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Abstract

Word embedding is essential for neural network
models for various natural language processing
tasks. Since the word embedding usually has
a considerable size, in order to deploy a neural
network model having it on edge devices, it
should be effectively compressed. There was
a study for proposing a block-wise low-rank
approximation method for word embedding,
called GroupReduce. Even if their structure
is effective, the properties behind the concept
of the block-wise word embedding compres-
sion were not sufficiently explored. Motivated
by this, we improve GroupReduce in terms
of word weighting and structuring. For word
weighting, we propose a simple yet effective
method inspired by the term frequency-inverse
document frequency method and a novel differ-
entiable method. Based on them, we construct
a discriminative word embedding compression
algorithm. In the experiments, we demonstrate
that the proposed algorithm more effectively
finds word weights than competitors in most
cases. In addition, we show that the proposed
algorithm can act like a framework through
successful cooperation with quantization.

1 Introduction

Deep neural networks have had lots of attention
due to their great success in many applications. Re-
cently, deep learning is being actively applied to
edge devices like a smartphone with important rea-
sons including data privacy and low latency. How-
ever, deep neural networks usually have a tremen-
dous number of parameters, so that one does not
simply deploy them on such devices having limited
resources. In order to resolve this issue, there is a
line of research compressing neural networks.

Existing works for neural network compression
mainly focus on convolutional layers and fully con-
nected layers. In addition to those layers, there is a
special and important layer called word embedding
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which has a considerable size and is commonly
used in natural language processing (NLP) tasks. A
word embedding is represented by a matrix where
each row vector corresponds to a word, which is
used as a vector representation of the word. There
are also many existing works for compressing a
word embedding layer. Among those works, (Chen
et al., 2018) proposed an interesting compression
method, named GroupReduce, for word embed-
ding which constructs word clusters and conducts
low-rank approximation on blocks (sub-embedding
matrices) induced by them. They also proposed
a low-rank approximation method working with
specific weights on words. Even if their structure
is simple and effective, the properties behind the
concept of the block-wise word embedding com-
pression were not sufficiently explored.

The major contribution of this work is to propose
two effective word weighting methods for block-
wise word embedding compression and to exploit
a non-uniform partitioning method for lightweight
embedding structure. Based on them, we construct
a Discriminative Block-wise word embedding com-
pression algorithm (DiscBlock) which significantly
outperforms GroupReduce. In addition, we show
that it can be cooperated with another compres-
sion technique like quantization as a compression
framework.
Outline. In this work, we first introduce a
block-wise word embedding structure inspired by
GroupReduce of (Chen et al., 2018). Next, we
discuss better word weighting and clustering to
build the structure. After that, we conduct exten-
sive experiments to demonstrate the effectiveness
of DiscBlock with various downstream tasks such
as language modeling, machine translation, text
classification, and question and answering.

2 Related Work

Word Embedding Compression. Word embed-
ding is a crucial part for natural language process-
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ing, and it requires considerable size. Thus, many
approaches have been proposed for compressing
it. Several works were proposed for compact rep-
resentation of word embedding. (Andrews, 2016)
proposed a way of exploiting Lloyd’s algorithm to
get low-bit representations of embedding vectors.
(Ling et al., 2016) studied 8-bit representations
for word embedding with training. (Hubara et al.,
2017) proposed low-bit quantized neural networks
for convolutional neural networks and recurrent
neural networks. More recent works focus on de-
vising a better structure of word embedding or an
optimized way of computing encodings. (Shu and
Nakayama, 2018) proposed a method compressing
word embedding through compositional discrete
codes, which can be trained by gradient descent.
(Shi and Yu, 2018) proposed a product quantization-
based compression method, which divides an em-
bedding matrix into sub-matrices via k-means clus-
tering. In aspect of word clustering, it is similar to
our clustering method, but we do not use embed-
ding vectors as the targets of clustering. Instead,
we use real-valued word weights. In a slightly
different line of research, (May et al., 2019) pro-
posed an evaluation score for the downstream per-
formance of compressed word embeddings, which
is named the eigenspace overlap score. In addi-
tion, (May et al., 2019) showed a lower bound of
the eigenspace overlap score for a uniform sim-
ple quantization-based compression method to ex-
plain its empirical effectiveness. We do not use the
eigenspace overlap score in this work, but the quan-
tization method will be used in the experiments.
(Kim et al., 2020b) proposed a codebook-based
compression method supporting word-level adap-
tive code length. The adaptive code length of a
word can be considered as a word importance mea-
sure, but the code length should be predefined on
domain of very limited size.

Since word embedding is generally represented
by a matrix, decomposition-based compression
techniques and efficient embedding structures were
proposed. (Chen et al., 2018) proposed the block-
wise low-rank approximation method for word
embedding. (Hrinchuk et al., 2020) devised a
way of interpreting an embedding matrix into a
3-dimensional tensor and proposed an embedding
structure by decomposing it with tensor-train de-
composition. (Panahi et al., 2020) proposed a small-
size word embedding structure inspired by quan-
tum entanglement. (Lioutas, 2020) proposed a re-

cent study for word embedding factorization based
on distillation. As (Lioutas, 2020) conducted exper-
iments for combining their approach with GroupRe-
duce, it can be also applied to our algorithm.

There are lots of existing approaches for word
embedding compression, but none of existing ap-
proaches deeply study word weights in sense of
compressing word embedding.
Decomposition. Since this work is based on low-
rank approximation, we also study decomposition-
based model compression approaches. (Kim et al.,
2016) proposed a low-rank Tucker decomposition
on kernel tensors. (Yu et al., 2017) proposed a
framework unifying low-rank approximation and
pruning of kernel tensors, which assumes that ker-
nels are likely to be low-rank and sparse. (Astrid
and Lee, 2018) proposed a canonical polyadic
decomposition-based compression method for ap-
proximating a convolutional layer. (Ma et al., 2019)
proposed a variation of the transformer of (Vaswani
et al., 2017) by decomposing multi-linear attention
with Block-Term tensor decomposition (De Lath-
auwer, 2008). Note that the transformer of (Ma
et al., 2019) contains word embedding, but it is not
compressed in their work.

3 Preliminaries

3.1 Notations
The set of words, called a vocabulary, is denoted
by V , and its size is denoted by n. We have a n×d
embedding matrix E corresponding to V where d
is the dimension of each word embedding vector
and n > d. log x stands for the natural logarithm
of x. diag(x1, . . . , xk) ∈ Rk×k is the diagonal
matrix with the input arguments. For any vector v,
vi denotes the i-th element of v. In addition, when
we conduct Singular Value Decomposition (SVD)
on a matrix, the diagonal matrix is assumed to be
already multiplied to another for simplicity.

3.2 Weighted Singular Value Decomposition
Consider a list of L consisting of the entire words,
which is sorted in a certain order. Consider a
vector s such that si is the weight assigned to
the i-th word in L. Let us define a diagonal ma-
trix S = diag(

√
s1,
√
s2, . . . ,

√
sn). Then, (Chen

et al., 2018) introduced a rewritten form of the ob-
jective function of weighted SVD and how to get
the solution as follows.

min
U∈Rn×d,V ∈Rd×n

∥∥SE − SUV T
∥∥2
F
. (1)
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Suppose that we conduct SVD on SE instead of
E and the result is Û V̂ T . Then, the solution of
the weighted SVD on E with weight vector s is
(U∗, V ∗) =

(
S−1Û , V̂ T

)
.

3.3 Block-wise Low-Rank Approximation
Let us introduce GroupReduce, which is the block-
wise low-rank approximation for word embedding
of (Chen et al., 2018). GroupReduce works with
a set of multiple groups G such that the union of
all the groups in G is the entire word set and they
are disjoint. For grouping, (Chen et al., 2018) takes
a simple approach, which is to sort words in de-
scending order of frequency and partition them to
same-size g groups.

For each group Gi in G, we induce the sub-
embedding matrix consisting of the embedding
vectors of words in Gi, and it is denoted by Ei.
In addition, suppose that each word w in Gi is
associated with its frequency as a weight. Then,
GroupReduce computes the weighted SVD of Ei
with a certain rank ri as Ui×Vi. (Chen et al., 2018)
set ri to be fi

fc
r where fi is the average frequency of

words in Gi, fc is the average frequency of words
in the group with the least frequent words, and r is
a user-specific rank to the group with the least fre-
quent words. Finally, GroupReduce approximates
E as following:

E = [E1, E2, . . . , Eg] (by reordering)

≈
[
U1 (V1)

T , U2 (V2)
T , . . . , Ug (Vg)

T
]
,

where [A,B] is the concatenation with sub-
embedding matrices A and B over words.
A Note on Refinement. (Chen et al., 2018) pro-
posed an algorithm of refining this group assign-
ment scheme with consideration of minimizing the
total reconstruction error of the weighted SVD.
However, it may be failed to get a better assign-
ment, because words in a group with a low rank
has great tendency to be moved to another with a
high rank. This must be unintended and unhelpful
due to the meaning of word weights. Thus, in this
work, their refinement algorithm is not used.

4 Proposed Algorithms

DiscBlock uses the same block-wise word embed-
ding structure of (Chen et al., 2018). In addition,
given word weights, we assign a rank to each group
in the same way of (Chen et al., 2018). The dif-
ference between DiscBlock and GroupReduce are

made on word weighting and clustering, which are
explained in this section.

4.1 Beyond Frequency: Better Weighting
Even if the concept of the word frequency is quite
simple and it is reasonably useful, it is not the best
option in many cases. For example, when the word
frequency is used as the importance of a word to a
document in information retrieval, the importance
of unimportant words like ’is’ can be overestimated.
Since GroupReduce uses word frequency as a mea-
sure of word importance, it may have a similar
problem that unimportant words are overestimated
so that they may be falsely included in a high-rank
word group. Motivated by this, we propose two
different methods for word weighting.

4.1.1 Simple Yet Effective Word Weighting
In order to solve the problem of word frequency in
information retrieval, the concept of the Term Fre-
quency and Inverse Document Frequency (TF-IDF)
score was introduced. This scoring method deter-
mines the importance of a word to a document with
consideration of both frequency and the number of
documents having it. Inspired by the concept of
the TF-IDF score, we define TF-IDF based word
importance as follows.

tfavg(w) =
α

|D|
∑
D∈D

fw,D
maxi∈D fi,D

,

idf(w) = 1 +max

{
log

|D|
|Dw|+ 1

, 0

}
,

tf-idfavg(w) = tfavg(w)× idf(w) + ε

where α is a user-specific parameter for scaling, ε
is a small value for avoiding zero, D is the entire
document set, Dw is a set of documents having
word w, and fw,D is the frequency of word w in
document D. In this work, α and ε are set to be 0.1
and 1

|D| , respectively.
Rationale. tfavg(w) is a normalized term frequency
and idf(w) is the logarithm of the inverse document
frequency of w. Note that for frequent words over
many documents like ’is’, the inverse document
frequency is likely to be low, so that we can avoid
to assign such words to a high-rank word group.

4.1.2 Differentiable Word Weighting
For more effectively achieving word weights than
the TF-IDF based method, we devise a trainable
(differentiable) word weighting method. Given a
trained (target) model M , this method modifies M
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and trains it to learn effective word weights. Af-
ter the training process, trained word weights are
used to form the diagonal matrix S and to construct
the block-wise low-rank approximation. Note that
when training word weights, the other weight pa-
rameters in M are not re-trained.
Word Importance through Masking. Consider
a word w and its embedding vector vw in the em-
bedding matrix of M . Suppose that we assign a
number of zeros to vw uniformly at random and
there is no loss of accuracy for M . Then, we can
consider that the reason why vw carries many ze-
ros without loss of accuracy is that w is not an
important word to M .

Based on this idea, we propose an advanced
method for computing word weights based on
masks on elements of the embedding matrix. The
masks are formulated to effectively cause infor-
mation bottleneck (low-rankness), which will be
helpful for a model to select masks while minimiz-
ing task loss in training process. Suppose that we
have a positional index pw on vw, which is called a
pivot and determined by the importance of w. The
proposed method gives sparsity to vw by replacing
values after pw in vw with zeros, so that resulting
masks are aligned as depicted in Figure 1(b).

…

(a) Unaligned Masking

…

(b) Aligned Masking

Figure 1: Masks on elements in the embedding matrix
E. Gray cells are masked elements. In (b), all cells in
the dotted line are masked.

Then, we claim the following proposition.

Proposition 4.1. For a masked embedding matrix
Ê by the proposed method, if the rank of E is r, the
rank of Ê is,

rank(Ê) ≤ min

{
max
w∈V

pw, r

}
.

By manipulating pivots, the proposed method
can guarantee that the masked embedding matrix
is low-rank (i.e., rank(Ê) < d).
Making it Trainable. The remaining problem is
how to determine pivot pw for each word w de-
pending on the importance of w in a differentiable
way. In order to parameterize the pivot, consider a

function p(xw) where xw is a trainable parameter
such that 0 < xw ≤ 1 and it is defined as:

p(xw) = max {bdxwc , 1} .

Then, we formulate a masking function m : R→
{0, 1}d as following:

m(i)(xw) =

{
1, if i ≤ p(xw)
0, otherwise,

where m(i)(xw) is the i-th element of m(xw). It
is easy to see that the range of m(·) is the same
as the output space of the pivot-based masking. In
addition, since xw is proportional to the number
of non-masked elements, which is likely to have
positive correlation with the importance of w, we
use xw as the word weight of w in this method.

Note that for m(i)(xw), if p(xw) = i, m(i) is
not differentiable, and otherwise, its derivative is
zero. This property leads to the fact that it is hard
to train xw with gradient descent due to the zero
derivative issue. (Kim et al., 2020a) addressed
a similar problem to this issue by introducing a
trainable gate function. We use the same gradient
shaping function β : R → R proposed by (Kim
et al., 2020a) as following:

β(x) =
Lx− bLxc

L
,

where L is a large positive integer. The trainable
masking function m̂ : R→ Rd is defined as:

m̂(i)(xw) = m(i)(xw) + β(p(xw)). (2)

It is easy to prove the uniform convergence of
m̂(·) to m(·) with a large value of L. The idea of
this approach is that β(·) has an extremely small
value near zero, but its derivative is one where β(·)
is differentiable, so that we can train xw.
Learning from Hunger. In order to learn word im-
portance properly in the training process, we need
to define an additional loss term. This is because
without any regulation, the model must be trained
to minimize the number of masked elements. The
additional loss based on the sparsity of masked
embedding vectors is defined as:

L(x; γ) = λ ‖γ − (1− x)‖22 , (3)

where λ and γ are real-valued user-specific param-
eters, ‖·‖22 is the l2-norm, γ ∈ Rn is the vector
where all the elements are γ, 1 ∈ Rn is the ones
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Figure 2: Types of compensation functions. Gray elements in a masked vector represent masking. β(·) is omitted.

vector, and x ∈ Rn is a trainable word weight
vector. λ is set up with consideration of the ratio
between task loss and L(x; γ), and γ is defined
to control the desired sparsity. This loss function
leads the model to learn word importance with lim-
ited budget.
One Step Further. If we use masked embedding
matrix Ê instead ofE, the output distribution of the
subsequent layers of M will be changed due to the
rank reduction. In order to alleviate the unintended
change, we propose a function c(·) which takes
the masked word vector and the masking vector as
inputs. This is called a compensation function, and
it can be formulated in two ways.

Given a masked word vector ṽw ∈ Rd in Ê,
one way for the compensation is to define g linear
layers, select one of them depending on what p(xw)
is, and to make ṽw pass through it. For simplicity
and efficiency, the selection is uniformly conducted
in forward pass. That is, if d(i−1)

g < p(xw) ≤ di
g ,

ṽw will be passed through the i-th linear layer.
The other way is to let the model find effective

selection with training. Given a masked word vec-
tor ṽw ∈ Rd and its masking vector m̂w ∈ Rd
computed by m̂(·), c(·) is formulated as:

φ(m̂w) = σ (W2W1m̂w + b)

c(ṽw, m̂w) =

g∑
i=1

φ(i)(m̂w) (Ciṽw + bi) ,

where σ can be the softmax function or Gumbel-
Softmax, W1 ∈ Rδ×d, W2 ∈ Rg×δ, b ∈ Rg, and
Ci ∈ Rd×d, and bi ∈ Rd. Ci and bi are the weight
matrix and the bias of the i-th linear layer in c(·),
respectively. W1 and W2 are weight matrices and
b is a bias vector to determine which linear layer

is used. δ is designed to have a lower value than
g. W1 and W2 are initialized as all-ones matrices
while b and bi are initialized as zero-vectors. Ci
is initialized as a matrix where diagonal entries are
one and off-diagonal entries are zeros.

Including the case of no compensation, the two
compensation functions are depicted in Figure 2.

The rationale behind the compensation functions
is that we want to compute word weights while
mimicking the block-wise low-rank approximation.
Consider a sub-embedding matrix Ei ∈ G and its
low-rank approximation Ui(Vi)T . Since the rank
ri of Ui is smaller than d, we can consider that Ui
has word embedding vectors projected to a lower
dimensional embedding space. On the other hand,
V T
i can be seen as a linear transformation matrix

toward the original dimensional space. Similarly,
the compensation function acts like V T

i , so that
it will be trained to alleviate the impact of using
masked word vectors to the subsequent layers.

4.2 Clustering

Recall that in GroupReduce, words are sequentially
partitioned into same-size groups in the sorted list
in descending order of frequency. Let us call this
the uniform partitioning method. Even if GroupRe-
duce implicitly assumes that words in the same
group have similar importance, due to the power-
law distribution of words in terms of frequency,
words which have very different importance can
be included in the same group. In addition, the
uniform partitioning method hinders GroupReduce
from achieving high compression ratio. This issue
will be discussed in the experiments.

In order to address this problem, one decent op-
tion is to use the k-means clustering method instead
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Table 1: Used Datasets and Models (OP means the
performance of an original model and E. Size means the
size of an embedding matrix.)

Dataset n d E. Size Model Metric
PTB 10K 650 52MB 79MB PPL

WikiText2 33K 650 173MB 200MB PPL
WikiText103 268K 1,500 3.2GB 3.4GB PPL

SNLI 34K 300 41MB 50MB Acc.
SST-5 10K 300 23MB 26MB Acc.

SQuAD 49K 300 59MB 75MB F1

IWSLT14 25K (de) 620 106MB 243MB BLEU18K (en)

of the uniform partitioning method. It is trivial
that with a proper word importance function, the
k-means clustering method can more effectively
collect words in the same group having similar im-
portance than the uniform partitioning method.

5 Experiments

5.1 Implementation Details

Tasks, Datasets, and Models. We conduct exten-
sive experiments to demonstrate the effectiveness
of DiscBlock. We have following tasks: language
modeling, question and answering, text classifica-
tion, and machine translation.

Since we deal with many different types of
datasets and models, we use various open-sourced
implementations as follows. Note that we do not
make any change over datasets and preprocessing
implementations. For language modeling, we use
Penn Treebank, WikiText2, and WikiText103 of
(Merity et al., 2017) as datasets. We use a 2-layered
LSTM model with dropout after the word embed-
ding layer for the encoder. Our implementation for
this task comes from the language modeling code-
base provided by PyTorch examples1. For question
and answering, we use SQuAD (Stanford Ques-
tion Answering Dataset) 1.0 in (Rajpurkar et al.,
2016) and the DrQA model proposed in (Chen
et al., 2017). Our implementation for handling this
dataset is based on the codebase2 used in (May
et al., 2019). For text classification, we use two
datasets: SNLI (Stanford Natural Language Infer-
ence) in (Bowman et al., 2015) and SST-1 (Stan-
ford Sentiment Treebank) in (Socher et al., 2013).
For SNLI, we use a open-sourced codebase3 pro-
viding a bidirectional LSTM. For SST-1, another
open-sourced codebase4 is used with TextCNN
in (Kim, 2014). For machine translation, we use

1https://github.com/pytorch/examples
2https://github.com/HazyResearch/smallfry
3https://github.com/imran3180/pytorch-nli
4https://github.com/Doragd/Text-Classification-PyTorch

the IWSLT14 (International Workshop on Spoken
Language Translation 2014) German-to-English
dataset in (Cettolo et al., 2015). For this dataset,
we use JoeyNMT5 which is a lightweight frame-
work for machine translation proposed in (Kreutzer
et al., 2019). In addition, a recurrent neural net-
work based on GRU with attention is used for this
task. The basic statistics of the datasets presents
in Table 1. All scores reported in this work come
from test sets except SQuAD. For SQuAD, scores
are computed from the validation set.
Training. In order to get base models, which
have word embedding targets to compress, we use
epochs specified in the open-sourced codebases
except WikiText103. Due to the huge size of Wiki-
Text103, we use 10 epochs for training on it.

The learning rate and the number of epochs
for retraining are varied over datasets. Retrain-
ing epochs are determined with consideration of
total retraining time. If the dataset and the model
are not large, the number of epochs for retraining is
the same as that for training the base models from
scratch. In addition, the learning rate for retraining
is scaled to half or 10% of the original rate.

Note that the learning rate for training word
weights is also experimentally determined. The
number of epochs for training word weights is set
to be usually much smaller than that for training
the base models.
Trainable Weight Initialization. For the differen-
tiable word weighting method, given word w, xw is
initialized to tf-idfavg(w). Since the differentiable
word weighting method is proposed to get better
weights than tf-idfavg, it is a good starting point.
Compression Ratio. In order to fairly evaluate
the effectiveness of each comparison method, we
control compression ratio to be approximately 50×
for IWSLT14 and 20× for the other datasets if there
is no mention about compression ratio.
Hyperparameters. We have several hyperparame-
ters for the word weighting methods. For simplicity,
δ is 1 and γ is set to 0.95 or 0.99.
λ is determined through multiple experiments

and it ranges from 0.5 to 25.0 except SNLI. For
SNLI, λ is set to be 0. In this case, the sparsity loss
is not helpful to train effective masks.

The number of groups g is experimentally de-
termined to be 5. We conducted experiments for
10 and 20, but both DiscBlock and GroupReduce
show stable performance with g = 5.

5https://github.com/joeynmt/joeynmt
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Table 2: Overall Compression Performance (OP means the performance score of an original model.)

Dataset OPS Retrain SVD TensorTrain GroupReduce DiscBlock-F DiscBlock-T DiscBlock-D
Score Ratio Score Ratio Score Ratio Score Ratio Score Ratio Score Ratio

PTB 80.8 Before 372.1 20× - 20× 181.7 19× 156.6 19× 136.4 21× 125.7 20×After 96.0 141.1 102.4 92.9 92.0 88.7

WikiText2 93.3 Before 1,246.9 21× - 20× 188.6 20× 172.4 20× 150.6 20× 139.3 20×After 115.0 150.8 113.0 107.8 104.3 102.7

WikiText103 61.0 Before 1,882.1 20× - - *84.3 20× 122.2 20× 92.6 20× 75.3 20×After 83.2 - *76.9 82.5 72.4 67.6

SNLI 82.6 Before 37.4 20× - 20× *57.9 19× 56.7 19× 68.8 20× 68.5 20×After 81.6 80.2 *81.0 81.1 80.2 80.0

SST-5 43.7 Before 40.1 19× - 20× 40.8 20× 39.3 20× 40.5 20× 43.3 20×After 43.6 41.0 42.8 42.2 42.8 44.8

SQuAD 74.2 Before 30.1 20× - 20× *68.2 20× 66.2 21× 69.7 20× 71.2 20×After 71.7 72.7 *73.3 72.2 72.6 73.2

IWSLT14 30.6 Before 13.2 50× - 48× *23.5 50× 13.5 50× 16.3 50× 24.2 50×After 29.3 27.0 *26.9 27.3 24.0 28.8

Table 3: More Powerful Compression Test (≈ 50×,
Retrained)

Methods PTB SQuAD SST-5 IWSLT14
SVD 126.0 72.0 40.2 29.3

TensorTrain 161.7 72.2 40.5 27.0
GroupReduce *119.5 *71.5 *36.3 *26.9
DiscBlock-F 145.4 69.8 34.2 27.3
DiscBlock-T 122.8 71.5 39.0 24.0
DiscBlock-D 112.0 72.3 39.7 28.8

Competitors. We have three competitors: SVD,
TensorTrain, and GroupReduce.

SVD is the truncated singular value decompo-
sition method. The compression ratio of SVD is
controlled by manipulating the number of singular
values to use.

TensorTrain is the tensor-train decomposed-
based method in (Hrinchuk et al., 2020). In
(Hrinchuk et al., 2020), TensorTrain is computed
by training from scratch. Similarly, we train it
from scratch, but the other trainable parameters
are trained from pretrained values provided by the
base model. Note that for each dataset, the learning
rate to train TensorTrain is experimentally selected
from between the learning rate for training the base
model and that for retraining.

For GroupReduce, we use the refinement of
(Chen et al., 2018). GroupReduce first constructs
uniform partitions and refines them via local search
heuristics, but the uniform partition construction
sometimes fails due to the power-law frequency
distribution of words. In this case, even if the rank
assigned to the least frequent partition is 1, the
compressed embedding size is much larger than the
target compression ratio. For comparing GroupRe-
duce with our algorithm even in such a case, we add
a base value to each frequency score for smoothing
the distribution. The base value is 2k where k is the
minimum value for achieving the target compres-
sion ratio. We denote results where this remedy is
applied by * as a prefix.

5.2 Results

Let us denote DiscBlock with frequency, tf-idfavg,
and the differentiable word weighting method by
DiscBlock-F , DiscBlock-T , and DiscBlock-D, re-
spectively. The implementation is available at the
repository6.

5.2.1 Overall Performance
The overall compression performance of the com-
parison methods presents in Table 2. TensorTrain
is not tested for WikiText103 because it requires
too much cost to be trained.

The table presents that DiscBlock is much more
effective than SVD and GroupReduce in most cases.
Especially, the gap between DiscBlock and the oth-
ers is remarkable in terms of model performance
before retraining. This merit is critical when the
base model and the dataset are extremely large.

We also conducted experiments about more pow-
erful compression scenarios. The results are shown
in Table 3. Compared to the other competitors, Dis-
cBlock-D has the most stable performance even in
such scenarios.

5.2.2 Word Weight Distribution
Figure 3 depicts the distribution of word weights
computed by frequency, tf-idfavg, and the differen-
tiable word weighting method. Compared to fre-
quency, tf-idfavg and the differentiable word weight-
ing method provide more smoothed distributions.
Such smoothed distributions have advantage to
avoid over-estimating words which are considered
important by a word weighting method.

5.2.3 Effectiveness of Compensation
Functions

We compared compensation functions for the dif-
ferentiable word weighting method and the results

6https://github.com/etri-edgeai/nn-comp-discblock

https://github.com/etri-edgeai/nn-comp-discblock
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Figure 3: Word Weight Distribution (PTB). The horizontal axis is logarithmically scaled.

Table 4: Test on Compensation Functions for Training
Word Weights

Methods PTB SQuAD SST-5 IWSLT14
Before Training 137.4 69.7 40.5 16.3

Identity 124.8 71.2 40.1 23.7
Discrete and Uniform 130.0 71.3 40.2 23.4

Conti-Gumbel 125.7 71.2 43.3 24.2
Conti-Softmax 125.8 71.0 41.0 23.4

are presented in Table 4. Conti-Gumbel is the
continuous selection with Gumbel-Softmax, while
Conti-Softmax is that with the softmax function.
The results show that Conti-Gumbel is the best ex-
cept PTB and SQuAD. Even for PTB and SQuAD,
Conti-Gumbel achieves almost same performance
compared to the best competitors of them. Mean-
while, the discrete method is not that effective com-
pared to Identity. This may be because the discrete
method divides words by the uniform selection,
which is different from partitions computed by the
k-means clustering method.

5.2.4 Why Non-uniform Clustering Matters
The k-means (non-uniform) clustering method is
necessary for achieving high-level compression per-
formance. The first reason is shown in Table 5,
which contains comparing results in terms of ar-
chitectural effectiveness. In this table, the uniform
partitioning method does not have any result for
IWSLT14, because it cannot achieve near 20× com-
pression ratio even if the assigned rank to the least
frequent word group is 1. It does not have any re-
sult for SQuAD with frequency either due to the
power-law frequency distribution of words. In ad-
dition, the results imply that the k-means clustering
method provides slightly better compressed word
embedding structures in many cases.

In Figure 4, Conti-Uniform stands for using
the uniform partitioning method to construct word
groups with word weights computed by the differ-
entiable weighting method. Compared to results
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Figure 4: Change of Compressed Model Performance
on Training Word Weights

Table 5: Comparing with Uniform Partitioning (UP)
(Retrained)

Methods PTB SQuAD SST-5 IWSLT14
UP-F 105.0 - 43.2 -
UP-T 89.1 72.4 43.5 -
UP-D 91.0 73.2 42.9 -

DiscBlock-F 92.9 72.2 42.2 27.3
DiscBlock-T 92.0 72.6 42.8 24.0
DiscBlock-D 88.7 73.2 44.8 28.8

with the k-means clustering method (DiscBlock),
Conti-Uniform fails to find good word weights.

5.2.5 Another Application: Knowledge
Embedding Compression

Knowledge embedding consists of numerical vec-
tors representing entities and relations in a knowl-
edge graph. We conducted a toy experiment for
demonstrating the effectiveness of our algorithm to
knowledge embedding compression. The dataset
used in this experiment is FB15K-237, which con-
sists of 14.5K entities and 237 relations. Since the
number of relations is ignorable, we compress only
the entity embedding matrix. In the table, H@10
is the proportion of correct entities ranked in the
top 10 entities and MRR is the mean reciprocal
rank measuring the number of correct predicted
triples. We implement this experiment based on
the opensource codebase7.

7https://github.com/thunlp/OpenKE
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Table 6: Knowledge Embedding Compression for
FB15K-237 (≈ 6×)

Models TransE TransD
Metrics MRR H@10 MRR H@10

OP 27.8 46.2 28.3 48.4
SVD 13.1 27.1 11.6 24.1

DiscBlock-F 18.6 31.1 17.1 28.8
DiscBlock-D 18.8 33.9 17.3 31.1
SVD (Retrain) 24.5 42.7 25.1 43.8

TensorTrain (Retrain) 22.8 40.1 24.5 42.0
DiscBlock-F (Retrain) 24.4 41.7 25.6 43.3
DiscBlock-D (Retrain) 23.8 41.9 25.0 42.8

The results are shown in Table 6. For this task,
frequency is the number of occurrences of an en-
tity in triples. tf-idfavg is not applied because there
is no similar concept to a document in this task.
Compared to SVD, DiscBlock-D is somewhat be-
hind in terms of MRR and H@10 after retraining.
However, it still has better performance than the
competitors before retraining. This result implies
that DiscBlock-D well approximates the original
embedding matrix, but the block-wise structure is
not helpful to achieve high performance via retrain-
ing. We believe that this observation can be a good
starting point for future research.

5.2.6 Toward a Compression Framework:
Cooperating with Quantization

Since we cluster words with their importance, each
sub-embedding matrix includes words having sim-
ilar word importance. That is, given a compres-
sion method, which is controllable in terms of
compression strength, we can apply it to each sub-
embedding matrix according to its average word
importance. In this experiment, we use SmallFry in
(May et al., 2019), which is a quantization method
for word embedding. For each word group Gi, we
apply SmallFry to it with assigning the number of
bits depending on the average word importance.
The number of bits q∗ is defined as:

q∗ = min
{
q,max

{
1, 2blog2 ω

s
smax

qc
}}

, (4)

where q is a user-specific parameter for the number
of bits, s is the average score of Gi, and smax is
the maximum average score over groups in G. For
simplicity, ω and q are set to 1 and 2, respectively.

The result is shown in Table 7 where BlockFry
is a method which partitions word groups with
a word importance and applies SmallFry to sub-
embedding matrices induced by the groups. In the
result, BlockFry is more effective than SmallFry in
many cases. Especially, in terms of model perfor-
mance before retraining, the gap between them is
considerable.

Table 7: Cooperation with SmallFry (Quantization)

Methods PTB SQuAD SST-5 IWSLT14
Target Ratio 50× 43× 42× 51×

SmallFry 307.9 72.1 41.0 0.5
BlockFry-F 188.9 72.6 42.3 25.9
BlockFry-T 159.2 71.0 42.7 26.7
BlockFry-D 138.0 71.8 42.1 23.1

SmallFry (Retrain) 93.1 74.0 44.0 30.4
BlockFry-F (Retrain) 95.3 73.8 44.4 30.2
BlockFry-T (Retrain) 94.0 73.9 43.7 30.3
BlockFry-D (Retrain) 90.7 73.8 44.5 30.3

6 Conclusions

The block-wise low-rank approximation of (Chen
et al., 2018) is an effective method for word em-
bedding compression. However, its word weight-
ing and partitioning scheme is somewhat simple
and there is big room for improvement from it.
Motivated by this, we propose a discriminative
block-wise word embedding compression algo-
rithm, named DiscBlock, based on the two effective
word weighting methods and the k-means cluster-
ing method. The experimental results show that
DiscBlock significantly outperforms the competi-
tors including GroupReduce in terms of accuracy
loss in most cases. In addition, we explore the lim-
itation of GroupReduce in terms of compression
ratio due to the uniform partition construction. Fi-
nally, as a compression framework, we show that
DisckBlock can cooperate with another compres-
sion method to achieve better compression perfor-
mance than it can achieve alone.
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