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Abstract

Existing techniques for mitigating dataset bias
often leverage a biased model to identify bi-
ased instances. The role of these biased in-
stances is then reduced during the training of
the main model to enhance its robustness to
out-of-distribution data. A common core as-
sumption of these techniques is that the main
model handles biased instances similarly to
the biased model, in that it will resort to bi-
ases whenever available. In this paper, we
show that this assumption does not hold in gen-
eral. We carry out a critical investigation on
two well-known datasets in the domain, MNLI
and FEVER, along with two biased instance
detection methods, partial-input and limited-
capacity models. Our experiments show that
in around a third to a half of instances, the
biased model is unable to predict the main
model’s behavior, highlighted by the signifi-
cantly different parts of the input on which
they base their decisions. Based on a man-
ual validation, we also show that this estimate
is highly in line with human interpretation.
Our findings suggest that down-weighting of
instances detected by bias detection methods,
which is a widely-practiced procedure, is an
unnecessary waste of training data. We release
our code to facilitate reproducibility and future
research.1

1 Introduction

Several studies suggest that the impressive perfor-
mance of the recent natural language understanding
models might not be fully indicative of the status
quo in language understanding. This is partially
due to the artificial nature of the evaluation datasets
which usually contain simple superficial cues, such
as specific keywords or sentence structures, that
spuriously correlate with the gold labels (Jabri
et al., 2016; Jia and Liang, 2017; Gururangan et al.,
2018; McCoy et al., 2019; Wiegand et al., 2019;

1https://github.com/h-amirkhani/
debiasing-assumption

Schuster et al., 2019). Such shallow patterns can
be easily exploited by the model, resulting in an
overestimated performance on the specific dataset
and usually poor performance on other differently-
constructed datasets.

Many proposals have been put forward to en-
hance robustness to such dataset-specific biases.
Some techniques rely on the sources of bias which
are known a-priori for each dataset (He et al., 2019;
Clark et al., 2019; Mahabadi et al., 2020). Oth-
ers alleviate this requirement by identifying biased
examples without explicitly modeling them, for in-
stance by training a low-capacity model that does
not go much beyond the surface patterns (Sanh
et al., 2020; Utama et al., 2020; Clark et al., 2020).
The main model is then trained in a way not to
rely much on the instances detected by the biased
model. This is done either implicitly using the pop-
ular product of experts approach (Clark et al., 2019;
Sanh et al., 2020; Utama et al., 2020; Mahabadi
et al., 2020) or explicitly using methods such as
debiased focal loss (Mahabadi et al., 2020) or ex-
ample reweighting (Utama et al., 2020).

Irrespective of the approach for identifying bi-
ased instances, existing bias mitigation techniques
share the assumption that the main model treats the
biased instances similarly to the biased model, in
that it will resort to superficial biased features in
case they exist. We carry out a critical investiga-
tion of the validity of this assumption. Through a
set of experiments we show that for a significant
subset of instances, the biased model is unable to
predict the main model’s behavior. Specifically, we
find that in around a third to a half of instances in
two well-known datasets in the domain, MultiNLI
(Williams et al., 2018, MNLI) and (Thorne et al.,
2018, FEVER), the main model handles the input
differently from two popular biased instance de-
tection methods, partial-input and limited-capacity
models. We further support this estimate through
a manual validation. This highlights the need for

https://github.com/h-amirkhani/debiasing-assumption
https://github.com/h-amirkhani/debiasing-assumption
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re-thinking the discarding of instances detected by
biased models, which is a widely-adopted approach
in the current dataset bias mitigation techniques.

2 Methodology

Following the terminology used in the literature,
we refer to the model used for detecting biased in-
stances as biased model, the final intended model
(for which we are mitigating dataset biases) as the
main model, and those instances which are cor-
rectly classified by both the main and biased mod-
els as easy instances. Existing bias mitigation tech-
niques try to weaken the role of biased instances
in the learning process based on the assumption
that on these instances the main model behaves
similarly to the biased model. We investigate this
assumption by comparing the parts of input (to-
kens) on which the two models base their decisions.
This analysis is carried out on the easy instances
where the biased model is deemed to exploit super-
ficial features. Specifically, we compare the role of
individual input tokens in the two models to check
if the main model bases its decision on the same
tokens (features) as the biased model.

Datasets. We experimented with two widely-
used datasets in the domain: MNLI and FEVER.
In the former, the goal is to assign each premise-
hypothesis pair to one of three classes: entailment,
contradiction, and neutral; whereas in the latter,
each evidence either supports or refutes the
corresponding claim, or there is not enough info
(NEI) for a definite decision. For the MNLI data,
we used validation-matched as our validation set
following Clark et al. (2019); Utama et al. (2020);
Yaghoobzadeh et al. (2021). For the FEVER data,
we experimented with the version of Schuster
et al. (2019) following Mahabadi et al. (2020);
Yaghoobzadeh et al. (2021). The dataset statistics
are presented in Table A1.

Main model. For all the experiments, we
fine-tuned the pre-trained BERT-base-uncased
model from the Hugging Face Transformers
library (Wolf et al., 2019) as our main model. The
hyper-parameters are chosen according to the
literature (Sanh et al., 2020).

Biased models. We experimented with two biased
instance detection (also loosely called bias-only)
methods. The first one is the widely-used partial-

input model (Gururangan et al., 2018; Poliak et al.,
2018; Schuster et al., 2019), which takes an in-
stance as biased if an incomplete part of it is enough
for correct classification. We used the hypothesis
and claim parts as partial inputs in the MNLI and
FEVER datasets, respectively. The BERT-base-
uncased model was trained with the same hyper-
parameters as the main model on this partial-input
data. The second method, put forward by Sanh
et al. (2020), is based on the observation that mod-
els with limited capacity learn to exploit dataset
biases. For this, we fine-tuned the pre-trained Tiny-
BERT model (Turc et al., 2019) with the same
hyper-parameters used by Sanh et al. (2020).

Comparing biased and main models. We com-
pare the two models in terms of the input tokens on
which they base their decisions. The role of input
tokens is measured using word omission, similarly
to Kádár et al. (2017). We consider the two models
as behaving differently if their dominating input
tokens differ significantly.

Consider an easy instance (xi, yi) which is cor-
rectly classified by both the biased fb and the
main fm models. We denote the tokens of xi

by {xij}mi
j=1, where mi is the number of tokens

in xi (BERT tokenizer was used in our experi-
ments). The role of token xij for the decision
made by a classifier f was computed as the change
in the true class logit upon excluding that to-
ken from the input. More precisely, if ef (xij)
is the estimated effect of the token xij on f ’s
decision2, ef (xij) = f(xi)yi − f(xi\{xij})yi ,
where f(x)y is the logit of x for the class y
produced by f . We represent the way that the
biased model fb treats an easy instance (xi, yi)
as efb(xi) = (efb(xi1), efb(xi2), . . . , efb(ximi)).
The same is done to obtain efm(xi).3 Finally, co-
sine similarity between efb(xi) and efm(xi) is
computed as an estimate for the similarity between
the two models on instance i. We will show in
Section 3.1 that this estimate is highly in line with
human interpretation.

3 Experiments

With two datasets, MNLI and FEVER, and two
biased models, partial-input and TinyBERT, there
are four experimental settings in total. We refer to

2A better notation would be ef (xij ;xi, yi), but we omit
(xi, yi) for simplicity.

3Note that in the partial-input experiments, only the partial
input tokens are considered in the representations.
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Figure 1: The distribution of inter-model (cosine) similarities. Instances below the threshold are taken as differently
handled by the two models.

the two biased models as Partial and Tiny.

3.1 Manual validation

Using the methodology explained in the previous
section, for each easy instance, we obtain two vec-
tors showing the role of individual input tokens
in the final decision made by the main and biased
models. We hypothesize that the cosine similarity
between these two vectors is correlated with the
similarity of the models in treating this instance. To
check this assumption, we asked two human anno-
tators to label 250 randomly picked easy instances
for each experimental setting (1000 in total). Given
the omission-based vectors, the annotators’ task
was to judge whether the main and biased models
had exploited similar evidences for their decisions
or not (binary decision). An equal-width approach
with 20 bins was used to sample instances uni-
formly across the cosine similarity scale (shown
in Figure 1). Forty of the instances were shared
among the annotators to assess their agreements.

Table 1 shows the results of this manual valida-
tion: area under the ROC curve (AUC) as well as
Inter-annotator Agreement (IAA). AUC is the prob-
ability that a randomly chosen positive instance
obtains a higher cosine similarity than a randomly
chosen negative one, where the positive class de-
notes those instances which are treated similarly by
the two models according to the annotators. High
AUC values for all the four settings show that the
cosine similarity between omission-based vectors
of main and biased models is highly in line with

Dataset Biased model IAA AUC

MNLI
Partial 0.900 0.974
Tiny 0.875 0.965

FEVER
Partial 0.900 0.969
Tiny 0.875 0.925

Table 1: Manual validation of the hypothesis that
cosine similarity between omission-based vectors ob-
tained from the main and biased models can represent
how similarly they treat instances. We report Inter-
annotator Agreement (IAA, in terms of accuracy) along
with Area Under Curve (AUC).

Dataset Bias Easy F1 Different

MNLI
Partial 5,381 (54.8) 93.4 1,723 (32.0)
Tiny 6,090 (62.0) 94.0 1,973 (32.4)

FEVER
Partial 12,627 (63.1) 94.5 3,794 (30.0)
Tiny 13,328 (66.6) 90.9 6,599 (49.5)

Table 2: The total number of easy instances (% in
parentheses) and the subset identified as being treated
differently by the two models (different). We also re-
port the classifier’s F1 on the gold data.

the human perception of the similarity between be-
havior of the two models. The high inter-annotator
agreement across all the four settings confirms the
reliability of this manual validation.

3.2 Quantitative analysis

To have an estimate on the number of easy in-
stances that were handled differently by the two
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Figure 2: Examples of different instances from MNLI (top) and FEVER (bottom) datasets.

models, we used a simple threshold-based binary
classifier tuned based on F1-score on the nega-
tive instances in the manually labeled data. The
computed thresholds are shown in Figure 1 as red
(dashed) lines. Instances with an inter-model sim-
ilarity below this threshold are regarded as being
differently treated by the two models.

The results of the quantitative analysis are pre-
sented in Table 2. The easy column shows the
number (and the percentage in parentheses) of
easy instances, i.e., those that are correctly clas-
sified by both the main and biased models. The
subset of easy instances which are identified by
the threshold-based classifier as being differently
treated by the two models is shown under column
different. We also report the F1-score for the cor-
responding classifier. The high F1-scores indicate
that the threshold-based classifier is accurate in pre-
dicting the gold labels assigned by the annotators.

The results show that the main model handles
a considerable subset of easy instances differently
from the biased model. This undermines the sound-
ness of a core assumption made by many bias
mitigation techniques. Specifically, for three of
the four settings, this comprises around a third
of easy instances, the subset which is often un-
necessarily discarded by the bias mitigation tech-
niques. The FEVER-Tiny setting is an exception
for which the estimate is close to 50% of the easy
instances. This can explain the particular brittle-
ness of TinyBERT-based bias detection approach
on the FEVER dataset which explains the lower
performance of this approach reported by Sanh
et al. (2020) compared to partial-input.

3.3 Discussion
We showed that the main model does not follow the
biased models for a significant number of instances.

Figure 2 shows two such instances. On top, the bi-
ased model seems to have based its decision mostly
on the negative word never in the hypothesis to
make a contradiction prediction. Despite having
access to this keyword, the main model utilizes a
wider range of relevant words such as worked in
the premise and the negated phrase never worked
in the hypothesis. The same is true for the second
example where the biased model uses the negative
word only whereas the main model takes additional
evidence such as the contradiction between film in
the premise and podcast in the hypothesis. More
examples are shown in the appendix.

Figure 3 shows the distribution of easy and dif-
ferent instances over the three dataset labels. In
FEVER, a significant proportion of different sam-
ples belong to the support class, while the refute
class has the smallest share.4 The same holds for
the MNLI-Partial setting. This shows that in most
cases, it is much more likely for the main model
to find evidences that are different from those ex-
ploited by the biased model when the premise en-
tails hypothesis. On the other hand, when the
premise contradicts the hypothesis, the main model
highly resorts to the same cues detected by the
biased model.

This observation suggests that class labels are
helpful information which can be exploited by bias
mitigation techniques. In other words, instance
weights can be determined not only based on the
biased model’s loss during training, but also by
incorporating the corresponding classes. For exam-
ple, it is better to reduce the down-weighting for
those instances in the FEVER dataset that belong
to the support class.

4In this section, we use the MNLI and FEVER terminology
interchangeably.
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Figure 3: Label distribution in the validation data (total), easy instances (Easy-), and the subset identified as being
handled differently by the two models (Diff-) and for the two bias detection models (-Part and -Tiny).

4 Related Work

The presence of dataset-specific superficial cues
have been shown in different NLP tasks includ-
ing visual question answering (Jabri et al., 2016;
Manjunatha et al., 2019), machine reading com-
prehension (Jia and Liang, 2017), natural language
inference (Gururangan et al., 2018; Poliak et al.,
2018), abusive language detection (Wiegand et al.,
2019), and fact verification (Schuster et al., 2019).
Models that rely on these dataset biases usually
have low performance in out-of-distribution set-
tings. To measure the reliance on non-generalizable
patterns, various challenging sets have been pro-
posed (Jia and Liang, 2017; Agrawal et al., 2018;
McCoy et al., 2019; Zhang et al., 2019; Sakaguchi
et al., 2020). There have also been some attempts
to systematically reduce dataset biases during con-
struction (Zellers et al., 2018; Le Bras et al., 2020).
Despite some bias reduction reported, the datasets
may still contain hidden biased patterns (Sharma
et al., 2018); therefore, it is crucial to empower the
learning algorithms to be robust against biases.

A popular approach to mitigate dataset biases is
to encourage the main model to pay less attention
to the instances that are correctly classified by a bi-
ased model. To train a biased model, some methods
use a-priori known sources of biases. For instance,
good performance given insufficient semantics of
the input is attributed to bias exploitation (He et al.,
2019; Clark et al., 2019; Cadene et al., 2019; Ma-
habadi et al., 2020). Others try to identify biased
instances without explicitly modeling them, such
as by training a limited capacity model (Sanh et al.,
2020; Clark et al., 2020) or exposing the model to
only a small number of training instances (Utama
et al., 2020). To decrease the reliance of the model
on the (likely) biased instances, some techniques
implicitly reduce the updates of main model’s pa-

rameters for biased instances (Clark et al., 2019;
Cadene et al., 2019; Sanh et al., 2020; Utama et al.,
2020; Mahabadi et al., 2020). Others explicitly
downweight the biased instances, for instance us-
ing debiased focal loss (Mahabadi et al., 2020) or
example reweighting (Utama et al., 2020).

5 Conclusions

Through a set of experiments, we showed that a
common core assumption of dataset bias mitiga-
tion methods does not hold for a significant portion
of two widely-used benchmarks. Specifically, we
observed that two widely-used bias detection ap-
proaches, partial-input and low-capacity model, are
unable to accurately predict model’s handling of
biased instances. We carried out extensive analysis
and manual validation to attest the reliability of this
observation. We infer that what identifies a biased
instance is not the instance itself, but the way the
model treats it. In other words, an instance that has
evident biased patterns is not necessarily useless as
long as the main model does not base its decision
on these biases.

It is worth noting that the dissimilarity in the
handling of input between the biased and main
models does not imply that the latter necessarily
adopts an unbiased strategy. In other words, it is
possible for the main model to treat the instance
differently from the biased model but still exploits
a (different) bias. As immediate future work, we
plan to build on the findings of this analysis for
enhancing dataset bias mitigation techniques.
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A Appendix

A.1 Experimental setup
Table A1 shows the statistics of datasets used in ex-
periments. For the FEVER data, we experimented
with the version of Schuster et al. (2019)5 aug-
mented with the NEI samples used in Schuster et al.
(2021)6.

Following Sanh et al. (2020), the models are
trained for three epochs with a learning rate of 2e-5
and a batch size of 8. The weight decay rate used
for MNLI and FEVER are 0.01 and 0.1, respec-
tively. For FEVER, the learning rate is linearly
increased for 1000 warming steps and linearly de-
creased to 0 afterward. Other hyper-parameters are
left as default.

For manual validation, the authors labeled 250
randomly picked easy instances for each exper-
imental setting. They were shown the word
omission-based role of different tokens in the main
and biased models (as in Figure A1) to decide
whether their dominating input tokens differed sig-
nificantly. As the control check, the Inter-annotator
Agreement (IAA) was monitored.

# Entail Neutral Contradict

MNLI
train 392,702 33.3% 33.3% 33.3%
valid. 9,815 35.5% 31.8% 32.7%

FEVER
train 242,911 41.4% 41.4% 17.2%
valid. 19,997 39.9% 16.7% 43.4%

Table A1: The datasets used in the experiments.

A.2 Additional examples
Figure A1 shows some more examples of the in-
stances which are treated differently by the biased
and main models.

5https://www.dropbox.com/s/
v1a0depfg7jp90f/fever.train.jsonl

https://www.dropbox.com/s/
bdwf46sa2gcuf6j/fever.dev.jsonl

6https://github.com/TalSchuster/
talschuster.github.io/raw/master/static/
vitaminc_baselines/fever.zip

https://www.dropbox.com/s/v1a0depfg7jp90f/fever.train.jsonl
https://www.dropbox.com/s/v1a0depfg7jp90f/fever.train.jsonl
https://www.dropbox.com/s/bdwf46sa2gcuf6j/fever.dev.jsonl
https://www.dropbox.com/s/bdwf46sa2gcuf6j/fever.dev.jsonl
https://github.com/TalSchuster/talschuster.github.io/raw/master/static/vitaminc_baselines/fever.zip
https://github.com/TalSchuster/talschuster.github.io/raw/master/static/vitaminc_baselines/fever.zip
https://github.com/TalSchuster/talschuster.github.io/raw/master/static/vitaminc_baselines/fever.zip
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(a) An instance from the FEVER dataset. Note that the contradiction between film and television series is correctly exploited by
the main model which is missed by the Tiny biased model.
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(b) An instance from the MNLI dataset. The main model has recognized the contradiction between clean in the premise and left
without cleaning in the hypothesis which is missed by the Tiny biased model.
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(c) A neutral instance from the MNLI dataset. The biased model based its decision on a single word, while the main model
exploits a wide range of words.
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(d) An instance from the MNLI dataset. The main model exploits the contradiction between envious and glad, while the biased
model just relies on the negative verb don’t to classify it as contradiction.

Figure A1: More examples of instances which are treated differently by the biased and main models.


