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Abstract

A reliable clustering algorithm for task-
oriented dialogues can help developer analysis
and define dialogue tasks efficiently. It is chal-
lenging to directly apply prior normal text clus-
tering algorithms for task-oriented dialogues,
due to the inherent differences between them,
such as coreference, omission and diversity ex-
pression. In this paper, we propose a Dialogue
Task Clustering Network (DTCN) model for
task-oriented clustering. The proposed model
combines context-aware utterance representa-
tions and cross-dialogue utterance cluster rep-
resentations for task-oriented dialogues clus-
tering. An iterative end-to-end training strat-
egy is utilized for dialogue clustering and rep-
resentation learning jointly. Experiments on
three public datasets show that our model sig-
nificantly outperformed strong baselines in all
metrics1.

1 Introduction

Task-Oriented Dialogue Clustering (TODC) aims
to group task-oriented dialogues into different clus-
ters according to their underlying tasks. Since each
cluster includes dialogues for one specific task, it
therefore brings convenience for task induction and
definition. Especially for large unlabeled human-
human dialogues, TODC can be employed to help
to induce and define new tasks rapidly which is
important for designing of task-oriented dialogue
system.

Most prior studies focus on normal text cluster-
ing, and have made significant progress via key-
words extracting (Bafna et al., 2016; Neto et al.,
2000), topic model (Blei et al., 2001; Onan et al.,
2017), deep clustering (Xie et al., 2016; Guo et al.,
2017; Jiang et al., 2017; Yang et al., 2017). How-
ever, inherent differences between task-oriented
dialogues and normal texts make above methods
difficult to be applied in clustering of task-oriented

1https://github.com/Ryan-Lv/DTCN

Figure 1: From top to down, the figure shows an ex-
ample of in-dialogue discourse relation of utterances.
From left to right, the figure shows an example of
cross-dialogue similarity relation of utterances, the im-
plicit task-related concepts information like "inform-
intent:search-house" can be concluded from different
dialogues by grouping the utterances with similar se-
mantic.

dialogues directly. The first difficulty is that coref-
erence and information omission occur frequently
in dialogues (Su et al., 2019), which makes it harder
to build a good representation for utterances in di-
alogue than in normal text. The second difficulty
is that the task-related slot names and intents are
scattered in each utterance implicitly and expressed
diversely. In most cases, only slots values are given
in dialogues without explicit slot names. Only by
comparing utterances in different dialogues, we can
find task-related implicit information, as shown in
Fig.1. Considering these special characteristics in
task-oriented dialogues, we emphasize that TODC
should utilize in-dialogue relations between differ-
ent utterance to build context-aware representations
for each utterance and utilize cross-dialogue simi-
larity between utterances in different dialogues to
induce implicit task-related concepts information.

To address above problems, we proposed a Dia-
logue Task Clustering Network (DTCN) for TODC.
The key points of DTCN are two folds. First, we
construct in-dialogue utterance adjacency graph
for each dialogue, and encode the graph with graph

https://github.com/Ryan-Lv/DTCN
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attention networks (GAT) to build context-aware
representations. Second, we cluster all utterances
to induce implicit task-related concepts, and then
learn utterance cluster representations to utilize this
information. Further integrating both kinds of rep-
resentations into dialogue representations. Finally,
training the model with two stages training strat-
egy, which includes pre-training and joint-training
stages, the former pretrains a Transformer-based
auto-encoder with the proposed Gate-based Trans-
former decoder for initial clustering assignments,
the latter trains jointly the whole model with a self-
training strategy for optimizing dialogue represen-
tations and dialogue cluster assignments iteratively.

Experimental results on three constructed public
dialogue datasets (SGD-S, SGD-M and Multiwoz-
T) show that our model significantly outperforms
the existing strong text clustering algorithms in all
metrics on TODC. Especially, we achieve 19.76%
improvement of accuracy on SGD-S dataset com-
pared with the best baseline, which indicates that
the proposed dialogue representation method can
capture more task-related information.

In summary, the contributions of our paper are
as follows:

• We propose an unsupervised Dialogue Task
Clustering Network (DTCN). As far as we
know, this is the first work on task-oriented
clustering for dialogues. Our model learns di-
alogue representations and clusters dialogues
simultaneously by fusing both representations
of utterances and utterance clusters.

• We propose a context-aware utterance repre-
sentation learning model, which uses Graph
Attention Network to efficiently capture in-
dialogue structural information between utter-
ances and learns the representations with the
proposed Gate-based Transformer decoder.

• Experiments on three public datasets show
that the proposed model significantly outper-
forms the existing strong baselines in all met-
rics on TODC.

2 Related work

Clustering Data representation and clustering al-
gorithm are the two keys to address clustering prob-
lems. Previous works (Hartigan, 1979; McLachlan
and Basford, 1988; Blei et al., 2001) mainly fo-
cused on feature transformation or clustering inde-
pendently. Data are usually mapped into a feature

space and then directly fed into a clustering al-
gorithm to cluster. In the recent years, owing to
the development of deep learning, more and more
deep clustering methods (Caron et al., 2018; Xie
et al., 2016; Guo et al., 2017; Yang et al., 2017;
Jiang et al., 2017) were proposed, which can ob-
tain feature representations and cluster assignments
simultaneously.

Graph Neural Network Recently, there has
been a surge of interest in Graph Neural Net-
works (GNNs) (Wu et al., 2020b) approaches for
graph representation learning. Some GNN vari-
ants (Velickovic et al., 2018; Kipf and Welling,
2017) are proposed and also applied in dialogue
related tasks. Chen et al. (2020) proposed Graph
Attention Matching Network and Recurrent Graph
Attention Network based on Graph Attention Net-
work to encode utterances, schema graphs and pre-
vious dialogue states. Ghosal et al. (2019) proposed
Dialogue Graph Convolutional Network based on
Graph Convolutional Network (Kipf and Welling,
2017) to model inter and self-party dependency to
improve context understanding.

3 Task formulation

Given an unlabeled dialogue dataset D =
{dj}Ndia

j=1 , where Ndia denotes the total number of
dialogues in dataset and dj = {ui}Ii=1 denotes
one dialogue with I utterances. Task-Oriented Di-
alogue Clustering (TODC) aims to group D into
Kdia clusters according to the underlying tasks.

4 The Proposed Model

The proposed Dialogue Task Clustering Network
(DTCN) is composed of five modules as shown in
Fig.2, and trained with two stages training strat-
egy. In the first stage, we used an autoencoder
to learn context-aware utterance representations
for initial clustering assignments, in which the Ut-
terance Encoder (UE) and the Structural Context
Encoder (SCE) are used as encoder, the Utterance
Decoder (UD) module is used as decoder. In the
second stage, introducing two new modules based
on the pretrained autoencoder, including the Ut-
terance Cluster Representation Learning (UCRL)
module for learning utterance cluster representa-
tions and the Dialogue Representation Learning
(DRL) module for learning dialogue representa-
tions, and adopting an iterative training strategy for
optimizing jointly dialogue clustering assignments
and dialogue representations.
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Figure 2: The Frame of Dialogue Task Clustering Network (DTCN).

4.1 Utterance Encoder

UE module aims to encode each utterance to an
embedding initially. Specifically, for the i-th utter-
ance ui = {wt}mi

t=1, calculating the word encoding
εt ∈ Rdmod for each word wt firstly as shown in
Eq.1,

εt = embt + post (1)

where dmod is the embedding size, embt is the
word embedding and post is the position en-
coding calculated by the sinusoidal encoding
method(Vaswani et al., 2017).

Then, feeding {εt}mi
t=1 into Transformer encoder

and adding role embedding ri ∈ Rdmod to obtain
the initial representation hi ∈ Rdmod of the utter-
ance ui as shown in Eq.2,

hi = Transformer(ε1, . . . , εmi) + ri (2)

where the mean values of all words of each utter-
ance are used as the outputs of Transformer en-
coder.

4.2 Structural Context Encoder

SCE module aims to learn context-aware utterance
representation, including utterance adjacency graph
construction and graph encoding.

Specifically, an adjacency graph G = (V,E)
is built for each dialogue dj = {ui}

nj

i=1 firstly.
V = {vi}

nj

i=1 is the node set, in which vi is cor-
responding to the utterance ui and its initial repre-
sentation is hi. The edges set E between the nodes
is defined by N -adjacency relationship as shown

in Eq.3,

eij =

{
1, |j − i| ≤ N
0, others

(3)

where N represents the window size, we suppose
that the utterances in the window have discourse
relation.

Then, feeding the graph G into Graph Attention
Network to obtain the context-aware utterance rep-
resentation with structural context information as
shown in Eq.4,

g = GAT (G, h1, . . . , hnj ) (4)

where g = {gi}
nj

i=1, gi ∈ Rdmod is the improved
utterance representation of ui.

4.3 Utterance Decoder
To better learn context-aware utterance representa-
tions, the Gate-based Transformer decoder is pro-
posed as shown in Fig.3. Compared with the stan-
dard Transformer decoder, the Gate-based Trans-
former decoder has an additional Gate-based Ex-
tractor sublayer which captures more related infor-
mation for decoding different words. Specifically,
to decode word wt+1 in ui, the Gate-based Extrac-
tor sublayer extracts the hidden state gti from gi
through the gate mechanism (Gers, 2001) as shown
in Eq.5,

gti = gi � sigmoid([ati‖gi]W T ) (5)

where ·‖· refers to concatenation, W T ∈
R2dmod×dmod is a trainable weight matrix, ati is the
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Figure 3: The Gate-based Transformer Decoder.

hidden state corresponding to word wt through the
Masked Multi-head Self-Attention sublayer.

Similar to the Transformer decoder, we use the
linear projection and softmax function to convert
the outputs to the probability distribution of next
word pt+1

i ∈ RNvoc , where Nvoc is the vocabulary
size. The cross-entropy loss Lud between pt+1

i

and the ground-truth word id yt+1
i is employed as

shown in Eq.6,

Lud = −
nj∑
i=1

mi−1∑
t=1

yt+1
i ln(pt+1

i ) (6)

where mi is the number of words in ui.

4.4 Utterance Cluster Representation
Learning

UCRL module first induces implicit task-related
concepts by clustering utterances, and then repre-
sent this information by leaning representations for
each utterance cluster.

Specifically, first grouping all utterances into
Kutt clusters with the context-aware represen-
tations by Gaussian Mixture Model (GMM)
(McLachlan and Basford, 1988).

Then, an utterance cluster representation learn-
ing method based on the transfer relationship is
proposed. It makes use of historical utterance
cluster representations and initial representation
of the current utterance to update the utterance
cluster representation corresponding to the current
utterance. Specifically, given a dialogue history
{u1, ..., ui−1}, let the corresponding utterance clus-
ter representations be C̃i−1 = {c1, ..., ci−1} and

the current utterance representation from UE mod-
ule be hi, the utterance cluster representation c

′
i

corresponding to current utterance ui is calculated
as shown in Eq.7,

c
′
i = softmax(

hiC̃i−1
T

√
dmod

)C̃i−1 (7)

Furthermore, a loss function for cluster represen-
tation learning is adopted as shown in Eq.8,

Lucrl = −
nj∑
i=1

yui ln(softmax(c
′
iC

T )) (8)

whereC ∈ RKutt×dmod is the representation matrix
of all utterance clusters, softmax function is used to
get the cluster probability distribution, finally cross-
entropy between the distribution and the utterance
cluster label yuicorresponding to ui is calculated.

4.5 Dialogue Representation Learning

DRL module aims to learn dialogue representations
by fusing the context-aware utterance representa-
tions and the corresponding utterance cluster rep-
resentations, the former contains the in-dialogue
discourse relation information, the latter contains
the cross-dialogue task-related concepts informa-
tion.

Specifically, given a dialogue dj = {ui}
nj

i=1, let
the corresponding class label be ydj , the context-
aware representation of utterances in the dialogue
be g = {gi}

nj

i=1, the utterance cluster representa-
tions be C̃ = {ci}

nj

i=1, and the utterance position
embeddings be posu = {posui}

nj

i=1. The first step
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is fusing the g, C̃, and posu into an embedding as
shown in Eq.9,

ζi = [gi‖ci]W T + posui (9)

where W T ∈ R2dmod×dmod , posui ∈ Rdmod are all
trainable.

Then, the Transformer encoder is leveraged to
encode {ζi}

nj

i=1, the output oj is the [CLS] position
embedding as shown in Eq.10,

oj = TransformerEncoder(ζ1, ..., ζnj ) (10)

Finally, a Linear layer and a LayerNorm layer
project the output oj into the dialogue representa-
tion zj ∈ RKdia as shown in Eq.11,

zj = layernorm(oj ·W T ) (11)

A cross-entropy loss as shown in Eq.12, is used
to supervise the learning of dialogue representation
by maximizing the distance among the dialogue
representations in the different classes, which is
helpful to cluster dialogues.

Lcls = −
Ndia∑
j=1

ydj ln(softmax(zj)) (12)

4.6 Dialogue Clustering

After obtaining the dialogue representation, we
group them into Kdia clusters with Gaussian Mix-
ture Model (GMM). And assigning a label for each
dialogue, which will be used as pseudo label for
training DRL module. Further, a trained DRL mod-
ule will generates better dialogue representation,
and then better dialogue representations help to
obtain better clustering assignments. It should be
noted that dialogue representations used for the
initial clustering is the mean value of utterance
representations g from the pretrained autoencoder,
and for the subsequent clustering is the learned
dialogue representation z.

Due to the instability of the GMM, the initial
clustering assignment is obtained by voting after
clustering for continuous Nclu times as shown in
Algo.1.

4.7 Model Training Process

A two-stage training strategy including pre-training
and joint-training is employed for model training.
In the pre-training stage, learning the context-aware
utterance representation gi for each utterance with

Algorithm 1: Initial labels assignment algorithm
Input :Initial count matrix θ = 0; Initial labels

assignment vector A = 0; Clustering
assignments sequence {An}Nclu

n=1 .
1 for i ∈ {1, 2, 3, ..., Nclu} do
2 if i == 1 then
3 A = A1

4 end
5 Best map: mapping assignment Ai to
6 assignment A using Hungarian
7 algorithm.
8 Update θ: θij = θij + 1 if si is assigned to
9 cluster j in mapped assignment Ai.

10 Update A: Ai = argmax(θi) where θi is
11 i-th row of θ.
12 end
13 Return final labels assignment vector A;

the autoencoder based on encoder-decoder archi-
tecture for initial clustering assignments, where
UE, SCE modules as the encoder and UD as the
decoder. The pre-training loss is defined by Eq.13,

LPre = Lud (13)

In the joint-training stage, an iterative training
strategy is adopted. In each iteration, the label re-
assignment strategy is employed to improve the
confidence of clustering assignments. Specifically,
clustering all utterances and dialogues after each
training epoch, and updating the old clustering as-
signment by best mapping the clusters between
new and old clustering assignment using the Hun-
garian algorithm (Kuhn, 1955). However, the
pseudo labels used by UCRL and DRL modules
are not assigned immediately, but reassigning every
interval epochs. Finally, stopping training when
the change between two consecutive dialogue clus-
tering assignment is less than tol% or reaching
the maximum training epochs maxep. The last di-
alogue clustering assignment is used as the final
clustering results. The loss is defined by Eq.14,

LJoint = Lud + β · Lucrl + Lcls (14)

where β is loss coefficient.

5 Experiments

5.1 Datasets
In order to better evaluate the performance of differ-
ent algorithms on TODC, we constructed three pub-
lic task-divided dialogue datasets based on Schema-
Guided Dialogue (SGD) (Rastogi et al., 2020) and
Multiwoz dataset (Zang et al., 2020). In both SGD
and Multiwoz datasets, we determine whether two
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Datasets SGD-S SGD-M Multiwoz-T

Tasks Number 29 59 35
Dialogues Number 3925 4722 9695

Dialogues Length(avg) 15.57 21.68 13.94

Table 1: The statistics of the datasets.

dialogues belong to the same dialogue task by judg-
ing whether the two dialogues contain the same
set of active-intents. Finally, three datasets labeled
by dialogue task are constructed: SGD-S includes-
single domain dialogues of SGD dataset, SGD-
M includes multiple-domains dialogues of SGD
dataset, Multiwoz-T includes all dialogues of Mul-
tiwoz dataset. Detailed division instructions and
datasets will be released. Tab.1 shows the statistics
of them.

5.2 Implement Details
In our experiments, the hidden size is set to 256.
Using 3-layers Transformer encoder for both UE
and DRL module, 2-layers GAT for SCE module,
and 3-layers Gated-based Transformer decoder for
UD module. The window size is set to 2, 2, 1 for
SGD-S, SGD-M and Multiwoz-T respectively.

In the pre-training stage, we train 100 epochs
with batch size 16 on each dataset with the same op-
timizer settings as the Transformer (Vaswani et al.,
2017). In the joint-training stage, estimating Kutt

by BIC score (Schwarz et al., 1978) to 50, 50, 60,
and setting interval to 2, 2, 1 for SGD-S, SGD-M
and Multiwoz-T datasets respectively. Besides, set-
ting the coefficient of Lucrl to 10 for stabilizing the
utterance cluster representations quickly. And the
learning rate at each step is calculated as shown in
Eq.15,

lr = lrmax · wm0.5
stp ·min(N−0.5

stp , Nstp · wm−1.5
stp )
(15)

where the maximum learning rate lrmax is set
to 1e-3, 1e-3 and 5e-4 for SGD-S, SGD-M
and Multiwoz-T respectively, the warmup steps
wmstp = interval ·Ndia_bth, Ndia_bth is the batch
number of the corresponding dataset. Such warmup
strategy increases learning rate linearly between the
first and second dialogue labels reassignment until
lrmax, then decreases proportionally.

5.3 Baselines and Metrics
Three types of baselines are adopted to be com-
pared with the proposed model on TODC perfor-
mance.

Raw feature based models. Using bag of
words model (BOW) and TF-IDF feature to repre-
sent dialogues, and clustering with LDA (Blei et al.,
2001), K-means and GMM algorithms respectively.

Pretrained feature based models. Represent-
ing dialogues with the mean values of all utter-
ance representations extracted from official pre-
trained SkipThought (Kiros et al., 2015), TODBert
(Wu et al., 2020a) and SentenceBert (Reimers and
Gurevych, 2019) models, then cluster with GMM.

Deep clustering models. Four popular deep
clustering models are adopted as strong baselines.
DCN (Yang et al., 2017) used k-means clustering
loss to learn clustering friendly representations.
VaDE (Jiang et al., 2017) is a generative deep
clustering model based on variational autoencoder.
DEC (Xie et al., 2016) designed a clustering objec-
tive to guide the learning of the data representations.
IDEC (Guo et al., 2017) is a modified version of
DEC with a reconstruction loss to preserve local
structure.

We run 5 times continuously for all baselines,
and then report the mean value and standard devia-
tion. For DCN, VaDE, DEC and IDEC, using the
same settings as the previous works, and searching
the update interval in {2, 5, 10, 20}. In addition,
searching the γ in {1.0, 0.1, 0.01, 0.001} for IDEC,
and λ in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} for
DCN.

Metrics Four popular metrics are adopted to
evaluate TODC performance, including Accuracy
(ACC), Purity, Normalized Mutual Information
(NMI) (Strehl and Ghosh, 2002), and Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985). For
each metric, a larger value implies a better cluster-
ing performance.

5.4 Main Results

Tab.2 shows the clustering performance of dif-
ferent methods. We can see that the proposed
model outperforms all three types baselines signifi-
cantly. Compared with the best baseline, our model
improves ACC by 19.76%, 16.67% and 4.87%,
Purity by 12.83%, 14.80% and 7.26%, NMI by
9.45%, 8.65% and 3.45%, ARI by 22.59%, 20.49%
and 7.10% on SGD-S, SGD-M and Multiwoz-T
datasets respectively. The results show that the ob-
tained dialogue representations can capture more
task-related information.
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Model
SGD-S SGD-M Multiwoz-T

ACC Purity NMI ARI ACC Purity NMI ARI ACC Purity NMI ARI

Raw Feature Models
K-means 59.04±1.41 70.32±1.50 80.69±0.58 55.60±2.12 50.76±3.52 55.53±3.26 73.25±1.83 45.55±3.29 29.44±1.79 37.38±1.28 45.65±1.05 24.07±1.90
GMM 59.96±3.05 71.18±1.59 81.18±1.09 57.39±3.81 50.06±3.50 55.12±2.85 73.20±1.45 45.82±3.07 34.90±1.88 42.51±1.53 50.19±1.68 28.88±2.61
LDA 55.78±2.64 68.0±1.31 75.13±0.72 50.06±2.08 39.35±2.03 40.34±1.64 67.94±0.98 33.12±1.81 39.58±1.14 49.32±0.67 54.66±0.42 33.36±0.40

PreTrained Feature Models
SkipThought+GMM 36.16±2.16 44.56±0.94 50.41±2.14 30.43±2.83 15.59±0.95 17.98±0.72 31.37±0.95 7.50±0.55 14.35±0.51 22.99±0.30 23.84±0.37 6.85±0.31
TODBert+GMM 54.93±2.79 71.23±1.44 77.87±1.00 52.32±3.69 53.78±0.79 69.00±1.46 77.11±0.98 53.76±2.24 32.56±1.64 43.50±1.84 53.93±2.91 30.44±1.40
SentenceBert+GMM 57.18±3.64 69.88±1.63 78.62±0.89 55.37±3.72 55.85±1.88 63.18±1.44 76.69±0.98 50.36±2.34 37.97±2.41 49.86±2.27 59.45±2.32 30.62±2.58

Deep Clustering Models
DCN 55.32±2.73 64.29±1.37 79.09±1.62 53.28±3.09 42.08±2.33 49.99±3.39 73.57±1.39 34.93±2.29 47.08±0.32 60.04±0.31 68.39±0.39 41.71±0.52
VaDE 60.66±1.55 70.97±1.67 79.24±0.67 54.67±1.22 51.55±3.49 54.14±3.65 74.62±0.96 45.71±2.54 50.51±0.14 56.36±0.15 66.55±0.07 44.45±0.19
DEC 64.10±1.53 73.69±0.90 82.95±0.48 59.28±1.27 68.89±2.20 70.44±2.31 87.89±0.99 65.24±2.73 56.16±1.66 65.12±0.85 78.43±0.52 51.58±1.61
IDEC 64.61±1.37 75.15±0.51 82.92±0.22 59.17±1.35 70.32±1.10 77.03±0.74 88.03±0.45 67.77±1.08 58.64±3.19 66.03±1.21 78.39±1.34 54.06±2.35

Our Model
PreTrained 66.67±3.11 79.02±1.55 85.46±1.13 63.65±2.68 49.84±1.59 53.09±1.94 69.39±2.04 45.33±2.63 45.71±2.16 57.68±1.21 67.27±1.00 39.44±2.12
Full model 84.37±2.33 87.98±2.31 92.37±0.93 82.76±2.84 86.99±2.14 91.83±1.19 96.68±0.51 88.26±1.97 63.51±3.03 73.29±2.60 81.84±1.49 61.16±2.41

Table 2: Comparison of clustering performance on three datasets.

5.5 Ablation Studies

Ablation Studies of Major Modules We conduct
ablation studies to evaluate the compact of different
components in our model.

Model
SGD-S

ACC Purity NMI ARI

Full 84.37±2.33 87.98±2.31 92.37±0.93 82.76±2.84
-w/o SCE 64.67±2.84 72.63±3.12 80.41±30.3 62.76±2.64
-w/o UCRL 75.18±1.01 84.34±0.17 89.64±0.36 74.39±1.07

Table 3: Ablation studies for major modules.

As shown in Tab.3, both SCE and UCRL con-
tribute to the proposed model, and compared to
UCRL module, the SCE module has a greater im-
pact on performance. On the one hand, it shows
that the integration of the structural context of ut-
terance can improve the quality of utterance repre-
sentation and further affect the dialogue represen-
tation. On the other hand, the utterance clustering
assignment based on the utterance representation
from SCE module has a direct impact on UCRL
module, and the utterance cluster representations
from UCRL module will directly affect dialogue
representation.

Ablation Studies of Losses We also conduct
ablation studies to evaluate the compact of different
losses in our model.

Model
SGD-S

ACC Purity NMI ARI

Full 84.37±2.33 87.98±2.31 92.37±0.93 82.76±2.84
PreTrained 66.67±3.11 79.02±1.55 85.46±1.13 63.65±2.68
-w/o Lud 79.86±3.21 86.02±1.60 89.64±1.14 77.03±3.00
-w/o Lucrl 75.16±2.12 85.03±0.50 89.70±0.34 75.38±3.52

Table 4: Ablation studies for losses. "-w/oLucrl" refers
to the performance using the utterance cluster embed-
ding simply without learning by the Lucrl.

As shown in Tab.4, the ACC is reduces by 9.21%
after removing Lucrl loss, which indicates that
the structure information learned through the log-
ical transfer relationship between utterance clus-
ters is helpful to distinguish different tasks. And
the ACC is reduced by 4.51% after removing
Lud loss, which indicates that stabilizing the ut-
terance representations helps stabilize model train-
ing. Meanwhile, we can see that all performance
have been significantly improved after joint train-
ing, which indicates that introducing the induced
implicit concepts information by clustering utter-
ances and adopting an iterative training strategy are
beneficial for TODC.

5.6 Window Size N Analysis

Figure 4: The performance with different window size.

We analyze the impact of the window size N
on all performance on SGD-S dataset. As shown
in Fig.4, as the window size increases, the perfor-
mance is significantly improved. When the window
size is 2, all performance reaches the maximum,
then decreases slightly and stabilizes. This indi-
cates that the optimal window size is 2. If the size
of window is too small, the context information in-
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troduced is insufficient, and if it is too large, it will
introduce too much noise and affect performance.

5.7 Clustering Number Kdia Analysis

Figure 5: The performance of Purity, NMI and ARI
with different dialogue clustering number.

We also analyze the impact of the clustering
number on performance of NMI, ARI and Purity
on SGD-S dataset. As shown in Fig.5, as the clus-
tering number increases, all performance is signif-
icantly improved. When the clustering number is
29, which is the ground-truth number of tasks in
SGD-S dataset, all performance reaches the max-
imum. Then the performance of Purity stabilizes,
while NMI and ARI decrease.

The Purity measures the degree to which the sam-
ples in the cluster belong to the same true category.
As the number of clusters increases, the purity will
gradually increase as shown in the Fig.5, and then
stabilize. NMI and ARI measure the degree of
overlap between clustering and true category distri-
butions. When the clusters number differs greatly
from the true categories number, the performance
will significantly decrease as shown in the Fig.5.

6 Case Studies

We selected some typical utterance clusters to eval-
uate the quality of learned context-aware utterance
representation, and analysis whether some inter-
pretable task-related concepts can be induced by
obtained utterance clusters.

One case is shown in the Fig.6, obviously, these
utterances are all about the concept of “user wants
to search one-way flight”. Besides, we also found
some special utterance clusters. Another case is
shown in Fig.7, there are two segments from two
dialogues, to our surprise, all of these utterances
are grouped into one cluster. This phenomenon
can be explained from two aspects. First, from

Figure 6: An example of utterance cluster, these utter-
ances are about the concept of “SearchOneWayFilght”

Figure 7: An example of special utterance cluster, these
utterances are all related to slots of "destination, origin
and departure_date".

top to down, discourse relation information and
the involved slots information make the represen-
tations of related utterances similar. For example,
the both utterances of left segment are involved
the same three slots, and associated by request-
inform pair relationship, the both representations
tend to be similar after incorporating this informa-
tion. Further, from left to right, the cross-dialogue
utterances with the similar context information are
grouped automatically.

These indicate that our model can fully integrate
contextual information by constructing adjacency
graphs, and can also induce interpretable concepts
through clustering utterances.

7 Conclusion and Future Work

This paper proposes a Dialogue Task Clustering
Network for dialogue task clustering. The model
makes use of both in-dialogue discourse relation
information and cross-dialogue utterance similar-
ity relation information to build dialogue represen-
tations. And an end-to-end iterative strategy of
jointly dialogue representation learning and clus-
tering is used to train the model. Experiments on
three public datasets show that the proposed model
significantly outperforms the existing strong clus-
tering algorithms on dialogue task clustering. In
the future, we will further induce more detailed
task-related concepts information and explore the
inner structure in each dialogue cluster for task
induction and definition.
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