of promoting higher invariance in the
embedding space.

Causal Inference. Yue et al. (2020) explored es-
timating true causal effects on few-shot images
classification, which is an intervention-based ap-
proach. Similarly, (Tang et al., 2020) focuses on
long-tail data set. In addition, using counterfacutals
is another way to discover the causation in training
data. For example, Kaushik et al. (2019) and Teney
et al. (2020) leveraged additional human-labeled
counterfactual examples, while Zeng et al. (2020)
proposed a two-stage training approach for named
entity recognition task. These studies have been
proved that counterfactual samples are more valu-
able in boosting model performance compared to
normal samples.

3 CAT

In this section, we introduce how CAT solves the
problem of spurious correlations from a causal per-
spective (see Figure 1). We first explicate our prob-
lem by introducing Structural Causal Model (SCM).
Then we illustrate our approach by answering the
following questions: (1) How can we cut off the
confounder for spurious bias elimination by coun-
terfactual representations? (2) How can we opti-
mize our counterfactual representations? (3) How
can we learn from both original and counterfactual
representations to debias the spurious correlations?

3.1 Problem Definition

To explicate our problem, we first introduce SCM
to depict the data generation mechanism. Every
SCM can be represented as a directed acyclic graph
(DAG) which can be written as:

Xi := fi(Xpa(i)) + Ui, i = 1, 2, ..., d, (2)

where each Xi is an endogenous variable in the
graph, Xpa(i) denotes the set of parent variables
of Xi, Ui denotes independent and identically dis-
tributed random noise, d is the number of variables,
and fi(Xpa(i)) represents the direct causation from
Xpa(i) to Xi. Each Ui is called an exogenous vari-
able because it is determined outside the graph.

We can use SCM to describe how our training
data is generated and where spurious correlations
are derived from fine-tuning process. As shown
in the left part of Figure 2, C is the confounding
variable which is the common cause of samples X1

and X2 and leads to spurious correlations between
them. During fine-tuning, model H can easily take
such training-data-specific spurious correlations as
features to predict Y, which could severely under-
mine model performance when inferring on test set
where such correlations do not hold. In practice,
C can be subjective bias of human annotator, the
domain of data, the region where data is collected,
etc.

To eliminate such spurious correlations, we
conduct do-calculus on X2 (denoted as do(X2)),
which is shown in the right side of Figure 2. This
operation is realized by cutting off all edges direct-
ing to X2 and setting X2 to a certain constant x2

(green node in Figure 2). Do-calculus blocks the
causal effect from C to X2 so that C is no longer
a confounder. In general, the operation allows us
to estimate the true causal effect P (Y|do(X)) in-
stead of the correlation P (Y|X) which is the con-
ventional machine learning objective.

3.2 CMIX

Do-calculus is a statistical tool derived from SCM
for causal effect adjustments. Recent study (Zeng
et al., 2020) proposed to use Counterfactuals as
an approximate realization of do-calculus for neu-
ral networks. In this paper, instead of generating
counterfactual examples that may require expen-
sive human-annotation (Teney et al., 2020), we
propose CMIX as a variant of mixup (Zhang et al.,
2018) to generate counterfactual representations.

3.2.1 Label-free Mixup
Due to the discrete nature of textual data, it is not
favored to do interpolation directly on words as
mixup does on images. Given that, CMIX conducts
do-calculus and generates counterfactual represen-
tations by interpolating the hidden states. We aim
to set a new value for X in SCM independent of
C so that X is not affected by the confounder. Un-
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Figure 1: The framework of CAT. Besides the normal supervised ERM (Observation) flow on the top, for a certain
observation x, CAT will randomly sample another x′ from training data. Then a counterfactual representation h̃ is
generated and optimized by CMIX. Finally, CRM is applied on final model output M (θ)(h̃).

C H Y C H Y

Confounder Observation Variable Intervened Variable Noise

Figure 2: SCM of data generation mechanism. Left:
Spurious correlations exist between X1 and X2 in ob-
servation data caused by confounder C. Right: Con-
founder is eliminated by do-calculus.

like mixup-based methods (Chen et al., 2020) that
require interpolation on labels, CMIX interpolates
sample representations without label information,
allowing CMIX to utilize unlabeled data.

Specifically, interpolation occurs on the hidden
representations from the multi-layer transformers
(Vaswani et al., 2017). Formally, we denote the
multi-layer transformer model by M (θ) that takes
the latent representation h of x as input and output
the confidence prediction y = M (θ)(h). Specifi-
cally, we denote the model M (θ) at the l-th layer
M

(θ)
l (·), l ∈ {0, 1, ...L}, then for two samples x(i)

and x(j), their corresponding latent representations
h(i), h(j) at the l-th layer are

h
(i)
0 = Wx(i), h

(j)
0 = Wx(j),

h
(i)
l = M

(θ)
l (h

(i)
l−1), l ∈ {1, ...,m},

h
(j)
l = M

(θ)
l (h

(j)
l−1), l ∈ {1, ...,m};

(3)

where W is the embedding look-up matrix to map
the discrete sentence x(i) to the latent embedding
h0 as the 0-th layer representation. Then we gener-
ate the counterfactual representation h̃(i) by inter-

polation in m-th layer:

h̃(i)m = λ(i)h(j)m + (1− λ(i))h(i)m
h̃
(i)
l = M

(θ)
l (h̃

(i)
l−1), l ∈ {m+ 1, ..., L},

(4)

where λ(i) samples from beta distribution
Beta(α, β). We discuss the choice of beta dis-
tribution in Appendices A.2.
Disscussion About Attention Mask : To address
the attention mask of h̃ in BERT and its derivatives,
which is not considered in (Chen et al., 2020), we
propose several possible ways to handle the atten-
tion mask of h̃, including using the mask of h(i),
h(j) or using the last hidden layer as the interpola-
tion layer to avoid the use of attention mask. After
experiments, we find that using the mask of h(i)

always achieves the best performance.

3.2.2 Counterfactual Adversarial Loss
We propose Counterfactual Adversarial Loss
(CAL) to further optimize the counterfactual repre-
sentations h̃ generated by CMIX. Following the
definition of Kaushik et al. (2019), CAL opti-
mizes counterfactual representations so that they
are minimally-different from the original ones x(i)

but lead to different labels y(i). Specifically, we
optimize the mixup parameter λ(i) by the following
objective:

arg max
λ(i)

−
∥∥∥λ(i)

∥∥∥
p

+ γL(M (θ)(h̃(i)), y(i))

+ηΦ(M (θ)(h̃(i))),

(5)

where ‖·‖p is the Lp norm, L(·, ·) is the loss func-
tion and γ and η are the hyperparameters. Φ(·)
indicates extracting the maximum probability of a
discrete distribution.
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Algorithm 1: Counterfactual Adversarial
Training Approach (CAT)

Input: Dataset D = {(x(i), y(i))}Ni=1, model M (θ),
mixup layer candidate setQ, Beta distribution
parameters α and β, denote as Beta(α, β),
couterfactual adversarial loss iteration step L, warm
up step K, max step T

for step k ∈ {0, 1, ...,K} do
Sample one batch X(k) ∈ D. Denote

corresponding representations as h(k); Do
ERM on M (θ)(h(k));

for step t ∈ {0, 1, ..., T } do
Sample one batch X(t). Denote corresponding

representations as h(t);
For each x(i) in X(t), random sample q ∈ Q and
λ(i) ∼ Beta(α, β) and generate mixed
representations in latent space using (Eq.4) to
get one batch of counterfactual representations
h̃(t);

for l ∈ {0, 1, ...L} do
Optimize counterfactual representations

using CAL (Eq.5);

Do CRM on M (θ)(h̃(t)) and M (θ)(h(t));
Do ERM on M (θ)(h(t));

CAL is a trade-off game for minimizing differ-
ence and maximizing label change. Maximizing
−
∥∥λ(i)∥∥

p
encourages smaller shifts of counterfac-

tual representations, while maximizing loss func-
tion adversarially changes model prediction to any-
one but not original label y(i). The last term is to
make the model more confident about counterfac-
tual representation predictions.

3.3 Counterfactual Risk Minimization
CRM is designed to enable the model to learn from
both original representations and counterfactual
ones. Recall that in supervised learning, given
(h, y) and their joint distribution P , the modelM θ :
H → Y is learnt by minimizing the average of loss
function over data distribution P , also known as
the expected risk:

R(M (θ)) =

∫
L(M (θ)(h), y)dP (h, y). (6)

Unfortunately, distribution P in unknown in most
practical situations so we approximate Eq.6 by an
empirical form:

R̂(M (θ)) =
1

n

n∑
i=1

L(M (θ)(h(i)), y(i)). (7)

Minimizing Eq.(7) is known as the Empirical Risk
Minimization (ERM) principle (Vapnik and Vapnik,

1998), which is widely adopted in most of machine
learning models today.

Counterfactual Risk Minimization (CRM) is de-
rived from ERM. Similar to Swaminathan and
Joachims (2015), Charles et al. (2013) and Jung
et al. (2020), we rewrite Eq.(6):

R(M (θ)) = Eh∼P (H)Ey∼P (Y |h)L(M (θ)(h), y)

= Eh∼P (H)Ey∼P (Y |h̃)

[
P (y|h)

P (y|h̃)
L(M (θ)(h), y)

]
:= Rc(M

(θ)),
(8)

where the subscript c denotes that Rc(·) is from the
counterfactual distribution. Since we can estimate
P (y|h) and P (y|h̃) by the model M (θ) , we can
derive a tractable estimation for Eq.(8) via Monte
Carlo approximation:

R̂c(M
(θ)) =

1

n

n∑
i=1

Φ(M (θ)(h(i)))

Φ(M (θ)(h̃(i)))
L(M (θ)(h(i)), y(i))

=
1

n

n∑
i=1

ω̂(h(i))L(M (θ)(h(i)), y(i)).

(9)

We call Eq.(9) counterfactual risk, which can be
also viewed as an importance sampling estimator
that connects original-counterfactual distributions.
Intuitively, CRM adjusts sample-wise loss weight
dynamically according to ω̂(h(i)). The counterfac-
tuals that have low confidence are more penalized
and conversely the over-confident original data are
discouraged. This makes the decision boundary
more discriminative and smooth. In practice, we
bound ω̂(h(i)) for numerical stability:

R̂c(M
(θ)) =

1

n

n∑
i=1

B(ω̂(h(i)))L(M (θ)(h(i)), y(i)), (10)

where

B(x) =


x x ∈ [A1, A2]

A1 x < A1

A2 x > A2,

(11)

for some 0 < A1 < A2.
During training, we first train a warm-up phase

using only ERM like traditional fine-tuning. Then
we start counterfactual adversarial training with
ERM and CRM alternatively for succeeding steps.
The whole framework is in algorithm 1. One
of the special cases are discussed in the A.1.
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How CAL helps CRM: (a) Stability: In Eq.(9),

when the denominator Φ(M (θ)(h̃(i))) gets close
to zero, R̂c(M (θ)) can be arbitrarily far away
from the true risk. The last term in CAL tend
to maximize M (θ)(h̃(i)) so that CRM is more
stable. (b) Smaller variance: The optimal choice
is P ∗(y|h̃(i)) = P (y|h(i))L(M (θ)(h)(i), y(i))/µ
(Glasserman, 2004), where µ is the true expected
risk. In practice, although this is untraceable since
µ is unknown, a P (y|h̃(i)) approximately pro-
portional to P (y|h(i))L(M (θ)(h(i)), y(i)) is pre-
ferred for variance reduction. Note that we can
view traditional ERM as an importance sampling
with P (y|h̃(i)) = P (y|h(i)) and are estimated by
Φ(M (θ)(h(i))). Here we consider two situations:

(1) When L(M (θ)(h(i)), y(i)) is large, then
Φ(M (θ)(h(i))) is likely small. This is an indication
of the model sensitivity, which means the gradient
regarding γL(M (θ)( ˜h(i)), y(i)) in CAL is large to
push the counterfactual in∇max ||λ(i)||p direction
(towards h(j)), hence to generate Φ(M (θ)(h̃(i))) >
Φ(M (θ)(h(i))) during optimization.

(2) When L(M (θ)(h(i)), y(i)) is small, which
indicate the model is confident, gradient regard-
ing λ(i) in −

∥∥λ(i)∥∥
p

is more possible to domi-
nate the total gradient of CAL and pull the coun-
terfactuals close to h(i), then Φ(M (θ)(h̃(i))) ≈
Φ(M (θ)(h(i))). To conclude, in both situations,
Φ(M (θ)(h̃(i))) is a better choice of P (y|h̃(i)) (at
least not worse) in the context of variance reduc-
tion.

3.4 CAT in Question Answering

In addition to classification tasks that most mixup-
based methods are examined on, we further extend
CAT to question answering where logic reasoning
is preferred over correlation memorization. We
propose four mixup strategies to handle question
answering: i) directly mix, which is the same as
in sentence classification task; ii) mix only on con-
text; iii) mix only on queries; iv) mix only on non-
answer contexts. Empirical results suggest that
mixing only on non-answer contexts leads to the
best and most consistent outcome. Regarding CAL
and CRM, we sum up the start position loss and
end position loss as the final loss.

4 Experiments

We evaluate CAT on five widely used open-source
benchmark datasets, including text classification,
natural language inference and question answering.

4.1 Dataset

Yahoo! Answers (Chang et al., 2008) consists of
questions and their corresponding answers along
with the categories that are assigned to questions.
We carry out the same pre-processing as in (Chen
et al., 2020).
IMDB (Lin et al., 2011) is a typical dataset for
binary sentiment analysis including 50k samples.
SNLI (Bowman et al., 2015) is a popular text entail-
ment dataset that contains 570k human annotated
sentence pairs.
SQuAD 1.1 (Rajpurkar et al., 2016) consists of
100k question/answer pairs. Given a question and a
Wikipedia passage containing the answer, the task
is to predict the answer span in the passage.
SQuAD 2.0 ((Rajpurkar et al., 2018)) combines the
existing SQuAD 1.1 data with over 50k unanswer-
able questions written adversarially by crowd-
workers.

For each dataset, experiments are conducted on
multiple data sizes. Experiments are controlled
in an incremental manner where we gradually in-
crease the training set size. For sentence classi-
fication and natural language inference tasks, we
randomly select a fixed test set of size 2000. For
question answering, the full dev set is used for
evaluation.

4.2 Implementation

For a fair comparsion, We employ BERTBASE,
BERTLARGE, RoBERTaBASE, RoBERTaLARGE, and
BERTBASE with TMix (Chen et al., 2020) 2 as strong
baselines. CAT is applied in two forms: CAT with-
out CAL optimization (denoted as CAT *) and stan-
dard CAT. All models are concatenated with a two-
layer perceptron with Tanh as activation on the
top. We adopt the fourth mix strategy in CMIX for
question answering in 3.4. We report accuracy for
sentence classification and natural language infer-
ence and EM/F1 for question answering.

We summarize test hyperparameters in Table
4, and introduce the model-specific mixup
candidate layers as follows: {8, 9, 10} (see
Section 4.5 for detailed illustration) is used
for BERTBASE, {20, 21, 22} for BERTLARGE,
{6, 7, 8} for RoBERTaBASE and {17, 18, 19} for
RoBERTaLARGE. During experiments, every trial is
repeated 3-5 times. While for large versions of the

2Since the original TMix is trained without attention mask,
in our experiments, we add attention mask aligning with CAT.
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Model

BERTBASE

TMix
CAT *
CAT
RoBERTaBASE

CAT *
CAT
BERTLARGE

CAT *
CAT
RoBERTaLARGE

CAT *
CAT

Yahoo! Answers
10 50 250 1000

61.02 66.39 70.07 72.33
62.19 67.01 70.15 72.30
62.34 67.20 70.11 72.29
63.53 68.11 71.40 72.52
61.95 66.96 69.61 71.21
63.09 67.84 70.08 71.95
63.55 67.78 70.45 72.02
63.54 67.96 70.75 72.93
64.33 68.07 70.72 72.95
64.73 68.15 70.95 73.06
64.38 67.80 70.60 72.28
66.20 68.92 71.10 72.90
66.30 69.28 71.25 73.30

IMDB
10 50 250 1000

73.28 78.03 82.38 85.88
74.32 78.64 82.58 85.90
73.77 78.98 82.45 85.96
75.55 80.13 83.15 86.11
81.57 84.30 87.00 88.36
82.80 85.11 87.40 88.45
83.25 85.12 87.50 88.93
76.51 81.22 85.42 87.32
76.97 81.05 85.38 86.93
75.10 82.52 86.02 87.00
81.50 87.63 89.03 90.06
79.95 87.55 89.48 90.10
84.80 88.55 89.85 90.10

SNLI
10 50 250 1000

42.68 57.62 70.17 77.16
43.90 58.55 70.57 77.40
44.37 59.42 71.23 77.89
46.23 60.27 72.13 78.20
40.72 59.92 77.96 83.09
41.95 63.33 79.15 83.25
41.30 64.47 79.69 83.75
44.33 60.10 74.02 81.04
43.07 62.80 75.97 81.18
43.83 64.77 76.77 81.67
38.22 62.73 82.27 85.99
39.15 61.85 82.90 85.63
40.33 65.07 83.15 86.05

Table 1: The average accuracy after multiple runs on Yahoo! Answers, IMDB and SNLI datasets. Bellowing the
individual dataset is the number of training samples per class.

Model

BERTBASE

CAT *
CAT
BERTLARGE

CAT *
CAT

SQuAD 1.1
1/20 1/10 1/5

51.83/62.50 66.06/76.56 72.25/81.75
63.90/74.93 69.36/79.44 74.10/83.34
62.71/74.14 69.49/79.44 74.33/83.43
70.66/81.29 75.85/85.16 79.14/87.24
72.18/82.15 75.69/84.83 79.06/87.08
72.30/82.17 76.37/85.09 79.18/87.28

SQuAD 2.0
1/20 1/10 1/5

51.10/54.12 55.60/58.84 61.84/65.42
55.44/57.55 59.84/62.44 61.77/64.97
56.22/58.47 59.71/62.44 63.26/66.72
59.41/63.03 66.28/70.30 71.30/74.88
61.84/65.27 66.55/70.08 69.40/72.87
61.82/65.32 67.38/70.79 69.31/72.37

Table 2: The model performance of EM/F1 on SQuAD 1.1 and SQuAD 2.0. Bellowing the individual dataset is
the proportion of full training data used.

Model

BERTBASE

CAT

SQuAD 1.1
EM F1

80.80 88.50
81.77 88.98

SQuAD 2.0
EM F1

72.57 75.99
74.13 77.36

Table 3: The EM/F1 on full QA data.

pre-trained models, we also observe some unstable
results as mentioned by Devlin et al. (2019), so the
outliers are removed and the average accuracy is
reported to reduce randomness. We also present
other implementation details and hyperparameters
in Appendices A.3, A.4 and A.5.

4.3 Results

Performance of CAT on classification and NLI.
As shown in Table 1, it can be seen that CAT
achieves the best performance at the most settings
across different pre-trained models. Improvements
become more significant when the data size de-
creases, which is aligned with the analysis by Yue
et al. (2020) that when the size of training data
gets smaller, the impact of spurious bias increases.

Besides, a more remarkable performance gain is
observed on SNLI than that on IMDB which is rel-
atively a simpler task. For instance, RoBERTaBASE

achieves 81.57 with only 10 samples per class. A
simple task may be less influenced by spurious bias
thus limit the improvement of CAT. To verify our
intuition, we remove the attention mask to increase
the difficulty on IMDB, and the improvement on
BERTBASE for CAT increases to 4.5, 2.9, 1.7, 1.0
percent for 10, 50, 250, 1000 number of class sam-
ples setting. As a result, we conclude that benefits
given by CAT are more obvious for a challenging
task where spurious bias is serious.

Performance of CAT on question answering.
CAT achieves the best performance nearly across
all settings (Table 2). Similar to the trend in sen-
tence classification and NLI, the improvement in-
creases as the data size decreases. Particularly, CAT
improves BERTBASE by 10.88%, 3.43%, 2.08% in
EM respectively when data is 1/20, 1/10, 1/5 of the
full SQuAD 1.1. Another noteworthy point is on
average there are large improvements in EM than
F1 (For example, 5.22%, 4.11% and 1.42% in EM
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Task
Classfication & NLI
QA

Batch Size α β γ η A1 A2 Adv. Step Adv. LR
8 0.3 0.3 10 20 0 10 3 2e−2

12 5 (2) 5 (2) 10 20 0.7 10 (2) 1 5e−2

Table 4: Hyperparameters for CAT, number in brackets are for large version pre-trained models

on SQuAD 2.0 and 4.35%, 3.60% and 1.30% in
F1 for BERTBASE as data size grows), which shows
that our mixup strategy can help model find answer
boundary more precisely through the counterfac-
tuals on non-answer context. Evaluation results in
Table 3 shows CAT still effective with full data.
Improvement of CAT becomes more significant
under adversarial QA. We also observe a larger
boosting on SQuAD 2.0 than SQuAD 1.1 averagely
(Table 3), which demonstrates that CAT can achieve
more considerable improvement on more adversar-
ial data than on benign data. Full data result also
align with the trend (Table 2), which demonstrates
the effectiveness of CAT on full adversarial data.

4.4 Case Study

We further explore a concrete spurious bias, which
is a statistical association between labels and some
certain phrase in inputs, that has no real causa-
tion with labels. Take the phrase on a bench on
SNLI for instance, it logically has no causal effect
on sentence pairs relations but may have statisti-
cal correlations with labels. To achieve that, we
manually build a training set with 100 samples of
which 10% are with label entailment, 80% with la-
bel contradiction and 10% with label neutral. Such
skewed distribution indicates a spurious bias be-
tween on a bench and contradiction. Then we
build an equal-size test set, also equipped on a
bench, with the 40%, 20% and 40% proportion re-
spectively. Hence test set is a out of distribution
(OOD) set w.r.t. phrase on a bench. The result
shows that BERTBASE-CAT improves the baseline
significantly from 0.35 to 0.48 in Acc by success-
fully overcome the bias. For instance, samples with
phrase "a man sits on a bench" are all contradic-
tions during training but 83% of them are neutral or
entailment in test data. This phenomenon indicates
that CAT successfully alleviates this particular bias
to better estimate the true causal effect between
inputs and outputs, especially under OOD setting.

4.5 Analysis

Impact of Interpolation Layers. We study the
impact of using different layers for interpolation

2 4 6 8 10 12
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Figure 3: The impact of different interpolation layer on
testing accuracy on Yahoo! Answer dataset.

on BERTBASE and the result is shown in Figure 3.
It is clear that the 8, 9, 10-th layers obviously out-
perform other layers consistently. In addition, we
take {8, 9, 10} layers as a candidate set and then
sample one of them in each batch, which can fur-
ther improve the model performance. For the other
3 language models, due to the limited computa-
tional resources, we experiment on several layers
combinations and report the best one.
Performance and Stability of CAT *. It is ob-
served that CAT * can also improve pre-trained
models but is less impressive than CAT. More
importantly, CAT * is more unstable and some-
times even worse than baselines, e.g., CAT * for
RoBERTaLARGE on IMDB and RoBERTaLARGE on
SQuAD 2.0. The reason can be seen in section
3.3, where we discuss how CAL helps CAT in both
performance and stability.
Training Process of CAT and CAT *. We further
explore how normal training data and counterfacu-
tals evolve in latent space during training, partic-
ularly by visualization. Taking CAT on SNLI as
an example, the representations during training are
shown in Figure 4 (a), in which blue nodes denote
original data representations and orange ones are
counterfactuals. Obviously, We can conclude the
process as three main stages illustrated as follows:

First stage (epoch 0-4): The original data rep-
resentations and counterfactuals are entangled to-
gether and the decision boundary for original data
is not clear.

Second stage (epoch 6-10): Model begins to
converge and the decision boundary for original
data becomes more clear. Counterfactuals diverge
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(a) representation space of CAT with BERTBASE

(b) representation space of CAT* with BERTBASE

(c) representation space of CAT with RoBERTaBASE

(d) representation space of CAT* with RoBERTaBASE

Figure 4: Representation space visualization through
tSNE for CAT and CAT *. during the training process
on SNLI data with 250 samples per class. (a) and (b)
represent CAT and CAT * on BERTBASE and (c) and (d)
for RoBERTaBASE

.

gradually from the original data and clusters at
the decision boundary. Such observation indi-
cates that the classification loss manifold is not
smooth enough and has many cliffs. Therefore,
the gradient of CAL tends to pull the counterfac-
tuals far away from the original data. In other
words, γL(M (θ)(h̃(i)), y(i))) dominates the trade-
off game over

∥∥λ(i)∥∥
p
.

Third stage (epoch 12-18): Counterfactuals
move closer to the original data and few nodes
are at the decision boundary. This observation
shows the classification loss manifold becomes
smoother and most of the cliffs disappear, thus
main part of generated gradient of CAL during op-
timization starts to maximize

∥∥λ(i)∥∥
p

instead of

γL(M (θ)(h̃(i)), y(i))), which pulls counterfactuals
close to the original data.

Through counterfactuals, CAT alleviates the im-
pact of spurious bias and encourages the model to
discover the causal effect between representations
and labels, thus helping pre-trained models con-

struct a smoother and clearer loss manifold. The
phenomenon that counterfactuals finally locates
nearby the original data in representation place at
stage 3 is well consistent with our counterfactual
definition: minimally-different from original data
but leads to different labels.

While for CAT *, as shown in Figure 4 (b), we
also observe the similar stage 1 and stage 2, but the
stage 3 is significantly different. Such difference
indicates CAT * could only conduct random inter-
polation from a Beta distribution without CAL to
further optimize counterfactuals. As a result, lots
of interpolation representations will locate at the
vicinity of the decision boundary when the model
converges. Such representation has two obvious
weaknesses compared with that of CAT: i) It may
lead to the unstable performance of CRM since
Phi(M (θ)(h̃(i))) could be extremely small. ii) The
interpolated representation is not as efficient as
minimal-different counterfactual ones in boosting
performance as shown in Kaushik et al. (2019).

Additonally, we observe similar training process
visualization when applying CAT and CAT * on
SNLI for RoBERTaBASE. The results are shown in
Figure 4 (c) and 4 (d) respectively, which demon-
strates an consistent convergence process has been
achieved cross different pre-trained models.

5 Conclusion

To alleviate the spurious correlation bias in train-
ing corpus and encourage causal discovery instead
of simple correlations, we propose CAT from the
causality perspective for introducing counterfac-
tual representations in the training stage through
latent space interpolation. Through extensive ex-
periments on three benchmarks on the text classi-
fication, natural language inference and question
answering tasks, we demonstrate that CAT is ef-
fective in promoting testing accuracy especially in
the small data scenario, which outperforms SOTA
baselines across different pre-trained models.
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A Appendices

A.1 Same Label Data Mixup
During CMIX, it could happen that ỹ(i) = y(i) es-
pecially if the two original samples used for CMIX
are with the same label. In this case ω(h(i)) ≈ 1
and CRM degenerate into ERM thus do no harm to
our discriminative model. Furthermore, since λ(i)

is an exogenous random variable, as the training
steps grow, we can expect a different h̃(i) in the
next epoch such that ỹ(i) 6= y(i).

A.2 Beta Distribution Hyperparameters
An interesting question here is the choice of
prior Beta(α, β). Intuitively, the expectation of
Beta(α, β) is α/(α+ β), thus one may want this
value be close to 1 to make counterfactuals start
searching from vicinity of observations. In experi-
ments we find this strategy works better when the
dataset is small. We think the reason is that when
observations become more, the average distance
between each sample goes down and the observa-
tion distribution become denser, thus the gains of
searching from the vicinity is limited. Another
noteworthy point is whether to choose a unimodal
or bimodal distribution. Unimodal distribution gen-
erates λ(i) in the middle while bimodal distribution
pushes λ(i) close to either 0 or 1. During the exper-
iments we find the latter is usually better since it
can explore a large range of interpolations.

A.3 Other Implementation Details
The datasets statistic are in Table 5

Dataset
Yahoo! Answers

IMDB
SNLI

SQuAD 1.1
SQuAD 2.0

Classes Test Task
10 2000 classification
2 2000 classification
3 2000 NLI

NA 10570 QA
NA 11873 QA

Table 5: The details of test set used in our experiments.

We train sentence classification and natural lan-
guage inference tasks on a single Tesla V100, ques-
tion answering tasks on Tesla P100 and NVIDIA
A100. We observe some performance discrep-
ancy on question answering especially when data is
small so we train all base models on Tesla P100 and
all large models on NVIDIA A100 for consistency.

A.4 Other Hyperparameters
For sentence classification and NLI tasks, epoch
is set as 30 when the number of samples in each

category is less than 50, otherwise is set as 20. For
question answering, epoch is set as 2 regardless of
training data size.

Regarding warm-up steps, for sentence classifi-
cation and natural language inference tasks, we
take the first epoch for warm-up training. For
question and answering tasks, we choose from
{300, 600, 1000} steps to find the best. For learn-
ing rate, we choose from {1e − 5, 2e − 5} for
small data (number of samples in each class is
less than 50) and fix the learning rate to 1e − 5
otherwise. Max sequence length is set as 128 for
Yahoo! Answers and SNLI, 256 for IMDB and 384
for SQuAD 1.1 and SQuAD 2.0.

During experiments we find that BERTLARGE and
RoBERTaLARGE are harder to train than correspond-
ing base version and sometimes crash for long time
training. Therefore we make some adjustments to
mitigate it such as a smaller learning rate, tighter
CRM bound A1 and A2, longer warm-up steps, etc.

A.5 Hyperparameters Searching
We list the hyperparameters searching space here.
For α and β in beta distribution, we iterate through
[0.1, 0.3, 0.5, 0.7, 0.9, 2, 5, 10] to find the best set-
ting. For γ and η, we keep η = 2γ to reduce
complexity and search γ from 0 to 20. For CRM
lower and upper bound, we gradually narrow our
interval from [0, 10] to [0.9, 2] to find the opti-
mal setting. We find that CAT is difficult to con-
verge with a lower bound near to 0 under QA task.
Finally, as regard to adversarial settings, we try
learning step in [1, 3, 5, 10] and learning rate in
[2e−3, 5e−3, 2e−2, 5e−2]. For the CRM learn-
ing rate, we generally set 2e − 5. except that we
find for BERTLARGE and RoBERTaLARGE on SNLI,
when sample size per class is less than 50, a smaller
learning rate 1e − 5 will lead to better and more
stable performance.


