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Abstract

We present Hidden-State Optimization (HSO),
a gradient-based method for improving the per-
formance of transformer language models at
inference time. Similar to dynamic evaluation
(Krause et al., 2018), HSO computes the gradi-
ent of the log-probability the language model
assigns to an evaluation text, but uses it to up-
date the cached hidden states rather than the
model parameters. We test HSO with pre-
trained Transformer-XL and GPT-2 language
models, finding improvement on the WikiText-
103 and PG-19 datasets in terms of perplexity,
especially when evaluating a model outside of
its training distribution. We also demonstrate
downstream applicability by showing gains in
the recently developed prompt-based few-shot
evaluation setting, again with no extra parame-
ters or training data.

1 Introduction

Finetuning a pretrained transformer language
model (LM) (Vaswani et al., 2017; Radford et al.,
2018; Peters et al., 2018; Devlin et al., 2019) is now
the default method for attacking a task in modern
NLP. Due to the high cost of pretraining, much
research has been focused on how better to apply
the pretrained models, rather than just improving
pretraining itself. However, even finetuning can be
too costly, especially for models such as the 175
billion parameter GPT-3 (Brown et al., 2020). As
such, researchers have sought low cost alternatives,
such as finetuning a small set of auxiliary parame-
ters (Houlsby et al., 2019), or more recently leaving
the LM weights fixed and passing a textual context
designed to elicit the desired behavior via token
prediction, such as in Brown et al. (2020).

One direction for language modeling in particu-
lar is to leave the LM parameters fixed, but update
its intermediate quantities (e.g., Dathathri et al.,
2020 and Qin et al., 2020). In this paper, we intro-
duce Hidden-State Optimization (HSO), a method

that contributes to this line of work. HSO first com-
putes the language modeling loss as usual, then
modifies the LM hidden states using the gradient
of the loss (but critically reports the original loss).
This process is repeated for each window of 10-
25 tokens, updating the cached hidden states each
time. Attending to these modified hidden states
creates higher quality predictions for future tokens.

As an example of how future information can
help embed past tokens, consider the garden path
sentence: “The old man the boat.” The embedding
for “man” will only depend on “The”, “old”, and
“man”, so it will not reflect that “man” is being
used as a verb. HSO can be seen as a method of
incorporating future information into the represen-
tation of a context while still using a left-to-right
LM. BERT (Devlin et al., 2019) showed that bidi-
rectional information passing improves embedding
quality, which suggests that doing so should im-
prove performance on downstream tasks.

We demonstrate HSO in the setting of language
model evaluation on the WikiText-103 (Merity
et al., 2017) and PG-19 (Rae et al., 2020) corpora,
and find improvements in measured perplexity. In
order to demonstrate that this translates into value
for downstream applications we apply HSO to few-
shot classification with the 1.5B parameter GPT-2,
and find improvement in that setting as well.

2 Related Work

Learning during inference. HSO is related to
methods that perform learning on the test set. One
such method is dynamic evaluation (DE) (Krause
et al., 2018, 2019), which was the inspiration for
HSO. DE consists of using test inputs for learning
after evaluating on them, which means a larger
test set will result in a larger gain from its use.
This is not reflective of the small amount of text
present in a setting such as conditional generation
or few-shot classification, while using HSO for LM
evaluation is. HSO is also cheaper than DE because
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it differentiates with respect to hidden states rather
than the model parameters. See Section 4.2.2 for
more discussion and results on this point.

Gradient-Based Optimization of Hidden States.
Qin et al. (2020) proposed Delorean, a method
that incorporates future tokens into LM predictions
by using backpropagation into earlier intermediate
vectors. However, their goal is to produce better
generations for intermediate timesteps, using sam-
pled intermediate tokens and ground truth future
tokens. We instead use the LM loss to tune past
hidden states to allow better prediction of unseen
future tokens. They also only perform gradient
updates to logits while we update hidden states.

Plug-and-Play language models (PPLM;
Dathathri et al., 2020) modify the behavior of
pretrained LMs by updating hidden states at
inference time, but with the goal of controllable
generation (e.g., controlling sentiment) rather
than improved fidelity. Unlike HSO, PPLMs
require an attribute classifier which must be trained
with labeled data. Several methods have been
developed to more efficiently achieve the same
goal as PPLM (Madotto et al., 2020; Krause et al.,
2020), and these ideas could potentially be applied
in analogous ways to speed up HSO.

Alternatives to finetuning. Our method is re-
lated to those that reduce the computational cost
of finetuning by updating a smaller number of pa-
rameters or avoid finetuning altogether. Houlsby
et al. (2019) introduce adapter modules which are
finetuned in lieu of the full model. Li and Liang
(2021) introduce prefix-tuning, which adds a fixed
set of learnable vectors to the beginning of the input
sequence. The latter is related to using prompts for
contextual generation, which has gained popularity
both to extract information from language mod-
els (e.g., Radford et al., 2019, Jiang et al., 2020)
and perform tasks directly without updating any
model parameters (Brown et al., 2020). Follow-up
work has sought to understand the effectiveness of
prompting (Le Scao and Rush, 2021) and automati-
cally find or learn better prompts (Shin et al., 2020;
Liu et al., 2021; Qin and Eisner, 2021).

3 Method

Let f be a transformer language model computing
the distribution for token xt given tokens x1:t−1:

pt = f(x1:t−1)

In practice, one may cache the hidden states, ht ∈
R`×d, where ` is the number of layers and d is the
embedding size. We represent this by factoring
f into fh which computes hidden states (possibly
depending on past hidden states) and fp which com-
putes output probabilities from the hidden states:

ht = fh (xt,h1:t−1) (1)

pt = fp (ht)

Given a loss function L which takes as arguments
the ground truth next word and a distribution over
word types, one can then compute its gradient with
respect to both the present hidden states ht, and
with respect to the cached hidden states h1:t−1:

gpresent = ∇htL (xt+1, fp(ht))

gcached = ∇h1:t−1L (xt+1, fp(fh(xt,h1:t−1))

Denoting the concatenation of these two quantities
along the time axis as gt =

[
gcached; gpresent

]
, we

can make a gradient update to the hidden states:

h̃1:t = h1:t − ηgt (2)

where η is the step size. We apply Adam (Kingma
and Ba, 2015) to this update, but with modifications
described in Section 3.1.

In practice, we use standard cross entropy as our
loss function L. So, intuitively, we are updating the
hidden states to make the actual word at position
t+1 more likely under the language model’s distri-
bution pt by altering only the previously computed
hidden states. Note that when we update the hidden
states with gradient-based updates, it will no longer
be the case that the set of hidden states follow the
feedforward procedure defined by the architecture
of the transformer language model.

While computing the hidden state for xt+1, we
then substitute h̃1:t into Eq. 1 in place of h1:t−1:

ht+1 = fh

(
xt+1, h̃1:t

)
Provided that the loss for timestep t is computed
with the unmodified hidden state ht rather than h̃t,
this may be done at test time without the loss being
improved by “looking into the future.” We continue
to update all hidden states at each step.1

In practice taking a gradient step after each token
is too costly, so we can process blocks of k tokens
(which we will refer to as a window size of k):

1h̃1:t is then a concatenation of hidden states which have
been updated between 1 and t times.
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ht+1 = fh

(
xt+1, h̃1:t

)
pt+1 = fp (ht+1)

ht+2 = fh

(
xt+2, [ht+1:t+1; h̃1:t]

)
...

ht+k = fh

(
xt+k, [ht+1:t+k−1; h̃1:t]

)
pt+k = fp(ht+k)

This sequence of computations is done in a single
forward pass, but we have broken it up by token to
make clear how a mix of unmodified and modified
hidden states is used to embed each token in the
window. Once the loss function, L, is applied to
xt+2:t+k+1 and pt+1:t+k, a backwards pass is done
to compute the gradient of the sum of the losses
with respect to the hidden states, at which point the
modified hidden states h̃1:t+k are computed.
k has a twofold effect on computational cost, as

it controls both the number of gradient steps and
the number of tokens processed at a time. A very
small k will require many more forward passes and
will not take advantage of GPU parallelism.

3.1 Modifications to Adam
One way of applying Adam to the HSO gradient
update would be to view the past hidden states as a
single T × `× d tensor, where T is the maximum
context size. This would allow use of just two
moment estimate tensors m,v ∈ RT×`×d. This
version of Adam performs very poorly, as a given
value in the hidden state cache will not be consis-
tently associated with the same moment estimate.

Instead, we keep first and second moment esti-
mates mi and vi for each hidden state, discarding
them once the corresponding hidden states are fur-
ther in the past than the maximum attention length.
This also requires maintaining a different optimizer
step value for each block of k hidden states, as
Adam’s bias correction depends on how many up-
dates have been made to a moment estimate. In
terms of implementation, we do not actually keep
a separate vector for each hidden state, but pack
them into a tensor which is translated along with
the cached hidden state tensor.

4 Experiments

We demonstrate HSO with the Transformer-XL
(TXL) (Dai et al., 2019) and GPT-22 (Radford et al.,

2For GPT-2, we backpropagate into the key and value
vectors rather than the full embeddings at each layer for ease

Method WT-103 PG-19

Baseline 21.3/22.4 166.4/164.2
HSO 20.7/21.7 140.0/145.7

Table 1: Language modeling validation/test perplexity
with Transformer-XL (pretrained on WT-103). Impor-
tantly, PG-19 is out of distribution for this model.

Method WT-103 PG-19

Baseline 21.5/20.7 26.7/26.5
HSO 21.0/20.3 25.1/26.5

Table 2: Language modeling validation/test perplexity
with GPT-2 (345M parameters).

2019) models implemented using FLAX (Heek
et al., 2020) and Haiku (Hennigan et al., 2020), on
top of JAX (Bradbury et al., 2018). The TXL model
is initialized from the HuggingFace Transform-
ers (Wolf et al., 2020) model trained on WikiText-
103 (WT-103). The GPT-2 models are initialized
from the OpenAI checkpoints.

4.1 Language modeling

We test HSO with the TXL and 345M parame-
ter GPT-2 models on the pre-tokenized WikiText-
103 (Merity et al., 2017) and PG-19 (Rae et al.,
2020) datasets. As the TXL was trained on WT-
103, this covers both an in-distribution and out-of-
distribution (OOD) evaluation for it. We found that
TXL was not stable in the OOD setting, but that
resetting its hidden states to zeros upon reaching
its maximum context size reduced the baseline per-
plexity significantly. We do not do this for HSO
as it does not appear to need this stabilization. We
evaluate GPT-2 with non-overlapping contexts for
efficiency. The perplexities reported are per token,
which differs between GPT-2 and the word based
TXL. Out of vocabulary words are UNK-ed for
TXL, but GPT-2 has an open vocabulary.

We used a window size of k = 25, a learning
rate of 0.003, and 0.65/0.9 for Adam’s β1 and β2
parameters. We found that some HSO hyperparam-
eter settings gave better performance, especially
for GPT-2, but for the sake of parsimony report our
main results with consistent hyperparameters.

Our LM results are shown in Tables 1 and 2.
HSO yields about a half a point improvement in per-
plexity on WT-103 with both architectures. While
this is not a large improvement, recall that GPT-
2’s hidden states are reset every 1024 tokens, so

of implementation. They differ by only a linear transformation,
so we do not expect this to be a critical difference.
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Modifications Perplexity

None 25.1
η = 3× 10−4, β1 = 0.8 23.8
present-only 23.6
k = 10 24.4
k = 10, present-only 22.1
SGD, η = 0.01, 24.7
SGD, η = 0.01, present-only 25.1

Table 3: GPT-2 (345M) perplexity on the PG-19 valida-
tion set. η is learning rate, k is window size, “present-
only” means only the last k hidden states are updated.

this represents improvement in prediction within
the context of one attention window, rather than
cumulative training on the test set as in DE.

On PG-19, the perplexity improvements are
larger for the most part: 1.6 points for GPT-2 on
the validation set and over 10 points for TXL (but
a <0.1 point increase for GPT-2 on the test set).
As we used the same hyperparameters for all LM
evaluations, HSO seems to be fairly robust to the
choice of architecture and dataset.

4.1.1 Modifying HSO
Table 3 shows the effect of various modifications
to HSO on GPT-2’s perplexity on the PG-19 vali-
dation set. Tuning Adam’s parameters decreases
perplexity by another point. Surprisingly, only
updating the most recent window’s hidden states
(“present-only”) improves perplexity on PG-19 (ini-
tial experiments on WT-103 did not find this to be
the case). This also requires significantly less com-
putation. Since Adam tries to estimate moments
over many steps this might seem to imply it is not
necessary. To investigate this, we tested stochastic
gradient descent (SGD) with several learning rates
but it performed worse than Adam for both full and
“present-only” updates.3

4.2 Few-shot classification

While HSO can give gains in perplexity, we would
like to see whether it benefits other tasks as well.
So, we consider few-shot learning from examples
in the LM’s context, as in GPT-3 (Brown et al.,
2020). Lacking GPT-3 access, we demonstrate our

3On the first step, Adam updates in the L∞ steepest de-
scent direction so it differs from SGD even for only one step.

4Due to the much higher running time for using dynamic
evaluation, these are partial results from running on a random
subset of the test set. The accuracy in parentheses is a hyper-
geometric 95% upper confidence bound. Future versions of
this paper will have the full results. Furthermore, we exclude
n = 6, 8 for AGNews due to running out of GPU memory on
those input sizes.

Dataset n Method

Baseline DE4 HSO HSO-2

SST-2

2 53.9 52.2 (55.1) 59.5 64.0
4 58.3 55.6 (58.8) 63.1 66.5
6 57.9 56.2 (59.4) 68.0 69.2
8 58.4 59.9 (61.8) 70.2 70.2

AGNews

2 53.1 32.2 (35.0) 52.6 54.3
4 77.8 52.2 (55.2) 77.2 77.6
6 64.8 — 65.8 66.2
8 63.3 — 68.5 69.3

Table 4: Effect of updating hidden states on few-shot
classification accuracy of GPT-2-XL on SST-2 and AG-
News, where n is the number of examples per prompt.
Neither hidden states or weights are updated for the
baseline. HSO-2 is HSO with two gradient steps per
window of text.

method with the 1.5B parameter GPT-2-XL model.
We use the binary SST-2 (Socher et al., 2013)

and 4-way AGNews (Zhang et al., 2015) classifi-
cation datasets. We follow choices made by Zhao
et al. (2021), including their prompt formats, but we
made several changes to their procedure to reduce
computational requirements and variance. Most im-
portantly, we resampled a class-balanced prompt
for every test example (but kept the prompt fixed
between the baseline and HSO) rather than using a
fixed prompt.5 We used a learning rate of 0.01 and
a window size of 10 tokens. Our experiments used
a 24GB NVIDIA Quadro RTX 6000 GPU.

We also test DE, as in contrast to the LM setting,
the amount of fine-tuning data will be the same
between DE and HSO. We found that the learning
rate of 0.01 led to the model collapsing to constant
predictions, so we use a learning rate of 10−4 in-
stead. We update the model every 10 tokens as with
HSO, and recompute the hidden states after each
update since the weights which produced them are
no longer the model weights.

There are a few options to pick between when
deciding what it meant to apply DE to this setting.
One could choose to make a single gradient step
based on the entire prompt, update the weights ev-
ery 10 tokens but not recompute the hidden states,
or perform multiple updates on the whole prompt.
We chose what we believed was the closest compar-
ison between HSO and DE, but did not experiment

5Zhao et al. (2021) reported high variance based on prompt
choice, so we made this choice in order to only need to run
each evaluation once. The other two changes were to sample
1200 examples from the AGNews test set to expedite the
evaluation, and to only use examples with ≤35 tokens in our
prompts to reduce the required memory.
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with these other variations.

4.2.1 Results
Table 4 shows our results. HSO with a single gra-
dient step leads to consistent improvements in ac-
curacy across prompt sizes, and larger improve-
ment with more prompt examples. The exceptions
are AGNews with 2 and 4 example prompts, for
which there is a slight decrease in accuracy. DE
has similar performance to the baseline on SST-2,
and degrades significantly on AGNews.

A longer prompt means both more examples to
learn from and more gradient steps, so to disentan-
gle the effect, we also tried two gradient steps per
window (last column). This yields further improve-
ment in 7 out of 8 cases. Surprisingly, for the cases
where one gradient step was harmful, a second gra-
dient step increases accuracy rather than causing
further degradation. Also, a second gradient step
generally causes a larger increase in accuracy for
shorter prompts (e.g., for SST-2, two steps with
two examples beats one step with four examples).

4.2.2 Compute costs for HSO and DE
As we noted earlier, DE is not intended to be ap-
plied to a very small amount of text, so this is not
an apples-to-apples comparison of methods, but
can still help emphasize the differences between
the two. In this setting, DE uses a much smaller
amount of data (less than a single full GPT-2 win-
dow) to make updates to the entire transformer’s
weights. As such, it is not surprising it does not
improve greatly over the baseline.

In terms of memory, the parameters and Adam
moment estimates for DE of GPT-2-XL require
more than 18GB in total. As the parameters are
updated separately for each example, batching mul-
tiplies this overhead by the batch size, making DE
infeasible for use on prompts coming from different
distributions. HSO’s extra overhead is the moment
estimates for the hidden states, which cost ~1.2MB
per token of input, for a total of ~1.3GB on a maxi-
mum size input. Furthermore, DE requires storing
an additional copy of the model parameters, as they
must be reset after each example. To avoid storing
this extra copy on the GPU, we transferred it from
RAM to GPU memory each time.

While the primary performance advantage over
DE is reduced overhead and batching, we examine
runtimes for each method in Table 5. We addi-
tionally benchmark the 345M parameter GPT-2 for
a speed comparison without the extra parameter

transfer to the GPU. It is important to note that tak-
ing a single step per example instead of once per
k tokens would be much faster than either method,
as both DE and HSO require dNk e backward passes
for a length N input.

Method n GPT-2 parameters

345M 1558M

DE
2 1.1 11.7
8 3.3 30.6

HSO
2 0.4 2.2
8 1.0 6.6

Table 5: Seconds per example for few-shot evaluation
using HSO and DE on SST-2. Because DE with GPT-2-
XL requires copying the parameters from RAM to GPU
memory every step, we also include speeds for GPT-2-
medium which does not have that additional overhead.

5 Conclusion and Future Work

We presented a method that optimizes transformer
language model hidden states, which improves LM
perplexity and prompt-based few-shot classifica-
tion, without additional parameters or data.

Future work will explore improving the cost of
HSO by further investigation into updating only
a subset of hidden weights, and approximation of
the exact gradient update. Other directions we will
explore are its application to conditional generation
by improving the representation of the context, and
its interaction with other methods for improving
prompt-based few-shot classification.
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