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Abstract

Despite the success of neural dialogue systems
in achieving high performance on the leader-
board, they cannot meet users’ requirements
in practice, due to their poor reasoning skills.
The underlying reason is that most neural di-
alogue models only capture the syntactic and
semantic information, but fail to model the log-
ical consistency between the dialogue history
and the generated response. Recently, a new
multi-turn dialogue reasoning task has been
proposed, to facilitate dialogue reasoning re-
search. However, this task is challenging, be-
cause there are only slight differences between
the illogical response and the dialogue history.
How to effectively solve this challenge is still
worth exploring. This paper proposes a Fine-
grained Comparison Model (FCM) to tackle
this problem. Inspired by human’s behavior in
reading comprehension, a comparison mecha-
nism is proposed to focus on the fine-grained
differences in the representation of each re-
sponse candidate. Specifically, each candidate
representation is compared with the whole his-
tory to obtain a history consistency representa-
tion. Furthermore, the consistency signals be-
tween each candidate and the speaker’s own
history are considered to drive a model to pre-
fer a candidate that is logically consistent with
the speaker’s history logic. Finally, the above
consistency representations are employed to
output a ranking list of the candidate responses
for multi-turn dialogue reasoning. Experimen-
tal results on two public dialogue datasets
show that our method obtains higher ranking
scores than the baseline models.

1 Introduction

Nowadays, the neural dialogue system has achieved
high performance and been widely studied in both
industry (Nuruzzaman and Hussain, 2018) and
academia (Santhanam and Shaikh, 2019). However,
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speaker A: Excuse me. How much is this suit?
speaker B: It’s $750 today.
speaker A: Wow, that is pretty expensive!

speaker B: The material is imported from Italy. If you buy
a suit with same material, it may be $2000.

speaker A: Uh-hah. But I saw a suit just like this one,
and it was $600. I still thought it was expensive.

Candidates
speaker B:

1. No suit has the style as it. It’s the style that
makes it special.

2. The material of this suit is imported from
France. It makes the suit special.

3. But the color of our suit is very special.

4. Although the suit you saw is same as it, the
material of our suit is imported from Italy.

Table 1: An example of dialogue reasoning. The log-
ical contradictions are labeled in the same color. The
most proper and logically correct response is option 4,
labeled in red.

the selected response often contradicts with the di-
alogue history, such as “I am a teacher” as context
but “I work in the factory” in the response, which
greatly affects the user experience. The underly-
ing reason is that existing neural dialogue systems
only model the syntactic and semantic relevance
but fail to capture the logical consistency between
the dialogue history and the generated response.

Recently, a new multi-turn dialogue reasoning
task (Cui et al., 2020) has been proposed to facili-
tate conversation reasoning research. The goal of
the dialogue reasoning task is to select the logical
response from the extremely similar candidate re-
sponses. However, this task is challenging, because
there are only slight differences between the illogi-
cal response and the dialogue history. For example
in Table 1, option 1 and option 3 are in conflict with
speaker A who has seen the same suit, and option 2
is in conflict with the imported country. Since the
candidate options are only slightly different to the
context, traditional dialogue models might tend to
select semantically relevant yet illogical candidates,
yielding incorrect responses.

As we all know, humans have the ability to make
effective and efficient reasoning, because they usu-
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ally focus on perceiving fine-grained details and
compare the candidates at multiple-granularity lev-
els accordingly. Taking Table 1 as an example, by
comparing option 2 and option 4, human can iden-
tify that the key difference is “Italy” and “France”,
which can be used as key information to distinguish
such two options. Inspired by the human behav-
iors in reasoning, the fine-grained comparison be-
tween response and history should be introduced
to improve the reasoning ability for the dialogue
reasoning model.

Furthermore, the dialogue history from the same
speaker is also critical for modeling the logical con-
sistency (Chen et al., 2017). It is natural that a
person holds his logical consistency when speak-
ing. Thus the logical errors for the same speaker
might hamper the user experience. For example in
Table 1, speaker B says the suit’s material is im-
ported from Italy in the dialogue history, but option
2 for him says the material is imported from France,
which is a more obvious and serious logical error.
Therefore, a reasoning model needs to consider the
speaker’s own historical consistency to distinguish
logically incorrect candidate responses.

Inspired by the above analysis, we propose a
Fine-grained Comparison Model (FCM) to im-
prove the performance of multi-turn dialogue rea-
soning. To be specific, we firstly propose a com-
parison mechanism to compare every candidate
response with all other ones. Secondly, we com-
pare each candidate representation with the whole
history and the speaker’s own history to obtain the
history and the speaker’s consistency representa-
tions, respectively. Finally, we utilize the above
consistency representations to output a ranking list
of the candidate responses for multi-turn dialogue
reasoning.

In our experiments, we utilize two public multi-
turn dialogue datasets, named MuTual (Cui et al.,
2020) and Ubuntu (Lowe et al., 2015), to evaluate
our proposed models. The results show that FCM
has the ability to rank the candidate responses more
accurately than the baseline models. We also con-
duct some case studies to demonstrate the superior-
ity and soundness of FCM.

The main contributions of this paper include:

• We introduce the response comparison mech-
anism to enable the dialogue model (e.g.,
BERT(Devlin et al., 2019)) to have fine-
grained detail perception ability, which tack-
les the difficulty of subtle differences between

candidates and dialogue history in dialogue
reasoning.

• We model the speaker’s own logical consis-
tency to further enhance the reasoning ability
for dialogue reasoning task.

• We experiment on two public multi-turn di-
alogue datasets to demonstrate the effective-
ness of our proposed model FCM.

2 Related Work

Recently, multi-turn dialogue has gained more at-
tention in both industry (Wu et al., 2020; Zhan
et al., 2021) and academia (Cho and May, 2020),
compared with single-turn dialogue (Mou et al.,
2016; Zhang et al., 2018a; Li et al., 2017a). Ser-
ban et al. (2016) proposes a hierarchical recurrent
encoder-decoder (HRED) model which uses the
hierarchical encoder-decoder framework to model
the relevance of the context and response. Wu
et al. (2017) uses HRED to model relationships
among utterances to enhance the performance of
the retrieval-based chatbot. Chen et al. (2018) adds
the hierarchical structure and the variable memory
network into a neural encoder-decoder network,
which can capture both the high-level abstract vari-
ations and long-term memories during dialogue
tracking. Zhang et al. (2018b) adopts dynamic and
static attention to weigh the importance of each
utterance in a conversation and then obtain the con-
textual representation. Zhang et al. (2019) utilizes
hierarchical self-attention mechanism to solve the
position bias problem of dialogue models.

Although these models have achieved good per-
formance on datasets like DailyDialog (Li et al.,
2017b) and ECD (Zhang et al., 2018c), there is
still a giant gap between high performance on the
leader-board and poor practical user experience
(Cui et al., 2020). These models frequently gen-
erate responses that are logically incorrect. One
possible reason is that the previous models (Young
et al., 2018; Clark et al., 2019) only solve the cases
through linguistic information matching yet lack of
logical reasoning.

Obviously, a dialogue reasoning dataset that can
help the model to detect the illogical response is
extremely necessary. Recently, an open domain
multi-turn dialogue reasoning dataset (MuTual)
(Cui et al., 2020) is proposed to facilitate the rea-
soning capabilities of conversation models. In par-
ticular, given a context, it prepares four candidate
responses and all of them are relevant to the con-
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text, but singly one has the correct logic. It requires
fine-grained reasoning ability between context and
response to make the correct choice. Current multi-
turn dialogue models (Devlin et al., 2019; Zhang
et al., 2018c; Liu et al., 2019; Wu et al., 2017),
which perform well on existing benchmarks, have
declined on this dataset, which proves that the rea-
soning ability of these models is still insufficient.
Therefore, how to enhance the logical reasoning
ability of dialogue models is worth discussing.

Logic consistency of history is essential in
human-like behavior. For the multi-choice reason-
ing task (Zhu et al., 2018), there are only slight dif-
ferences between the illogical response and the di-
alogue history, so a fine-grained comparison mech-
anism is required to infer the logic between each
candidate response and the dialogue history. Previ-
ous models (Young et al., 2018; Devlin et al., 2019)
ignore the modeling of fine-grained comparison,
which leads to the loss of reasoning ability of their
models. In this paper, we overcome this challenge
and propose a fine-grained comparison mechanism
to perform history consistency and speaker consis-
tency respectively.

3 Model

In this section, we first describe the task defini-
tion and then introduce our FCM model in detail,
with the architecture shown in Figure 1. Our FCM
model consists of three components, i.e., Contex-
tual Encoding, Fine-grained Comparison Module,
and Response Prediction. Firstly, we utilize the
pre-trained language model BERT to encode each
token of context and response into a fixed-length
vector, which carries contextual information. Sec-
ondly, we utilize our comparison mechanism to
obtain the fine-grained response representation and
then compare such obtained representation with
both the whole history and the speaker’s own his-
tory. Finally, we fuse consistency representation
and semantic information, and then use a linear
layer to obtain the candidate response score for the
multi-choice prediction process.

3.1 Task Definition

Given a dialogue context U = {u1, u2, ..., uN}
and a candidate response set R = {r1, r2, ..., rM},
where ui = {wu

i,1, w
u
i,2, ..., w

u
i,li

} is an utterance
with li tokens, and ri = {wr

i,1, w
r
i,2, ..., w

r
i,ji

} is a
candidate response with ji tokens, the goal of this
task is to select the proper and logical response

based on the conditional probability distribution,
i.e., P (ri|U,R), where ri 2 R.

3.2 Contextual Encoding
Given each input pair (U, ri), we concatenate the
context and each candidate and then feed them into
the pre-trained BERT to obtain the fixed-length
vector of each token in the context and response,
which is denoted as:

[HU ;Hri ] = BERT (< U ; ri >), (1)

where BERT (·) returns the last layer output of
the encoder. <;> means concatenation of two se-
quences. HU 2 R|U |⇥d and H

ri 2 R|ri|⇥d are the
token-level vectors of context U and candidate ri,
respectively. d is the dimension of the hidden state.
Besides, we obtain the summary vector h[cls]i 2 Rd

for input pair (U, ri), which carries the semantic in-
formation of the whole input (Devlin et al., 2019).

3.3 Fine-grained Comparison Module
In this section, we introduce our fine-grained com-
parison module, including three steps: fine-grained
response comparison, consistency reasoning with
history, and enhancing speaker consistency. Specif-
ically, a fine-grained response comparison mech-
anism is firstly utilized to imitate human behav-
iors, which aims to compare the correlation and
difference between candidate responses at multi-
granularity levels. Then, the history-aware bidi-
rectional matching method is utilized to infer the
fine-grained logical consistency between the can-
didate ri and the whole history U . Finally, another
bidirectional matching model is used to infer the
speaker consistency between the response ri and
the speaker’s own history.

3.3.1 Fine-grained Response Comparison
For each response ri, a fine-grained attention mech-
anism is used to compare it with all other responses
to get the fine-grained comparison information.

Paired Correlation Given the hidden vectors
H

ri and H
rj , we calculate the word-level atten-

tion between them to obtain the similarity matrix
A

ri,j , which is defined as:

A
ri,j =


exp(a

ri,j
mn)P

n exp(a
ri,j
mn)

�

m,n

,

a
ri,j
mn = W

T
1 [Hri

m;H
rj
n ;Hri

m �H
rj
n ],

(2)

where � is the element multiplication between two
matrices. Hri

m is the hidden representation of mth
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Figure 1: The proposed FCM network for multi-turn dialogue reasoning task. It contains three components: 1)
Contextual Encoding, 2) Fine-grained Comparison Module, and 3) Response Prediction.

token in ri, and W
T
1 2 R1⇥3d is a learned param-

eter. a
ri,j
mn means the similarity between the mth

word of ri and the nth word of rj .
Given the similarity matrix A

ri,j , the paired cor-
relation information H

ri,j is defined as:

H
ri,j = [Hri �H

ri,j ;Hri �H
ri,j ],

H
ri,j = A

ri,jH
rj ,

(3)

where H
ri,j highlights the similar part of rj with

ri, and H
ri,j represents the different part between

the candidate ri and rj .

Response-level Comparison Given the correla-
tion information H

ri,j for ri, the response-level
compared information E

ri is defined as:

E
ri = tanh

✓
{Hri,j}j 6=i

�
W2 + b2

◆
, (4)

where W2 2 R2d(M�1)⇥d and b2 2 Rd are learned
parameters. M refers to the total number of candi-
date responses.

Gate-based Fusion Given the contextual encod-
ing features Hri and the response-level compared
information E

ri of response ri, an element-wise
gating mechanism is utilized to obtain the fine-
grained response representation eHri , which is de-
fined as:

g
ri = �([Eri ;Hri ]W3 + b3),

eHri = g
ri � E

ri + (1� g
ri)�H

ri ,
(5)

where W3 2 R2d⇥d and b3 2 Rd are learned pa-
rameters. gri 2 R|ri|⇥d stands for the element-wise
gate value.

3.3.2 Consistency Reasoning with History

Given the context representation H
U 2 R|U |⇥d

and the fine-grained response representation eHri 2
R|ri|⇥d, we design a bidirectional matching mech-
anism to obtain the response-aware history repre-
sentation H

h_i and history-aware response repre-
sentation H

i_h respectively, which is defined as:

A
h_i = SoftMax(HU

W4
eHriT ),

A
i_h = SoftMax( eHriW5H

UT
),

H
h_i = Relu(Ah_i eHriW6),

H
i_h = Relu(Ai_h

H
U
W7),

(6)

where W4, W5, W6, and W7 2 Rd⇥d are learned
parameters. A

h_i and A
i_h are the word-level at-

tention matrices between the whole history U and
response ri, which focus on different perspectives.

Given the two representations H i_h and H
h_i as

input, we utilize a gate mechanism to fuse them
to get the history-aware consistency information
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Ĥ
h_i, which is defined as:

E
h_i = MaxPooling(Hh_i),

E
i_h = MaxPooling(H i_h),

g
hi = �(Eh_i

W8 + E
i_h

W9 + b4),

Ĥ
h_i = g

hi � E
h_i + (1� g

hi)� E
i_h

,

(7)

where W8, W9 2 Rd⇥d and b4 2 Rd are learned
parameters. MaxPooling means row-wise max
pooling operation. g

hi means the element-wise
gate value.

3.3.3 Enhancing Speaker Consistency
Given the speaker’s own context HS and the com-
pared response representation eHri of ri from sec-
tion 3.3.1, we utilize another bidirectional match-
ing module to obtain the response-aware speaker
representation H

s_i and speaker-aware response
representation H

i_s, respectively, which is with the
similar definition in section 3.3.2:

A
s_i = SoftMax(HS

W10
eHriT ),

A
i_s = SoftMax( eHriW11H

ST
),

H
s_i = Relu(As_i eHriW12),

H
i_s = Relu(Ai_s

H
S
W13),

(8)

where A
s_i and A

i_s are the word-level attention
matrices between the speaker’s own context S and
response ri.

Given the two representations H i_s and H
s_i as

input, the speaker-aware consistency information
Ĥ

s_i is defined as:

E
s_i = MaxPooling(Hs_i),

E
i_s = MaxPooling(H i_s),

g
si = �(Es_i

W14 + E
i_s

W15 + b5),

Ĥ
s_i = g

si � E
s_i + (1� g

si)� E
i_s

.

(9)

3.4 Response Prediction

Given the semantic information h
[cls]
i , history-

aware consistency Ĥ
h_i and speaker-aware con-

sistency Ĥ
s_i, we concatenate them to get the rea-

soning information H
i for response ri, which is

defined as:

H
i = [h[cls]i ; Ĥh_i; Ĥs_i]. (10)

The score P (ri|U,R) of the ith candidate re-
sponse is computed as follows:

P (ri|U,R) =
exp(W16H

i + b6)PM
i=0 exp(W16H

i + b6)
, (11)

where W16 2 R1⇥3d and b6 2 R1 are learned
parameters.

The loss function is defined as:

J(✓) = � 1

N

X
logP (r̂i|U,R) + �||✓||22, (12)

where � is a hyperparameter, ✓ are all trainable
parameters, N is the size of training examples in
the dataset, and r̂i is the ground-truth response.

4 Experiments

In this section, we conduct experiments on MuTual
reasoning and Ubuntu dialogue datasets to evaluate
our proposed method.

4.1 Experimental Settings
We first introduce some empirical settings, includ-
ing datasets, baseline methods, parameter settings,
and evaluation measures.

4.1.1 Datasets
We test our model on two public multi-turn dia-
logue datasets: MuTual and Ubuntu.

MuTual (Cui et al., 2020) consists of 8860 man-
ually annotated dialogues, which is based on Chi-
nese student English listening comprehension ex-
ams. Each dialogue has two speakers speaking in
turn and contains four candidate responses. The
goal of this task is to select the correct and logical
response according to the historical contexts. The
training, validation, and testing sets contain 7088,
886, and 886 pairs, respectively.

Ubuntu (Lowe et al., 2015) consists of English
multi-turn dialogues about technical support col-
lected from chat logs on Ubuntu forum. The dataset
contains 1 million context-response training pairs,
0.5 million validation pairs, and 0.5 million test-
ing pairs. Each pair has one positive response and
nine negative responses. Because there are some
sessions in Ubuntu dataset that require reasoning,
we utilize Ubuntu dataset to verify the reasoning
ability of FCM.

4.1.2 Baseline Methods
We use 11 baselines for comparison, including
the traditional TF-IDF (Paik, 2013), Dual LSTM
(Lowe et al., 2015), SMN (Wu et al., 2017), DAM
(Zhou et al., 2018), BERT (Devlin et al., 2019),
BERT-MC (Cui et al., 2020), GPT-2 (Radford
et al., 2019), Deep Utterance Aggregation (DUA)
(Zhang et al., 2018c), Interaction-over-Interaction
(IoI) (Tao et al., 2019b), Multi-hop Selector (MSN)
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Model Dev Test
R4@1 R4@2 MRR R4@1 R4@2 MRR

TF-IDF (Paik, 2013) 0.276 0.541 0.541 0.279 0.536 0.542
Dual LSTM (Lowe et al., 2015) 0.266 0.528 0.538 0.260 0.491 0.743
SMN (Wu et al., 2017) 0.274 0.524 0.575 0.299 0.585 0.595
DAM (Zhou et al., 2018) 0.239 0.463 0.575 0.241 0.465 0.518
GPT-2(Radford et al., 2019) 0.335 0.595 0.586 0.332 0.602 0.584
BERT (Devlin et al., 2019) 0.657 0.867 0.803 0.648 0.847 0.795
BERT-MC (Devlin et al., 2019) 0.661 0.871 0.806 0.667 0.878 0.810
FCM 0.696 0.884 0.824 0.692 0.884 0.823

Table 2: The metric-based evaluation on MuTual dataset.

(Yuan et al., 2019) and Multi-Representation Fu-
sion (MRFN) (Tao et al., 2019a).

4.1.3 Parameter Settings
We utilize the open-source pre-trained model
BERTbase* for the dialogue reasoning task.
BERTbase has 12-layer transformer blocks, 768
hidden-size, and 12 self-attention heads. It totally
contains 110M parameters. In order to make a fair
comparison between our model and baselines, 1)
for MuTual dataset, we refer to (Cui et al., 2020)
and set the max input sequence length to 350. We
set the dropout rate to 0.2. The L2 weight decays �
is set to 0.01. We employ Adam (Kingma and Ba,
2015) to optimize the model with a learning rate
1e-6. We run the experiments on two TITAN XP
GPUs with 12G memory and train for 10 epochs
with batch size of 4; 2) for Ubuntu dataset, we
use the same evaluation metrics which are used
in previous works (Gu et al., 2020; Zhang et al.,
2018c).

4.1.4 Evaluation Measures
We consider the dialogue reasoning task as a
retrieval-based response selection task and apply
traditional information retrieval metrics. On Mu-
Tual, we display the recall and Mean Recipro-
cal Rank measures(Voorhees and Tice, 2000), i.e.,
R4@1, R4@2, and MRR. On Ubuntu, we use
R10@1, R10@2, and R10@5 for evaluation.

4.2 Experimental Results
Now we demonstrate our experimental results on
the two public datasets.

4.2.1 Metric-based Evaluation
The metric-based evaluation results on MuTual and
Ubuntu are shown in Table 2 and Table 3. From

*https://github.com/huggingface/transformers

Model R10@1 R10@2 R10@5
SMN (Wu et al., 2017) 0.726 0.847 0.961
DUA (Zhang et al., 2018c) 0.752 0.868 0.962
DAM (Zhou et al., 2018) 0.767 0.874 0.969
IoI (Tao et al., 2019b) 0.796 0.894 0.974
MSN (Yuan et al., 2019) 0.800 0.899 0.978
MRFN (Tao et al., 2019a) 0.786 0.886 0.976
BERT (Devlin et al., 2019) 0.808 0.897 0.975
FCM 0.816 0.908 0.983

Table 3: The metric-based evaluation on Ubuntu.

the results, we can see that the performance of
well-designed RNN-based networks, such as Dual
LSTM and SMN, is relatively poor, which demon-
strates that such traditional models cannot deal
with the dialogue reasoning task. Although the
performance of BERT is better than other base-
line models, merely using self-attention between
context and candidate responses still misses fine-
grained consistency information. With the intro-
duction of fine-grained comparison information,
our FCM model outperforms all baseline models.
Take the R4@1 and R4@2 on the MuTual dev set
as an example, the R4@1 and MRR of our FCM
model are 69.6% and 82.4%, respectively, which
is significantly better than that of BERT-MC, i.e.,
3.5% and 1.8%. On Ubuntu, we find that FCM also
outperforms the BERT model on three metrics. In
summary, our FCM model has the ability to select a
more logically consistent response than baselines.

4.2.2 Case Study
To facilitate a better understanding of our model,
we present the examples on MuTual in Table 6.
From the results, we can see that our model is
more accurate in multi-choice prediction than the
traditional baselines and transformer models. In
this example, both response 1 and response 4 state
that “Sichuan food” is speaker B’s favorite food.
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MuTual Dev

Model R4@1 R4@2 MRR
FCM 0.696 0.884 0.824

w/o Response Comparison 0.680 0.875 0.815
w/o Consistency with History 0.690 0.878 0.820
w/o Speaker Consistency 0.685 0.880 0.816

Ubuntu

Model R10@1 R10@2 R10@5
FCM 0.816 0.908 0.983

w/o Response Comparison 0.814 0.904 0.980
w/o Consistency with History 0.812 0.903 0.978
w/o Speaker Consistency 0.812 0.902 0.979

Table 4: Ablation experimental results of our FCM
model on MuTual Dev and Ubuntu datasets.

BERT and BERT-MC agree with this statement.
However, from speaker A’s historical utterance “I

know Guangdong food is your favorite kind of Chi-

nese food.”, we can guess that speaker B’s favorite
is “Guangdong food”. According to the above
analysis, we argue that the two baselines lack the
modeling of fine-grained consistency reasoning,
especially for the speaker’s own consistency, so
they predict the wrong response, which proves the
effectiveness of logical consistency.

Given the wrong response 2 and the correct re-
sponse 3, the biggest difference between them is
the utterance “I know where is it.”. Using the con-
sistency reasoning mechanism, we can infer from
the speaker A’s historical utterance “I do not know

where it is.” that this statement is wrong. How-
ever, baselines do not use the fine-grained response
comparison mechanism and can not focus on the
fine-grained differences between response 2 and
response 3, and then it predicts the wrong response
2, which illustrates the importance of fine-grained
response comparison in logic consistency. In sum-
mary, compared with baseline models, our pro-
posed model FCM, which carries the fine-grained
comparison ability, is capable of inferring logic
consistency more accurately for the multi-turn dia-
logue reasoning task.

4.3 Ablation Study

To study the contributions of the main compo-
nents in FCM, we conduct ablation experiments,
mainly including removing the Fine-grained Re-
sponse Comparison module, Consistency Rea-
soning with History module, and Enhancing
Speaker Consistency module from our proposed
model, respectively.

The results on MuTual and Ubuntu are shown

Model R4@1 R4@2 MRR
FCM 0.6964 0.8841 0.8236

coarse-grained 0.6817 0.8772 0.8161
simple-add 0.6839 0.8837 0.8192
no-source 0.6884 0.8818 0.8202
no-gate 0.6871 0.8795 0.8189

Table 5: Analysis of fine-grained response comparison.

in Table 4. We can see that without response com-
parison, the performance of the model drops in all
three metrics. Taking the Mutual dev set as an ex-
ample, the model decreased by 1.6%, 0.9%, and
0.9% on R4@1, R4@2, and MRR, respectively,
which proves the importance of fine-grained re-
sponse comparison in the reasoning process. When
without whole history consistency reasoning, we
can see that the performance is reduced, which
demonstrates the necessity of modeling consistency
between each candidate and the history. When with-
out speaker consistency reasoning, we can see that
the performance is also reduced. Taking the Mu-
Tual dev set as an example, the measures decreased
by 1.1% and 0.8% on R4@1 and MRR, respec-
tively. This reduction proves that enhanced speaker
consistency is helpful for the model to calculate the
score of each candidate response.

4.4 Analysis of Fine-grained Response
Comparison

To prove the effectiveness of our fine-grained re-
sponse comparison module, we have conducted ex-
periments on each operation of this module, mainly
focusing on the operations of paired correlation
calculation and gate-based fusion.

Analysis of paired correlation calculation To
check the validity of these operations, we select a
simple method to get the coarse-grained correlation,
instead of Equation 2 and Equation 3, which is
defined as follows:

A
ri,j = SoftMax(Hri(Hrj )T ),

H
ri,j = A

ri,jH
rj .

(13)

From the results in Table 5, with (coarse-grained),
we observe that the performance of the FCM
decreases in R4@1, R4@2, and MRR, which
proves the effectiveness of our designed fine-
grained method for paired correlation.
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The Example of MuTual Dataset

Context

speaker A It’s already 30. How about preparing supper now?
speaker B But I don’t want to cook today. I’m tired of cooking every day.

speaker A How about having supper out tonight? There is a new Chinese restaurant on the third
street. Tom went there yesterday, and he said it was great.

speaker B Really? What kinds of food does it have? You know, I don’t like food that’s too spicy.

speaker A Don’t worry. One of the chefs is from Guangdong.
I know Guangdong food is your favorite kind of Chinese food.

speaker B That’s great. Do you know how to get there?

speaker A I do not know where it is. I just know it’s on the third street.
Don’t worry. I’m sure we will find it.

speaker B But I don’t feel like walking now. It’s still so hot outside.
speaker A Then how about asking Tom to pick us up? We can treat him to supper.
speaker B That’s a good idea.

Candidates

1) speaker A: So since Sichuan food is your favorite kind of Chinese food,
why don’t we go there after work?

2) speaker A: Ok, dear, let’s go. I know where is it.
3) speaker A: Ok, dear, let’s go!
4) speaker A: Great. After school, we can go there to eat your favorite Sichuan food.

Model BERT BERT-MC GPT-2 FCM
Predictions 1) 4) 2) 3)

Table 6: The selected candidate response from our FCM model and baselines on MuTual.

Analysis of gate-based fusion In order to prove
the effectiveness of the gate-based fusion, we de-
sign the following experiments: 1) (no-source): At
the calculation of gate value g

ri in Equation 5, we
remove the original response representation H

ri

and only utilize the updated response representa-
tion E

ri ; 2) (simple-add): In Equation 5, we re-
move the operation of the weight-based summa-
rization; 3) (no-gate): We directly remove the gat-
ing mechanism and use the output of Equation 4 to
represent the response-level compared information.

The results are shown in Table 5, and we obtain
the following conclusions: 1) With (no-source),
the performance of our model decreases, which
shows that the retention of the original informa-
tion is necessary to calculate gate value g

ri ; 2)
With (simple-add), the updated response informa-
tion and the original response information cannot
be treated equally; 3) With (no-gate), we still get a
lower performance, which means that after obtain-
ing new knowledge, the response-level compared
information may lose the original information.

4.5 Generality of FCM

We test the generality of FCM in the pre-trained
language models. Specifically, we apply FCM
to the widely used models: BERTbase, BERTlarge,
RoBERTabase, RoBERTalarge, ELECTRAbase and
ELECTRAlarge, respectively. The experiment re-
sults are shown in Figure 2. From the results, we
can discover that after applying our model to differ-

Figure 2: The R4@1, R4@2 and MRR performance
of different pre-trained language models with FCM on
MuTual.

ent pre-trained language models, their performance
can all be improved, which proves that FCM is
generally effective to the widely used pre-trained
language models.

5 Conclusion

In this paper, we focus on multi-turn dialogue rea-
soning tasks and propose the FCM model. The
motivation comes from the fact that the widely
used dialogue models only focus on the syntactic
and semantic relevance but fail to model the logi-
cal consistency between the dialogue history and
the generated response. This task is challenging
because there are only slight differences between
the illogical response and the dialogue history. Our
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core idea is to propose a fine-grained comparison
mechanism to focus on the fine-grained differences
in the representation of each response candidate,
and then each candidate representation is compared
with the history to obtain a consistency score. In
the future, we plan to further investigate the fine-
grained correlation between different speakers, and
utilize this information to help improve our model.
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