
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4257–4272
November 7–11, 2021. ©2021 Association for Computational Linguistics

4257

Micromodels for Efficient, Explainable, and Reusable Systems:
A Case Study on Mental Health

Andrew Lee
University of Michigan
ajyl@umich.edu

Jonathan K. Kummerfeld
University of Michigan

jkummerf@umich.edu

Lawrence C. An
University of Michigan
lcan@umich.edu

Rada Mihalcea
University of Michigan

mihalcea@umich.edu

Abstract

Many statistical models have high accuracy
on test benchmarks, but are not explainable,
struggle in low-resource scenarios, cannot be
reused for multiple tasks, and cannot easily in-
tegrate domain expertise. These factors limit
their use, particularly in settings such as men-
tal health, where it is difficult to annotate
datasets and model outputs have significant im-
pact. We introduce a micromodel architecture
to address these challenges. Our approach al-
lows researchers to build interpretable repre-
sentations that embed domain knowledge and
provide explanations throughout the model’s
decision process. We demonstrate the idea
on multiple mental health tasks: depression
classification, PTSD classification, and suici-
dal risk assessment. Our systems consistently
produce strong results, even in low-resource
scenarios, and are more interpretable than al-
ternative methods.

1 Introduction

Systems in domains such as healthcare (Caruana
et al., 2015) and finance (Heaton et al., 2016) often
need to make difficult decisions that can lead to
severe consequences. Building useful systems in
these settings is difficult for two key reasons: data
availability and the need for explanations. Raw
data is often limited and annotating it requires spe-
cialized knowledge (Aguirre et al., 2021). When
a dataset is available for a task, research on mod-
els will often overfit, developing optimizations that
cannot be reused for other datasets or tasks (Gun-
tuku et al., 2017; Matero et al., 2019; Chen et al.,
2019). Attempts to reduce data needs by integrating
domain knowledge often result in inefficient and ex-
pensive models (Yang et al., 2019; Liu et al., 2020;
Xie et al., 2020). Integrating knowledge graphs is
another alternative (Zhang et al., 2019), but poses
challenges in domains in which domain knowledge

is abstract or empirical (Deng et al., 2020). With-
out explanations of how these models reach their
decisions, stakeholders cannot fully trust them. In
fact, despite recent advances in neural networks, it
has been found that medical experts prefer simpler
logistic regression models because they are more
interpretable (Caruana et al., 2015).

In this paper, we tackle these challenges – ex-
plainability and reusability of models, robustness
under low-resource scenarios, and integration of
domain knowledge by proposing a new paradigm
called a micromodel architecture. In this approach,
a system orchestrates a collection of specialized
models to build easily interpretable feature vec-
tors that integrate domain knowledge. Each micro-
model is a binary classifier that represents a specific
linguistic behavior. Simple aggregators combine
the output of micromodels to form a feature vector.
Finally, a task-specific model makes a prediction
based on the feature vector. Our design provides ex-
planations along every step of its decision making
process, including global and local feature impor-
tance scores, and evidence of how the input text
contributes to the model’s decisions.

Training this type of system involves two phases.
First, in order to build each micromodel, we in-
troduce a data collection pipeline that uses pre-
trained language models such as BERT (Devlin
et al., 2019). This training occurs once and then the
micromodels can be reused across multiple tasks
within a single domain. Second, the task-specific
model is trained on the dataset of interest. During
this phase the micromodels are not modified.

We demonstrate the benefits of micromodels in
the important domain of mental health. Recent
studies have shown a rapid increase in the preva-
lence of depression symptoms in various demo-
graphics (Ettman et al., 2020), along with elevated
levels of suicidal ideation (Czeisler et al., 2020).
Because our micromodels represent domain-level
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linguistic patterns, they can be reused for multi-
ple tasks within the same domain, while requiring
only half or sometimes just a quarter of the task-
specific annotation data, and also having the benefit
of explainability across the entire pipeline.

The primary contributions of this paper are: (1)
An efficient and reusable design using micromodels
as modules to tackle various tasks within a domain
by integrating domain knowledge; (2) A data col-
lection pipeline to build datasets for micromodels;
(3) An explainable procedure for our system’s de-
cision making process; and (4) An analysis of the
reusability and efficiency of our approach under
low-resource scenarios when applied to tasks such
as depression classification, PTSD classification,
and suicidal risk assessment.

2 Background and Related Work

We find inspiration in previous work that addressed
explainability, reusability, efficiency under low-
resource scenarios, and integration of domain ex-
pertise. We focus primarily on research that was
carried out in the domain of mental health.

Explainability. Neural networks are black-box
models that lack transparency and explainability.
Structural analyses of neural networks (Vig et al.,
2020), such as probing, has become a popular ap-
proach to investigate linguistic properties learned
by language models (Wu et al., 2021; Chi et al.,
2020; Belinkov et al., 2018; Hewitt and Manning,
2019; Tenney et al., 2018). However, these analy-
ses do not explain how the models use their latent
information for their tasks and how they reach their
decisions. These drawbacks are especially prob-
lematic in the mental health domain (Carr, 2020).
Linear models implemented with feature engineer-
ing can be analyzed via global feature importance
scores, but they do not necessarily provide expla-
nations at a query-level. Model-agnostic explana-
tion frameworks such as SHAP or LIME values
(Lundberg and Lee, 2017; Ribeiro et al., 2016) can
provide query-level, or local, feature importance
scores, but they are approximate explanations of
the underlying model. Our approach provides (1)
global and local feature importance scores, and (2)
evidence from input text data that led to its output.

Reusability. Recent models in the mental health
domain are often task-specific or data-specific. Ex-
amples include features extracted from metadata
(Guntuku et al., 2017), or neural architectures that

either fine-tune their embeddings (Orabi et al.,
2018) or have task-specific layers (Matero et al.,
2019). While task-specific designs can boost ac-
curacy, they are difficult to extend to multiple ap-
plications. Furthermore, Harrigian et al. (2020)
show that models trained for a task in the mental
health domain do not generalize across test sets that
originate from different sources. Because our mi-
cromodels are built on task-agnostic data, they are
reusable for multiple applications within a domain.

Efficiency in Low-Resource Scenarios. Obtain-
ing data in the mental health domain is difficult
because of the sensitive nature of data and the
need for expert annotators. While researchers have
turned to proxy-based annotations, in which data
is annotated using automated mechanisms (Yates
et al., 2017; Winata et al., 2018), these datasets
have caveats and biases (Aguirre et al., 2021; Cop-
persmith et al., 2015). These data limitations make
it difficult to apply standard neural methods.

Integrating Domain Expertise. Psychologists
have long studied effective methods for assess-
ing patients for various mental health illnesses.
Assessment modules such as the Patient Health
Questionnaire-9 (PHQ-9) (Kroenke et al., 2001)
or PTSD Checklist (PCL) (Ruggiero et al., 2003)
allow physicians to reliably screen for the presence
or severity of various mental statuses.

Similarly, cognitive distortions are irrational or
exaggerated thought patterns that can reinforce neg-
ative emotions, often exhibited by depressed pa-
tients (Beck, 1963). Recognizing and treating these
negative thought patterns is the focus of cognitive-
behavior interventions (Kaplan et al., 2017). The
PHQ-9 and an example categorization of cognitive
distortions can be found in the appendix.

While these assessment modules and methods
are used in clinical settings, it has been unclear
how to incorporate them into automated systems.
In our work, we are able to represent responses
to these questionnaires and instances of cognitive
distortions using micromodels. This allows our
models to leverage domain knowledge.

3 Micromodel Architecture

Our micromodel approach is inspired by recent
work in microservice architectures—an organi-
zational design in which applications are built
from a collection of loosely coupled services
(Nadareishvili et al., 2016). Each of these services
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Figure 1: One training step for a task-specific classifier, given a collection of pre-built micromodels. The input
(i) is a set of utterances and a single label. Our micromodels (ii) process each utterance to produce a set of binary
vectors (iii). Here the vectors have three elements because our example contains three utterances. Aggregators (iv)
summarize the binary vectors in a feature vector (v). A task specific classifier takes the feature vector as input and
makes a prediction, which is compared to the true label to make an update. Note that the classifier only sees the
feature vector (v) and its corresponding label for training.

typically has a fine-grained focus of responsibility.
In a similar manner, we build a collection of micro-
models, with each one responsible for identifying
a specific linguistic behavior.1

3.1 Micromodels

A micromodel identifies a specific linguistic behav-
ior. We use binary classifiers for their simplicity,
but our architecture is general enough to allow for
other representations. A micromodel can rely on
any algorithm, from decision trees and heuristics
to linear models and neural networks.

Each micromodel is responsible for representing
a specific linguistic behavior. For mental health,
we developed a set of micromodels that represent
examples of cognitive distortions or responses to
the PHQ-9 mental health questionnaire: one mi-
cromodel identifies expressions of apathy or lack
of enthusiasm (PHQ-9 question 1), while another
identifies examples of all-or-nothing thinking (cog-
nitive distortion), and so on. We describe the pro-
cess of constructing a micromodel in Section 3.3.

3.2 Architecture

Figure 1 shows our micromodel architecture. At
the heart of the architecture is the collection of mi-

1This is where our term micromodel comes from – each
model has a fine-grained focus of responsibility. We are not
referring to each model’s memory footprint.

cromodels M = {mm1, ...,mmn}. Micromodels
are pre-built using a task-agnostic dataset (see Sec-
tion 3.3), and are not updated during task-specific
training.2 The six steps of our architecture are:

(i) Let (Si, yi) be one training data instance,
where Si contains multiple utterances {s1, ..., sk}
and yi is the corresponding label for the whole set.
For instance, imagine a task of predicting a Twitter
user’s mental status given their recent tweets. Si

would be the user’s tweets, where each s ∈ Si is
a single tweet, and yi is the user’s mental status.
Note that there are no utterance-specific labels.

(ii, iii) Given (Si, yi), each micromodel mmj ∈
M produces a binary value for each utterance
s ∈ Si. A value of 1, or a "hit", indicates that
utterance s is an example of the linguistic behavior
that mmj is looking for. We only use binary values
in this work, but our architecture allows non-binary
outputs too. The result is n binary vectors v of
length k, one from each micromodel. Note that
each binary vector vj represents the indices in Si

where the target behavior of mmj can be found.
(iv, v) Each binary vector is fed through a set

of aggregators. Each aggregator maps the set of
binary vectors into a feature vector that can be used

2This is an intentional choice to prevent model drift. If
we allowed updates to the task-specific models their model
capacity may be repurposed to do something other than their
original design intended.
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for classification. An aggregator can perform any
computation. For example, it could calculate the
ratio of hits in the binary vector. The resulting fea-
ture values would then represent the proportion of
utterances that demonstrate each specific linguistic
behavior. We focus on one-to-one mappings be-
tween a micromodel and a feature value, but they
can also be many-to-one or one-to-many operations.
Together, steps (ii)-(v) could be considered a model
that converts input text to a vector representation
in an interpretable way.

(vi) The feature vector and its corresponding la-
bel yi are passed to a task-specific classifier. We
use explainable boosting machines (EBM) (Nori
et al., 2019; Caruana et al., 2015), a type of gen-
eralized additive model (GAM) (Lou et al., 2012,
2013). These produce a prediction by adding to-
gether a set of functions of one or two input fea-
tures. Each function is trained using bagging and
gradient boosting. The result is a model that is
more flexible than a linear model, while still being
easy to interpret since it can be visualized as a set
of graphs, one per function (see Section 5 for an
example of this in practice).

While the above description was used for our
experiments, our framework itself is more general.

First, our micromodels are not limited to binary
values (iii). They can output continuous values,
such as BERT similarity scores (Section 3.3), as
long as the subsequent aggregators (iv) know how
to process them. A simple example of such ag-
gregation might be max-pooling the micromodel
output vector (iii). In this example, the resulting
feature value (v) would then represent the maxi-
mum similarity score that a micromodel identified
in the task-specific training data (i).

Second, in our experiments, the task-specific
classifier only sees the feature vector (v) during
training, and not the original input text data. This
is not a limitation of our architecture – other al-
gorithms of choice could be used, including those
that use neural features directly from the input text.
This may improve accuracy, but at the cost of in-
terpretability. Given the sensitive and high-risk do-
main of healthcare, where even the most accurate
models become impractical without explainability
(Caruana et al., 2015), we use EBMs in this work.

Third, researchers can give their own definition
of "Text Utterances" (i). In the CLPsych 2015
Shard Task (Section 4.1), we define each "Text Ut-
terance" to be a single tweet from a user. However,
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Figure 2: Data collection pipeline for each micro-
model. Our approach is an iterative approach, in which
the example corpus is updated with paraphrases. Op-
tionally, an outlier detection module can be incorpo-
rated in order to find the sentences that would add the
most diversity to the example corpus.

a different granularity could have been used, such
as a set of tweets or all tweets from a user. Such
grouping allows micromodels to capture contextual
information from each training data instance.

Note that only the task-specific classifier’s
weights are updated during training. The micro-
models are not updated – they are only used to
extract the linguistic patterns that we care about.
This is done for a few reasons: (1) We do this to
avoid each micromodel’s representation from shift-
ing away from their intended meaning; (2) Fine-
tuning each micromodel requires labels at a micro-
model granularity, rather than task-level granular-
ity. For instance, in the CLPsych 2015 Shared Task
data (Section 4.1), this means instead of (# of users)
annotations, we would need (# of micromodels) *
(# of tweets per user) * (# of users) annotations;
and (3) Not all micromodels have "weights", as
they can also be arbitrary heuristics (Section 3.1).

3.3 Building Micromodels using BERT

Each micromodel is intended to detect a specific
linguistic behavior. In order to build robust linguis-
tic representations, it is critical to give each micro-
model a diverse and representative sample of data.
However, annotating data can be time consuming
and expensive. We use BERT and Universal Sen-
tence Encoders (Cer et al., 2018) to rapidly col-
lect representative samples for each micromodel.
Our approach is inspired by work on collecting
data for dialogue systems. Specifically, Kang et al.
(2018), Larson et al. (2019), Larson et al. (2020),
and Stasaski et al. (2020) proposed ways to build a
diverse dataset by iteratively collecting data, start-
ing from a seed set and crowdsourcing paraphrases.
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Figure 2 depicts our pipeline for building our
micromodel datasets. For each micromodel, we
build an example corpus and gather paraphrases.
While crowdsourcing can be thought of a genera-
tive approach for paraphrasing, we take a retrieval
approach by using a BERT model to search for
semantically similar sentences in a separate cor-
pus of unstructured text data. In particular, we use
anonymized posts from the r/depression subreddit3,
a peer support forum for anyone struggling with
a depressive disorder. While any corpus can be
used to retrieve paraphrases, it is important that
the linguistic phenomena that is of interest will
be prevalent in the corpus. We used Sentence
Transformers (Reimers and Gurevych, 2019)4 and
the "paraphrase-xlm-r-multilingual-v1" pre-trained
model for our semantic similarity searches.

There are multiple ways to initialize the example
corpus. One can build lexical queries by speci-
fying patterns based on parsers or lexicons and
apply them on a text corpus. For instance, to find
examples of the labeling cognitive distortion (at-
taching a negative label to oneself), a lexical query
might look for sentences that contain a first per-
son pronoun with a nominal subject relation with
a negative token according to the LIWC lexicon
(Pennebaker et al., 2001).

While this may seem like an overly simple and
generic pattern, because the lexical query is ap-
plied on a text corpus that pertains to depression,
we are able to retrieve many examples of the target
behavior, in this case the labeling cognitive distor-
tion. It is important to consider which text corpus
the lexical query is being applied to. To prevent
micromodels from overfitting on these rule-based
patterns, it is critical to run through multiple itera-
tions of the BERT similarity search while updating
the example corpus each round. This step will iden-
tify examples of the target linguistic behavior that
do not match the lexical query.

Note that this step can be pseudo-automated in a
couple of ways. One way is to apply a "negation"
lexical query on the BERT results. For instance, in
the example lexical query above, given new exam-
ples of the labeling cognitive distortion according
to BERT, one might apply a lexical query for utter-
ances that do not contain a first person pronoun or a
negative LIWC token. This would identify seman-
tically similar but syntactically diverse samples to

3https://www.reddit.com/r/depression/
4https://github.com/UKPLab/

sentence-transformers

be added back to the example corpus.
We also follow Larson et al. (2019) and use a

Universal Sentence Encoder to identify outliers
from our BERT results. This helps us identify ut-
terances that would add the most diversity when
added back to the example corpus. We use Snorkel5

(Hancock et al., 2018; Ratner et al., 2017, 2016) to
construct our lexical queries.

Note that given an example corpus, applying a
BERT similarity search between an input sentence
and the example corpus can also be a form of a
micromodel. Once we have collected examples
of a specific linguistic behavior, if the input sen-
tence has a similarity score above a threshold value
with any of the examples, our micromodel would
return a value of 1, and a value of 0 otherwise.
We call this a BERT query and use a handful of
them for our experiments. These BERT queries are
able to identify examples of nuanced concepts such
as cognitive distortions or a response to a PHQ-9
question, allowing us to build contextual features
that represent domain expertise. Note that a BERT
query micromodel does not require training, as we
only use its inference against an example corpus.

3.4 Discussion: Feature Engineering,
Ensemble Models, and Micromodels

Prior to neural models, many NLP systems used
linear models with manually defined input features.
The process of defining these input features, some-
times called feature engineering, includes common
features (e.g., unigrams, bigrams, trigrams) and
domain-specific features (e.g., what time of day
this tweet was posted). One appeal of neural net-
works is that they can automatically learn how to
combine components of the input (e.g., unigrams,
timestamps) to get informative features. While our
approach has some similarities with feature engi-
neering, there are several key differences.

First, micromodels are using external data (such
as the r/depression subreddit - Section 3.3) to learn
specific linguistic phenomena. This means they can
learn things that cannot be learned from the task-
specific data alone, particularly if data is limited.

Second, feature engineering typically produces
a huge number of features, whereas we have on
the order of tens of micromodels. This is critical
for interpretability, as we can look at the output
of all our micromodels and at the patterns learned

5https://github.com/snorkel-team/
snorkel

https://www.reddit.com/r/depression/
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/snorkel-team/snorkel
https://github.com/snorkel-team/snorkel


4262

by the EBMs. In contrast, it would be difficult to
meaningfully interpret, for example, the weights
assigned to all bigrams.

Third, the primary question for feature engineer-
ing is how to best summarize the available training
data, while the primary questions for our approach
are what data should be leveraged and what mod-
els should be built to understand and describe the
training data. Another way to view this nuance is
that feature engineering extracts task-level features
that suit the data for a given task. Micromodels, on
the other hand, build task-agnostic, domain-level
features that can be applied on multiple tasks.

Lastly, features from prior work are typically
syntactic, statistical, or derivative features, such as
lexical term frequencies (Coppersmith et al., 2014),
extractions from metadata (Guntuku et al., 2017),
or sentiment analyses scores (Chen et al., 2019).
In addition to these features, we are able to build
contextual features using contextualized language
models, which are able to capture more nuanced
concepts reflecting domain expertise. While word
embeddings have been used as features before (Mo-
hammadi et al., 2019), they are often difficult to
interpret. On the other hand, because the researcher
defines the behavior of each aggregator, our result-
ing feature vector is easy to interpret.

Because a micromodel architecture orchestrates
multiple models, it may appear similar to ensemble
learning. The key difference is that every model
in an ensemble learns the same task, while the mi-
cromodels each have a different aim. Micromodels
are also intended to be used across tasks, whereas
the models in an ensemble are task specific.

4 Evaluation

We evaluate our micromodel architecture in terms
of accuracy, reusability, and efficiency under low-
resource scenarios. We also address the explain-
ability properties of our model in Section 5.

4.1 Data

CLPsych 2015 Shared Task (Coppersmith
et al., 2015). This data contains tweets from 1,146
users labeled as Depression, PTSD, or Control.
Users annotated as depressed or PTSD were based
on self-identified diagnosis in tweets, which were
removed afterwards. For each user identified as de-
pressed or PTSD, an age- and gender-matched user
was randomly sampled as a control user. For each
user, up to 3,000 of their most recent public tweets

were collected. The tasks include (1) classifying
depression users versus control users (D vs. C),
(2) classifying PTSD users versus control users (P
vs. C), and (3) classifying depression users versus
PTSD users (D vs. P).

CLPsych 2019 Shared Task (Shing et al., 2018;
Zirikly et al., 2019). This data is from Reddit
users who have posted in the r/SuicideWatch 6

subreddit, a peer support forum for anyone strug-
gling with suicidal thoughts, and were annotated
with 4 levels of suicidal risk (no risk, low, mod-
erate, severe). A group of users who have never
posted on r/SuicideWatch was used as a control
group. The shared task includes 3 tasks: Task A is
risk assessment looking only at the users’ posts in
r/SuicideWatch. Task B is also risk assessment, but
also provides posts across other subreddits. Task
C is about screening, with only posts that are not
in r/SuicideWatch available, which removes self-
reported evidence of risk.

4.2 Experimental Setup

We use 20 micromodels consisting of algorithms
such as SVM, BERT queries, as well as heuristics.
The choices for our micromodels were mainly mo-
tivated by existing tools commonly used by prac-
titioners in the mental health domain, such as the
PHQ-9 questionnaire and cognitive distortions. Out
of the PHQ-9 questions and cognitive distortions,
those with abundant examples in the r/depression
subreddit were built as micromodels. Other lin-
guistic behaviors that practitioners have studied
(Zahn et al., 2015; Abraham and Fava, 1999; Levy
and Deykin, 1989; Swearer et al., 2001; Cohan
et al., 2018) were included as well. Details about
each micromodel can be found in Table 1. For our
SVM micromodel, we use a linear kernel and a
bag of words feature representation 7. Our Mental
Illness, Antidepressants, Depression, and PTSD
keyword micromodels use a carefully curated map-
ping of health conditions to n-grams8, which were
extracted from Benton et al. (2017), and simply
return 1 if any corresponding keywords are found
in the input utterance. Similarly, our LIWC micro-
models return 1 when a keyword for each emotion
is found according to LIWC. Each BERT query

6www.reddit.com/r/SuicideWatch/
7https://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVC.html
8https://github.com/kharrigian/

mental-health-keywords

www.reddit.com/r/SuicideWatch/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://github.com/kharrigian/mental-health-keywords
https://github.com/kharrigian/mental-health-keywords
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Name Algorithm Category Corpus Size Reference that motivated this micromodel

All-or-Nothing Thinking SVM Cognitive Distortion - Beck (1963); Bridges et al. (2010)
Labeling BERT Query Cognitive Distortion 106 Beck (1963); Bridges et al. (2010)
Fortune-Telling Error BERT Query Cognitive Distortion 220 Beck (1963); Bridges et al. (2010); Sastre-Buades et al. (2021)
Loss of Concentration BERT Query PHQ-9 38 Kroenke et al. (2001)
Feeling Down, Depressed BERT Query PHQ-9 195 Kroenke et al. (2001)
Poor Appetite or Overeating BERT Query PHQ-9 49 Kroenke et al. (2001)
Self Harm BERT Query PHQ-9 54 Kroenke et al. (2001)
Feeling Worried, Nervous, Anxious BERT Query GAD-7 66 Spitzer et al. (2006)
Diagnosis BERT Query Other 55
Self-Blaming BERT Query Other 37 Zahn et al. (2015)
Substance Abuse BERT Query Other 109 Abraham and Fava (1999); Levy and Deykin (1989)
Victimhood BERT Query Other 73 Swearer et al. (2001)
Mental Illness Keywords Logic Other - Cohan et al. (2018)
Antidepressants Keywords Logic Other -
Depression Keywords Logic Other -
PTSD Keywords Logic Other -
LIWC Sadness Logic Other - Cohan et al. (2018)
LIWC Anger Logic Other - Cohan et al. (2018)
LIWC Joy Logic Other - Cohan et al. (2018)
LIWC Fear Logic Other - Cohan et al. (2018)

Table 1: The micromodels we developed for this work.

Model Expl? Reuse? D vs C P vs C D vs P
n = 654 n = 492 n=573

LR 0.8 0.817 0.785
CNN 0.79 0.85 0.87
UMD 0.86 0.893 0.841
WWBP 0.904 0.916 0.81
MM 0.821 0.936 0.892

Table 2: AUC scores for various approaches, where
LR is a logistic regression model, CNN is a convolu-
tional neural network, and MM is our micromodel ap-
proach. UMD is from Resnik et al. (2015), WWBP is
from Preotiuc-Pietro et al. (2015) – these two systems
were the only ones that reported AUC scores and are
directly comparable to ours. We also indicate whether
each approach is explainable and reusable.

micromodel has its own example corpus built us-
ing our data collection pipeline (Section 3.3), and
uses a similarity score threshold value of 0.85. We
use two aggregators. One is as described in Sec-
tion 3.2, which returns the ratio of hits in a binary
vector. The other aggregator looks for "windows":
segments within each binary vector where many
hits occur close to one another. These windows
may represent temporal "episodes" – for instance,
a period in which someone felt apathetic (PHQ-9
question 1), or a period in which someone had a
sleeping disorder (PHQ-9 question 3) and so on.

4.3 Results and Analyses

Accuracy. We follow prior work (Resnik et al.,
2015; Preotiuc-Pietro et al., 2015) and use ROC
area-under-the-curve (AUC) to evaluate the accu-
racy of our approach, along with a wide range of
baseline models and present them in Table 2. We

include a logistic regression model, which has been
a simple yet effective benchmark in similar tasks
(Harrigian et al., 2020), as well as a convolution
neural network (CNN) based on Orabi et al. (2018).
Lastly we include any AUC scores that were avail-
able from system submissions from the shared task.
Our approach consistently demonstrates high AUC
scores, with the highest AUC scores for classifying
PTSD users against control users and depression
users against PTSD users.

Efficiency in Low-Resource Scenarios. Gather-
ing and annotating data can be both time consum-
ing and expensive, especially within the mental
health domain. Our approach can work with rel-
atively little task-specific data. The micromodels
are not retrained, and the task-specific classifier
can work with limited data because it is (1) a rel-
atively simple model, and (2) informed by the mi-
cromodels. Figure 3 shows the AUC scores of our
approach compared to our baseline models with
various amounts of task-specific annotated data.
We consider five sets; the first has a random sample
of 1/16th of the available training data, and each
subsequent set has twice as much data. We show
results averaged over five runs of this data sampling
process. Unlike the baseline models, our approach
stays robust down to just 1/4th of the training data.

Reusability. Because micromodels are task ag-
nostic, they can be reused for tasks within the same
domain. This contrasts with the standard way of
developing models, where the annotation scheme,
embeddings, model structure, and so on, are care-
fully designed, curated, or fine-tuned per task.
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Figure 3: AUC scores for various models under low-resource scenarios. Each curve is an average of 5 runs, with
random samples of training data for each run. Our micromodel approach (MM) converges in performance with
half, and sometimes just a quarter of the task-specific annotation data. While logistic regression (LR) sees a more
linear improvement and a convolutional neural network (CNN) sees sporadic jumps in performance, our approach
flattens out early, indicating early convergence and less reliance on the annotated data.

In order to demonstrate the reusability of our
micromodels, we also apply them to the CLPsych
2019 shared task. Note that none of the micromod-
els were updated – only the weights for the EBM
classifier were learned using the annotated data. Ta-
ble 3 shows the macro-F1 scores of our approach
amongst the systems submitted to the shared task9.
Because we care about reusability, they are sorted
by their average ranking across the three tasks.

There are a couple of observations to make from
these results. First, despite not having any task-
specific design in place, our approach ranks 3rd
amongst the systems on average. Second, our ap-
proach is one of the best performing approaches
for Task C. Unlike the first two assessment tasks,
Task C is concerned with screening for suicidal
risk given none of their posts from r/SuicideWatch.
Because of the lack of self-reported evidence of
any suicidal ideation, this task was considered the
hardest task, as evident by the low F1 scores. Since
our suite of micromodels are built to identify vari-
ous linguistic traits of depressive users, even with-
out immediate signals of suicidal ideation, our ap-
proach is able to detect signs of depression, a pre-
cursor for suicide risk, and screen for users with po-
tential risk of suicide. We believe this demonstrates
our micromodels’ ability to understand domain-
level concepts, rather than task-specific patterns,
thus allowing our micromodels to be reused in mul-
tiple tasks within the same domain.

5 Step-wise Explanations

Our micromodel architecture provides various lev-
els of explanations during each step. We first

9We exclude systems without paper submissions

r/SuicideWatch Data?
Only Yes No

Model (Task A) (Task B) (Task C)

Mohammadi et al. 0.481• 0.339• 0.268•
Matero et al. 0.459• 0.457• 0.176
Micromodels 0.395 0.274 0.255
Ambalavanan et al. 0.477• 0.261 0.159
Ríssola et al. 0.291 0.311• 0.136
Morales et al. 0.178 0.212 0.165
Iserman et al. 0.402• 0.148 0.118
Bitew et al. 0.445• - -
Allen et al. 0.373 - -
Hevia et al. 0.312 - -
Ruiz et al. - 0.370• -
Chen et al. - 0.358• -

Table 3: Macro-F1 scores of micromodels and sys-
tem submissions from the CLPsych 2019 Shared Task.
To understand the reusability of each system across the
three tasks, they are sorted by the average of their rank-
ings on each task. • indicates scores higher than that of
our approach.

demonstrate the explanations provided by EBM
classifiers before walking through each step.

EBMs are additive models in which a nonlinear
function fi is learned for each input feature i. One
can calculate global feature importance scores by
applying each feature function fi on every point t
in the training data. We then take the average of
the absolute value of fi(t) for each feature i:

FeatureImportancei = avg(abs(fi(t))), t ∈ T (1)

where T is our entire training data. Figure 4 shows
the top 10 most important features for the three
CLPsych 2015 shared tasks. Similarly, we can
explain the model’s decision for a specific instance
t ∈ T by simply applying fi(t) for each i.

Inspecting the plots of each fi also provides a
granular explanation of our classifier. Figure 5 con-
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Figure 4: Ten most important features according to
their average global feature importance scores on the
three CLPsych 2015 shared tasks: depression versus
control, PTSD versus control, and depression versus
PTSD. Features ending in "w" are features from the ag-
gregator that looks for windows of hits.

tains examples of two of the feature functions from
the depression detection task. The x-axis indicates
the ratio of hits for each micromodel – in the con-
text of this task, this represents the ratio of tweets
per user that contain a specific linguistic behavior.
While fDiagnoses produces a strong signal when a
user contains any tweets that exhibit a diagnosis
statement, fLabeling produces a strong signal when
more than roughly 0.75% of a user’s tweets contain
an example of the labeling cognitive distortion.

Other than the EBM classifier, our approach also
provides explanations throughout each step. The
first step consists of the micromodels, whose ex-
plainability depends on their underlying algorithms.
The choice of these models likely involves a trade-
off between accuracy and explainability.

The binary vectors produced by the micromodels
indicate the utterance in which a specific linguistic
behavior can be found. This provides provenance
for our feature vector – we can use them to look
up the sentences in the original input text before
they were featurized. Figure 5 demonstrates this
process 10. Such text data provides evidence for the
model’s decisions. This text data can be combined
with the feature importance scores to understand
how they affected the model’s decisions, or to un-
cover patterns in the users’ behaviors.

As for aggregators, in this work we use simple
and intuitive operations, making the resulting fea-
ture vector easy to interpret. Note that without an

10We use fabricated examples to protect the identity of
Twitter users in the dataset.
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Figure 5: Explanations provided by various steps in
the micromodel architecture. The feature functions f
provide details on how each feature contributes to the
classifier’s decisions. The binary vectors indicate the
location of each micromodel’s hits in the input text data,
allowing us to look them up as evidence.

interpretable feature vector, the feature functions
fi also become difficult to understand as well.

6 Conclusion

In this paper, we introduced a new framework that
uses a collection of micromodels to tackle various
tasks within the mental health domain. Rather than
directly applying contextualized language models
to a task, we use them to rapidly collect diverse
samples to build micromodels, which leads to a
distributed-learning paradigm. Incorporating con-
textual language models in our data collection al-
lows us to capture nuanced behaviors such as cog-
nitive distortions. Furthermore, our pipeline allows
us to leverage any amount of external data, rather
than extracting features within the task domain.

The resulting micromodels allow us to build
contextual features, each of which can represent
linguistic behaviors or domain knowledge. Such
a feature vector is intuitive to interpret while be-
ing effective for classifiers to learn from, even in
low-resource scenarios in which not a lot of task-
specific annotation data is available. Our approach
provides explanations throughout the entire deci-
sion making process, including both global and lo-
cal feature importance scores, as well as the exact
locations of the text that contributed to the model’s
decisions. Because our micromodels are built in a
task-agnostic manner, they can be reused for multi-
ple tasks within the same domain.

The code for our micromodel architecture is
publicly available at https://github.com/
MichiganNLP/micromodels.git.

https://github.com/MichiganNLP/micromodels.git
https://github.com/MichiganNLP/micromodels.git
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7 Ethical Considerations

While we believe our approach takes a step towards
the application of intelligent systems to data-poor
or sensitive domains such as mental health, it is
important to discuss potential risks, harm, and lim-
itations of our work.

Because our approach heavily relies on micro-
models that represent linguistic behaviors or do-
main knowledge, it is critical that their represen-
tations are faithful. The authors responsible for
building our micromodels were trained on cogni-
tive behavior therapy and cognitive distortions. It is
important to have trained experts heavily involved
throughout our data collection process and guiding
the evaluation of how accurate the micromodels
are. This leads to a limitation of our work. While
we evaluated our approach in an end-to-end man-
ner for various tasks, we found it challenging to
evaluate the micromodels in isolation. The diffi-
culty in building test sets arise from not only the
effort involved in gathering accurate annotations,
but also from requiring high coverage and diversity
of linguistic phenomena in the data as well.

Lastly, Aguirre et al. (2021) demonstrate that
the CLPsych 2015 shared task dataset is not de-
mographically representative. Our work is only a
proof of a concept, and to be applied in a real world
scenario, a non-biased dataset should be used.

Acknowledgements

We would like to thank Joseph Himle, Addie
Weaver, and Anao Zhang from the School of Social
Work at University of Michigan for the training
on cognitive behavior therapy and cognitive dis-
tortions. We thank the members of the LIT lab
at University of Michigan for constructive feed-
back. We thank the EMNLP reviewers for their
helpful suggestions. This material is based in part
upon work supported by a Google focus award, by
the Precision Health initiative at the University of
Michigan, and by DARPA (grant #D19AP00079).

References
Henry David Abraham and Maurizio Fava. 1999. Or-

der of onset of substance abuse and depression in
a sample of depressed outpatients. Comprehensive
Psychiatry, 40(1):44–50.

Carlos Aguirre, Keith Harrigian, and Mark Dredze.
2021. Gender and racial fairness in depression re-
search using social media. In Proceedings of the

16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 2932–2949.

Kristen Allen, Shrey Bagroy, Alex Davis, and Tamar
Krishnamurti. 2019. Convsent at clpsych 2019 task
a: Using post-level sentiment features for suicide
risk prediction on reddit. In Proceedings of the Sixth
Workshop on Computational Linguistics and Clini-
cal Psychology, pages 182–187.

Ashwin Karthik Ambalavanan, Pranjali Dileep Jagtap,
Soumya Adhya, and Murthy Devarakonda. 2019.
Using contextual representations for suicide risk as-
sessment from internet forums. In Proceedings of
the Sixth Workshop on Computational Linguistics
and Clinical Psychology, pages 172–176.

Aaron T Beck. 1963. Thinking and depression:
I. idiosyncratic content and cognitive distortions.
Archives of general psychiatry, 9(4):324–333.

Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James Glass. 2018.
Evaluating layers of representation in neural ma-
chine translation on part-of-speech and semantic tag-
ging tasks. arXiv preprint arXiv:1801.07772.

Adrian Benton, Margaret Mitchell, and Dirk Hovy.
2017. Multitask learning for mental health condi-
tions with limited social media data. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 1, Long Papers, pages 152–162.

Semere Kiros Bitew, Ioannis Bekoulis, Johannes
Deleu, Lucas Sterckx, Klim Zaporojets, Thomas De-
meester, and Chris Develder. 2019. Predicting sui-
cide risk from online postings in reddit: the ugent-
idlab submission to the clpysch 2019 shared task
a. In CLPsych2019, the 6th Annual Workshop on
Computational Linguistics and Clinical Psychology
at NAACL-HLT 2019, pages 158–161. Association
for Computational Linguistics (ACL).

K Robert Bridges, Richard J Harnish, et al. 2010. Role
of irrational beliefs in depression and anxiety: a re-
view. Health, 2(08):862.

Sarah Carr. 2020. ‘ai gone mental’: engagement and
ethics in data-driven technology for mental health.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch,
Marc Sturm, and Noemie Elhadad. 2015. Intelli-
gible models for healthcare: Predicting pneumonia
risk and hospital 30-day readmission. In Proceed-
ings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 1721–1730. ACM.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

https://pubmed.ncbi.nlm.nih.gov/9924877/
https://pubmed.ncbi.nlm.nih.gov/9924877/
https://pubmed.ncbi.nlm.nih.gov/9924877/
https://www.aclweb.org/anthology/2021.eacl-main.256
https://www.aclweb.org/anthology/2021.eacl-main.256
https://www.aclweb.org/anthology/W19-3024/
https://www.aclweb.org/anthology/W19-3024/
https://www.aclweb.org/anthology/W19-3024/
https://www.aclweb.org/anthology/W19-3022/
https://www.aclweb.org/anthology/W19-3022/
https://jamanetwork.com/journals/jamapsychiatry/article-abstract/488402
https://jamanetwork.com/journals/jamapsychiatry/article-abstract/488402
https://www.aclweb.org/anthology/E17-1015
https://www.aclweb.org/anthology/E17-1015
https://www.aclweb.org/anthology/W19-3019/
https://www.aclweb.org/anthology/W19-3019/
https://www.aclweb.org/anthology/W19-3019/
https://www.aclweb.org/anthology/W19-3019/
https://www.researchgate.net/publication/265873783_Role_of_irrational_beliefs_in_depression_and_anxiety_A_review
https://www.researchgate.net/publication/265873783_Role_of_irrational_beliefs_in_depression_and_anxiety_A_review
https://www.researchgate.net/publication/265873783_Role_of_irrational_beliefs_in_depression_and_anxiety_A_review
https://www.tandfonline.com/doi/full/10.1080/09638237.2020.1714011
https://www.tandfonline.com/doi/full/10.1080/09638237.2020.1714011
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/KDD2015FinalDraftIntelligibleModels4HealthCare_igt143e-caruanaA.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/KDD2015FinalDraftIntelligibleModels4HealthCare_igt143e-caruanaA.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/KDD2015FinalDraftIntelligibleModels4HealthCare_igt143e-caruanaA.pdf
https://arxiv.org/abs/1803.11175


4267

Lushi Chen, Abeer Aldayel, Nikolay Bogoychev, and
Tao Gong. 2019. Similar minds post alike: As-
sessment of suicide risk using a hybrid model. In
Proceedings of the Sixth Workshop on Computa-
tional Linguistics and Clinical Psychology, pages
152–157.

Ethan A. Chi, John Hewitt, and Christopher D. Man-
ning. 2020. Finding universal grammatical rela-
tions in multilingual BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5564–5577.

Arman Cohan, Bart Desmet, Andrew Yates, Luca Sol-
daini, Sean MacAvaney, and Nazli Goharian. 2018.
Smhd: a large-scale resource for exploring online
language usage for multiple mental health condi-
tions. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1485–
1497.

Glen Coppersmith, Mark Dredze, and Craig Harman.
2014. Quantifying mental health signals in twitter.
In Proceedings of the workshop on computational
linguistics and clinical psychology: From linguistic
signal to clinical reality, pages 51–60.

Glen Coppersmith, Mark Dredze, Craig Harman,
Kristy Hollingshead, and Margaret Mitchell. 2015.
Clpsych 2015 shared task: Depression and ptsd on
twitter. In Proceedings of the 2nd Workshop on
Computational Linguistics and Clinical Psychology:
From Linguistic Signal to Clinical Reality, pages 31–
39.

Mark É Czeisler, Rashon I Lane, Emiko Petrosky,
Joshua F Wiley, Aleta Christensen, Rashid Njai,
Matthew D Weaver, Rebecca Robbins, Elise R Facer-
Childs, Laura K Barger, et al. 2020. Mental health,
substance use, and suicidal ideation during the covid-
19 pandemic—united states, june 24–30, 2020. Mor-
bidity and Mortality Weekly Report, 69(32):1049.

Changyu Deng, Xunbi Ji, Colton Rainey, Jianyu Zhang,
and Wei Lu. 2020. Integrating machine learning
with human knowledge. Iscience, page 101656.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Catherine K Ettman, Salma M Abdalla, Gregory H Co-
hen, Laura Sampson, Patrick M Vivier, and Sandro
Galea. 2020. Prevalence of depression symptoms in
us adults before and during the covid-19 pandemic.
JAMA network open, 3(9):e2019686–e2019686.

Sharath Chandra Guntuku, David B Yaden, Margaret L
Kern, Lyle H Ungar, and Johannes C Eichstaedt.
2017. Detecting depression and mental illness on

social media: an integrative review. Current Opin-
ion in Behavioral Sciences, 18:43–49.

Braden Hancock, Martin Bringmann, Paroma Varma,
Percy Liang, Stephanie Wang, and Christopher Ré.
2018. Training classifiers with natural language ex-
planations. In Proceedings of the conference. Asso-
ciation for Computational Linguistics. Meeting, vol-
ume 2018, page 1884. NIH Public Access.

Keith Harrigian, Carlos Aguirre, and Mark Dredze.
2020. Do models of mental health based on social
media data generalize? In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings (EMNLP), pages 3774–
3788.

JB Heaton, Nicholas G Polson, and Jan Hendrik Witte.
2016. Deep learning in finance. arXiv preprint
arXiv:1602.06561.

Alejandro González Hevia, Rebeca Cerezo Menéndez,
and Daniel Gayo-Avello. 2019. Analyzing the use
of existing systems for the clpsych 2019 shared task.
In Proceedings of the Sixth Workshop on Compu-
tational Linguistics and Clinical Psychology, pages
148–151.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Micah Iserman, Taleen Nalabandian, and Molly Ire-
land. 2019. Dictionaries and decision trees for the
2019 clpsych shared task. In Proceedings of the
Sixth Workshop on Computational Linguistics and
Clinical Psychology, pages 188–194.

Yiping Kang, Yunqi Zhang, Jonathan K Kummerfeld,
Lingjia Tang, and Jason Mars. 2018. Data collec-
tion for dialogue system: A startup perspective. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 3 (Industry Papers), pages 33–40.

Simona C Kaplan, Amanda S Morrison, Philippe R
Goldin, Thomas M Olino, Richard G Heimberg, and
James J Gross. 2017. The cognitive distortions ques-
tionnaire (cd-quest): Validation in a sample of adults
with social anxiety disorder. Cognitive therapy and
research, 41(4):576–587.

Kurt Kroenke, Robert L Spitzer, and Janet BW
Williams. 2001. The phq-9: validity of a brief de-
pression severity measure. Journal of general inter-
nal medicine, 16(9):606–613.

Stefan Larson, Anish Mahendran, Andrew Lee,
Jonathan K Kummerfeld, Parker Hill Michael A Lau-
renzano Johann, and Hauswald Lingjia Tang Jason
Mars. 2019. Outlier detection for improved data

https://www.aclweb.org/anthology/W19-3018/
https://www.aclweb.org/anthology/W19-3018/
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493
https://www.aclweb.org/anthology/C18-1126/
https://www.aclweb.org/anthology/C18-1126/
https://www.aclweb.org/anthology/C18-1126/
https://www.aclweb.org/anthology/W14-3207/
https://www.aclweb.org/anthology/W15-1204.pdf
https://www.aclweb.org/anthology/W15-1204.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440121/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440121/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440121/
https://www.sciencedirect.com/science/article/pii/S2589004220308488#sec2.2
https://www.sciencedirect.com/science/article/pii/S2589004220308488#sec2.2
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2770146/
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2770146/
https://www.semanticscholar.org/paper/Detecting-depression-and-mental-illness-on-social-Guntuku-Yaden/c6bbfcfc16e3dcb33b0463a95df44d543838c76d
https://www.semanticscholar.org/paper/Detecting-depression-and-mental-illness-on-social-Guntuku-Yaden/c6bbfcfc16e3dcb33b0463a95df44d543838c76d
https://www.aclweb.org/anthology/P18-1175/
https://www.aclweb.org/anthology/P18-1175/
https://www.aclweb.org/anthology/2020.findings-emnlp.337/
https://www.aclweb.org/anthology/2020.findings-emnlp.337/
https://arxiv.org/abs/1602.06561
https://www.aclweb.org/anthology/W19-3017/
https://www.aclweb.org/anthology/W19-3017/
https://www.aclweb.org/anthology/W19-3025/
https://www.aclweb.org/anthology/W19-3025/
https://www.aclweb.org/anthology/N18-3005/
https://www.aclweb.org/anthology/N18-3005/
https://pubmed.ncbi.nlm.nih.gov/28966414/
https://pubmed.ncbi.nlm.nih.gov/28966414/
https://pubmed.ncbi.nlm.nih.gov/28966414/
https://pubmed.ncbi.nlm.nih.gov/11556941/
https://pubmed.ncbi.nlm.nih.gov/11556941/
https://www.aclweb.org/anthology/N19-1051.pdf


4268

quality and diversity in dialog systems. In Proceed-
ings of NAACL-HLT, pages 517–527.

Stefan Larson, Anthony Zheng, Anish Mahendran,
Rishi Tekriwal, Adrian Cheung, Eric Guldan, Kevin
Leach, and Jonathan K. Kummerfeld. 2020. Itera-
tive feature mining for constraint-based data collec-
tion to increase data diversity and model robustness.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8097–8106.

Janice C Levy and Eva Y Deykin. 1989. Suicidality,
depression, and substance abuse in adolescence. The
American journal of psychiatry.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert:
Enabling language representation with knowledge
graph. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 2901–2908.

Yin Lou, Rich Caruana, and Johannes Gehrke. 2012.
Intelligible models for classification and regression.
In Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 150–158.

Yin Lou, Rich Caruana, Johannes Gehrke, and Giles
Hooker. 2013. Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 623–631.

Scott Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. arXiv
preprint arXiv:1705.07874.

Matthew Matero, Akash Idnani, Youngseo Son, Sal-
vatore Giorgi, Huy Vu, Mohammad Zamani, Parth
Limbachiya, Sharath Chandra Guntuku, and H An-
drew Schwartz. 2019. Suicide risk assessment with
multi-level dual-context language and bert. In Pro-
ceedings of the Sixth Workshop on Computational
Linguistics and Clinical Psychology, pages 39–44.

Elham Mohammadi, Hessam Amini, and Leila Kos-
seim. 2019. Clac at clpsych 2019: Fusion of neural
features and predicted class probabilities for suicide
risk assessment based on online posts. In Proceed-
ings of the Sixth Workshop on Computational Lin-
guistics and Clinical Psychology, pages 34–38.

Michelle Morales, Prajjalita Dey, Thomas Theisen,
Daniel Belitz, and Natalia Chernova. 2019. An in-
vestigation of deep learning systems for suicide risk
assessment. In Proceedings of the sixth workshop
on computational linguistics and clinical psychol-
ogy, pages 177–181.

Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and
Mike Amundsen. 2016. Microservice architec-
ture: aligning principles, practices, and culture. "
O’Reilly Media, Inc.".

Harsha Nori, Samuel Jenkins, Paul Koch, and Rich
Caruana. 2019. Interpretml: A unified framework
for machine learning interpretability. arXiv preprint
arXiv:1909.09223.

Ahmed Husseini Orabi, Prasadith Buddhitha, Mah-
moud Husseini Orabi, and Diana Inkpen. 2018.
Deep learning for depression detection of twitter
users. In Proceedings of the Fifth Workshop on
Computational Linguistics and Clinical Psychology:
From Keyboard to Clinic, pages 88–97.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Asso-
ciates, 71(2001):2001.

Daniel Preotiuc-Pietro, Maarten Sap, H Andrew
Schwartz, and Lyle H Ungar. 2015. Mental ill-
ness detection at the world well-being project for
the clpsych 2015 shared task. In CLPsych@ HLT-
NAACL, pages 40–45.

Alexander Ratner, Christopher De Sa, Sen Wu, Daniel
Selsam, and Christopher Ré. 2016. Data program-
ming: Creating large training sets, quickly. Ad-
vances in neural information processing systems,
29:3567.

Alexander J Ratner, Stephen H Bach, Henry R Ehren-
berg, and Chris Ré. 2017. Snorkel: Fast training set
generation for information extraction. In Proceed-
ings of the 2017 ACM international conference on
management of data, pages 1683–1686.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992.

Philip Resnik, William Armstrong, Leonardo Claudino,
and Thang Nguyen. 2015. The university of mary-
land clpsych 2015 shared task system. In Proceed-
ings of the 2nd workshop on computational linguis-
tics and clinical psychology: from linguistic signal
to clinical reality, pages 54–60.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Esteban A Ríssola, Diana Ramíırez-Cifuentes, Ana
Freire, and Fabio Crestani. 2019. Suicide risk as-
sessment on social media: Usi-upf at the clpsych
2019 shared task. In Proceedings of the Sixth Work-
shop on Computational Linguistics and Clinical Psy-
chology: 2019 Jun 6; Minneapolis, Minnesota, USA.
Stroudsburg: ACL; 2019. p. 167–71. ACL (Associa-
tion for Computational Linguistics).

https://www.aclweb.org/anthology/N19-1051.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.650
https://doi.org/10.18653/v1/2020.emnlp-main.650
https://doi.org/10.18653/v1/2020.emnlp-main.650
https://pubmed.ncbi.nlm.nih.gov/2817119/
https://pubmed.ncbi.nlm.nih.gov/2817119/
https://ojs.aaai.org/index.php/AAAI/article/view/5681/5537
https://ojs.aaai.org/index.php/AAAI/article/view/5681/5537
https://ojs.aaai.org/index.php/AAAI/article/view/5681/5537
https://www.cs.cornell.edu/~yinlou/papers/lou-kdd12.pdf
https://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf
https://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://www.aclweb.org/anthology/W19-3005/
https://www.aclweb.org/anthology/W19-3005/
https://www.aclweb.org/anthology/W19-3004/
https://www.aclweb.org/anthology/W19-3004/
https://www.aclweb.org/anthology/W19-3004/
https://www.aclweb.org/anthology/W19-3023/
https://www.aclweb.org/anthology/W19-3023/
https://www.aclweb.org/anthology/W19-3023/
https://arxiv.org/abs/1909.09223
https://arxiv.org/abs/1909.09223
https://www.aclweb.org/anthology/W18-0609/
https://www.aclweb.org/anthology/W18-0609/
https://www.cs.cmu.edu/~ylataus/files/TausczikPennebaker2010.pdf
https://www.cs.cmu.edu/~ylataus/files/TausczikPennebaker2010.pdf
https://www.aclweb.org/anthology/W15-1205.pdf
https://www.aclweb.org/anthology/W15-1205.pdf
https://www.aclweb.org/anthology/W15-1205.pdf
https://papers.nips.cc/paper/2016/file/6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf
https://papers.nips.cc/paper/2016/file/6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf
https://dl.acm.org/doi/10.1145/3035918.3056442
https://dl.acm.org/doi/10.1145/3035918.3056442
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://www.aclweb.org/anthology/W15-1207/
https://www.aclweb.org/anthology/W15-1207/
https://dl.acm.org/doi/abs/10.1145/2939672.2939778
https://dl.acm.org/doi/abs/10.1145/2939672.2939778
https://www.aclweb.org/anthology/W19-3021/
https://www.aclweb.org/anthology/W19-3021/
https://www.aclweb.org/anthology/W19-3021/


4269

Kenneth J Ruggiero, Kevin Del Ben, Joseph R Scotti,
and Aline E Rabalais. 2003. Psychometric proper-
ties of the ptsd checklist—civilian version. Journal
of traumatic stress, 16(5):495–502.

Victor Ruiz, Lingyun Shi, Wei Quan, Neal Ryan, Can-
dice Biernesser, David Brent, and Rich Tsui. 2019.
Clpsych2019 shared task: Predicting suicide risk
level from reddit posts on multiple forums. In Pro-
ceedings of the Sixth Workshop on Computational
Linguistics and Clinical Psychology, pages 162–
166.

Aina Sastre-Buades, Susana Ochoa, Esther Lorente-
Rovira, Ana Barajas, Eva Grasa, Raquel López-
Carrilero, Ana Luengo, Isabel Ruiz-Delgado, Jordi
Cid, Fermín González-Higueras, et al. 2021. Jump-
ing to conclusions and suicidal behavior in depres-
sion and psychosis. Journal of psychiatric research.

Han-Chin Shing, Suraj Nair, Ayah Zirikly, Meir
Friedenberg, Hal Daumé III, and Philip Resnik.
2018. Expert, crowdsourced, and machine assess-
ment of suicide risk via online postings. In Proceed-
ings of the Fifth Workshop on Computational Lin-
guistics and Clinical Psychology: From Keyboard
to Clinic, pages 25–36.

Robert L Spitzer, Kurt Kroenke, Janet BW Williams,
and Bernd Löwe. 2006. A brief measure for as-
sessing generalized anxiety disorder: the gad-7.
Archives of internal medicine, 166(10):1092–1097.

Katherine Stasaski, Grace Hui Yang, and Marti A.
Hearst. 2020. More diverse dialogue datasets via
diversity-informed data collection. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4958–4968.

Susan M Swearer, Samuel Y Song, Paulette Tam Cary,
John W Eagle, and William T Mickelson. 2001. Psy-
chosocial correlates in bullying and victimization:
The relationship between depression, anxiety, and
bully/victim status. Journal of Emotional Abuse,
2(2-3):95–121.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R Bowman, Dipan-
jan Das, et al. 2018. What do you learn from con-
text? probing for sentence structure in contextual-
ized word representations. In International Confer-
ence on Learning Representations.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art M Shieber. 2020. Investigating gender bias in
language models using causal mediation analysis. In
NeurIPS.

Genta Indra Winata, Onno Pepijn Kampman, and Pas-
cale Fung. 2018. Attention-based lstm for psycho-
logical stress detection from spoken language us-
ing distant supervision. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 6204–6208. IEEE.

Zhaofeng Wu, Hao Peng, and Noah Smith. 2021. Infus-
ing finetuning with semantic dependencies. Transac-
tions of the Association for Computational Linguis-
tics, 9:226–242.

Xiaozheng Xie, Jianwei Niu, Xuefeng Liu, Zhengsu
Chen, and Shaojie Tang. 2020. A survey on domain
knowledge powered deep learning for medical im-
age analysis. arXiv preprint arXiv:2004.12150.

Zijiang Yang, Reda Al-Bahrani, Andrew CE Reid, Ste-
fanos Papanikolaou, Surya R Kalidindi, Wei-keng
Liao, Alok Choudhary, and Ankit Agrawal. 2019.
Deep learning based domain knowledge integration
for small datasets: Illustrative applications in mate-
rials informatics. In 2019 International Joint Con-
ference on Neural Networks (IJCNN), pages 1–8.
IEEE.

Andrew Yates, Arman Cohan, and Nazli Goharian.
2017. Depression and self-harm risk assessment in
online forums. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2968–2978.

Roland Zahn, Karen E Lythe, Jennifer A Gethin, So-
phie Green, John F William Deakin, Allan H Young,
and Jorge Moll. 2015. The role of self-blame and
worthlessness in the psychopathology of major de-
pressive disorder. Journal of affective disorders,
186:337–341.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1441–
1451.

Ayah Zirikly, Philip Resnik, Ozlem Uzuner, and Kristy
Hollingshead. 2019. Clpsych 2019 shared task: Pre-
dicting the degree of suicide risk in reddit posts. In
Proceedings of the sixth workshop on computational
linguistics and clinical psychology, pages 24–33.

https://link.springer.com/article/10.1023/A:1025714729117
https://link.springer.com/article/10.1023/A:1025714729117
https://www.aclweb.org/anthology/W19-3020/
https://www.aclweb.org/anthology/W19-3020/
https://www.sciencedirect.com/science/article/pii/S0022395621001680
https://www.sciencedirect.com/science/article/pii/S0022395621001680
https://www.sciencedirect.com/science/article/pii/S0022395621001680
https://www.aclweb.org/anthology/W18-0603/
https://www.aclweb.org/anthology/W18-0603/
https://pubmed.ncbi.nlm.nih.gov/16717171/
https://pubmed.ncbi.nlm.nih.gov/16717171/
https://doi.org/10.18653/v1/2020.acl-main.446
https://doi.org/10.18653/v1/2020.acl-main.446
https://www.tandfonline.com/doi/abs/10.1300/J135v02n02_07
https://www.tandfonline.com/doi/abs/10.1300/J135v02n02_07
https://www.tandfonline.com/doi/abs/10.1300/J135v02n02_07
https://www.tandfonline.com/doi/abs/10.1300/J135v02n02_07
https://ieeexplore.ieee.org/abstract/document/8461990
https://ieeexplore.ieee.org/abstract/document/8461990
https://ieeexplore.ieee.org/abstract/document/8461990
https://ieeexplore.ieee.org/abstract/document/8852162
https://ieeexplore.ieee.org/abstract/document/8852162
https://ieeexplore.ieee.org/abstract/document/8852162
https://doi.org/10.18653/v1/D17-1322
https://doi.org/10.18653/v1/D17-1322
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573463/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573463/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573463/
https://www.aclweb.org/anthology/P19-1139.pdf
https://www.aclweb.org/anthology/P19-1139.pdf
https://www.aclweb.org/anthology/W19-3003/
https://www.aclweb.org/anthology/W19-3003/


4270

A Feature Importance Scores001

Figure 1 lists the global feature importance scores002

for the features used in classifying 1) depression003

versus control, 2) PTSD versus control, and 3) de-004

pression versus PTSD.005

B Cognitive Distortions006

Table 1 lists some common examples of cognitive007

distortions, along with their definitions and some008

examples.009

C PHQ-9 Questionnaire010

Table 2 lists the PHQ-9 Questionnaire.011
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Figure 1: Global feature importance scores of the EBM
classifiers trained on depression vs condition, PTSD vs
condition, and depression vs PTSD. Features ending in
"w" are features from the aggregator that looks for win-
dows of hits.
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Name Description Examples

All-or-Nothing Thinking Seeing things in extreme, black-and-white
categories. Thinking in absolutes such as
"always", "never", or "every".

"I’m a total failure."
"I never do anything right."

Overgeneralization Seeing a single negative event as a never-
ending pattern of defeat.

"She said no – I’m never going to get a
date. I’ll be lonely all my life."
"I didn’t get the job. I’ll never find a job."

Labeling Creating a completely negative self-image
based on one’s errors. Attaching a negative
label to oneself.

"I’m an idiot!"
"I’m a loser."

Fortune-Telling Error Anticipating that things will turn out badly
and feeling convinced that one’s predic-
tions are already-established facts.

"I’ll make a fool of myself."
"I’ll never get better."

Disqualifying the Positive Rejecting positive experiences by insist-
ing they "don’t count" for some reason or
other.

(After a compliment) "They’re just being
nice."
"That was a fluke."

Table 1: Definition and examples of common cognitive distortions according to Burns and Beck (1999)

PHQ-9 Questionnaire

1. Little interest or pleasure in doing things
2. Feeling down, depressed, or hopeless
3. Trouble falling or staying asleep, or sleeping too much
4. Feeling tired or having little energy
5. Poor appetite or overeating
6. Feeling bad about yourself or that you are a failure or have let yourself or your family down
7. Trouble concentrating on things, such as reading the newspaper or watching television
8. Moving or speaking so slowly that other people could have noticed.
Or the opposite being so figety or restless that you have been moving around a lot more than usual
9. Thoughts that you would be better off dead, or of hurting yourself

Table 2: PHQ-9 Questionnaire according to Kroenke et al. (2001)
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