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Abstract
Research in NLP is often supported by ex-
perimental results, and improved reporting of
such results can lead to better understanding
and more reproducible science. In this pa-
per we analyze three statistical estimators for
expected validation performance, a tool used
for reporting performance (e.g., accuracy) as a
function of computational budget (e.g., num-
ber of hyperparameter tuning experiments).
Where previous work analyzing such estima-
tors focused on the bias, we also examine
the variance and mean squared error (MSE).
In both synthetic and realistic scenarios, we
evaluate three estimators and find the unbi-
ased estimator has the highest variance, and
the estimator with the smallest variance has
the largest bias; the estimator with the smallest
MSE strikes a balance between bias and vari-
ance, displaying a classic bias-variance trade-
off. We use expected validation performance
to compare between different models, and an-
alyze how frequently each estimator leads to
drawing incorrect conclusions about which of
two models performs best. We find that the
two biased estimators lead to the fewest incor-
rect conclusions, which hints at the importance
of minimizing variance and MSE.

1 Introduction

Drawing robust conclusions when comparing dif-
ferent methods in natural language processing is
central to scientific progress. If two research groups
set up the same set of experiments, they should ex-
pect to get similar results. One area that has high
impact, but is often underreported, is hyperparame-
ter tuning (Reimers and Gurevych, 2017; D’Amour
et al., 2020; Dodge et al., 2019; Melis et al., 2018).
Hyperparameter search is key to getting strong re-
sults; for example, RoBERTa (Liu et al., 2019)
found stronger results than BERT (Devlin et al.,
2019) partly due to an increased budget for hyper-
parameter tuning. Often researchers only report
the performance of the single best-found model

during a hyperparameter search (Ethayarajh and
Jurafsky, 2020; Forde and Paganini, 2019; Scul-
ley et al., 2018). What if a future researcher has a
smaller computational budget for training models?
What performance should they expect to find? One
way of reporting such results is expected validation
performance (EVP).

What is EVP? Assume a budget to train B mod-
els (e.g., B rounds of hyperparameter search), with
resulting evaluation scores (e.g., accuracy) on the
validation set X1 . . . XB . Standard practice would
report the maximum result, Xmax, but this effec-
tively hides the experiments which were required to
achieve that maximum performance. Using all B
results, EVP estimates what the maximum would
have been if we had had a smaller budget n (where
1 ≤ n < B). This is estimating what the maxi-
mum of n trials would be, in expectation; this is
thus a statistical estimation problem. The formula-
tion was introduced by Dodge et al. (2019), who
proposed a first estimator (defined as V B

n in Equa-
tion 2). This estimator was later shown to be biased
by Tang et al. (2020), who introduced an unbiased
estimator (defined as UB

n in Equation 3) for the
same expected maximum.

In Section 2 we use tools from combinatorics to
derive both previously-introduced estimators, relate
them to each other, and show that they make two
opposing assumptions; we show that changing only
one of these assumptions instead of both leads to a
third estimator, WB

n , and prove that this estimator
is even more biased than V B

n .
Unbiased estimators are generally preferred, all

else equal, but only analyzing the bias provides an
incomplete picture of the quality of an estimator. In
Section 3 we also measure the variance and mean
squared error of these three estimators in synthetic
experiments. We find that while UB

n is unbiased
(as expected) it has the highest variance, and that
WB

n is the most biased but has the lowest variance;
V B
n strikes a balance between the bias and variance,
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leading to the lowest mean squared error (so, the
average squared distance to the true value being
estimated is smallest).1

Finally, in Section 4 we explore how these esti-
mators impact a common use case of EVP: compar-
ing the results of hyperparameter searches for two
models. Specifically, we examine how frequently
the estimators lead to incorrectly concluding that
the worse model outperforms the better one (for a
given budget), and find that the high-variance (but
unbiased) UB

n more frequently leads to such incor-
rect conclusions than the other lower variance (but
biased) estimators.

2 Estimation of the Expected Maximum

Notation We begin by defining some notation.
Consider n i.i.d. random variables, X1, . . . , Xn ∼
F , for some unknown F .2

• Yn = max{X1, . . . , Xn}, a random variable
representing the maximum of n i.i.d. random
variables.

• θn = E [Yn ], the true expected value of Yn .
• θ̂n, an estimator of θn (the expected value).
• Bias (θ̂) = E [θ̂]− θ, the bias of θ̂.
• Var (θ̂), the estimator’s variance due to sam-

pling.
• MSE (θ̂) = Bias (θ̂)2 + Var (θ̂), the mean

squared error of the estimator. MSE is the
average squared difference between the esti-
mator and true value, or the expected value of
the squared error loss between the estimator
and the true statistic.

Estimation of the Expected Maximum We
consider the estimation of θ, the expected maxi-
mum. With a finite sample of B draws from F ,
we can estimate this quantity for 1 ≤ n ≤ B. We
begin with the definition of an expectation over
a discrete set: E [Yn ] =

∑B
i=1XiP (Yn = Xi).

This can be rewritten using order statistics. Let
X(i) denote the ith largest sample (distinct from
Xi). Then,

E [Yn ] =
∑B

i=1X(i)P (Yn = X(i)) (1)

=
∑B

i=1X(i)

(
P (Yn ≤ X(i))− P (Yn < X(i))

)
=
∑B

i=1X(i)

(
P (Yn ≤ X(i))− P (Yn ≤ X(i−1))

)
1There is a long tradition of preferring biased estimators

over unbiased ones (Wasserman, 2004), such as when estimat-
ing the population variance using the sample variance, or the
James–Stein estimator (James and Stein, 1961).

2For clarity, we dispense with notation mapping into the
use case of interest, as well as the computational details; see
Dodge et al. (2019) for a full discussion.

This estimation depends on P (Yn ≤ X(k)), the
probability that a sample of size n has a maximum
that is less than or equal to the kth order statistic.
We can estimate this probability by counting: from
our B points how many sets of size n are there
which only include order statistics up to k, out of
the total number of sets of size n? We turn to
combinatorics, which provides tools for counting
such sets. Two key assumptions must be made:
whether the sets will contain repetition or not and
whether the items in the sets will be ordered or
unordered. These assumptions will lead to different
estimators.

Ordered subsets that allow repetition are known
as strings, and there are Bn strings of size n from
B points. With these assumptions, we now have a
closed form for P (Yn ≤ X(k)), and plugging this
into Equation 1 we define our first estimator:

V B
n =

B∑
i=1

X(i)

(
in

Bn
− (i− 1)n

Bn

)
. (2)

This is exactly the estimator introduced in Dodge
et al. (2019), derived using the plug-in estimator
for the CDF (the empirical CDF).

Making the opposite two assumptions, un-
ordered subsets without repetition are combina-
tions, for which there are

(
B
n

)
subsets of size n

from B points. The corresponding estimator is

UB
n =

B∑
i=1

X(i)

((
i
n

)(
B
n

) − (i−1n )(
B
n

) ) . (3)

This is the estimator of Tang et al. (2020), which
they derived as an unbiased estimator.

What about changing only one of these assump-
tions? Ordered subsets without repetition are per-
mutations, for which there are BPn subsets of size
n from B points. Though these assumptions are
different, the corresponding estimator is equivalent
to UB

n , since:

kPn

BPn
=

k!
(k−n)!

B!
(B−n)!

=

k!
n! (k−n)!

B!
n! (B−n)!

=

(
k
n

)(
B
n

) (4)

Finally, unordered subsets with repetition are
multisets, the number of which is denoted

((
B
n

))
=(

B+n−1
n

)
. We introduce the corresponding estima-

tor:

WB
n =

B∑
i=1

X(i)

(((
i
n

))((
B
n

)) − ((i−1n ))((
B
n

)) ) . (5)
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Comparing estimators To compare these esti-
mators we turn to the standard statistical tools
of bias, variance, and mean squared error. UB

n

was shown to be unbiased, and Bias (V B
n ) ≤ 0

(Tang et al., 2020). We show that Bias (WB
n ) ≤

Bias (V B
n ), that is WB

n has a larger negative bias
than V B

n .

Theorem 1 Assume X1, . . . , XB ∼ F are
i.i.d. from unknown distribution F . Let 1 ≤ k < B,
and 1 ≤ n ≤ B. Then, Bias (WB

n ) ≤ Bias (V B
n ).

Consider V B
n as defined in Equation 2. The sum

of the coefficients of the X(i) up to k is kn

Bn . It is
sufficient to show that, for a given k, this term is
less than the sum of the coefficients forWB

n , which
is
((

k
n

))/ ((
B
n

))
; this implies that V B

n places less
probability mass on the smaller order statistics than
WB

n .

kn

Bn
<

((
k
n

))((
B
n

)) ⇐⇒ kn

Bn
<

(
k+n−1

n

)(
B+n−1

n

) (6)

⇐⇒
(
B+n−1

n

)
Bn

<

(
k+n−1

n

)
kn

. (7)

The left side of Eq. 7 can be rewritten as:(
B+n−1

n

)
Bn

=
(B+n−1)!

n!B!

Bn
=

1

n!

∏n−1
j=0 (B + n− 1− j)

Bn

=
(
1
n!

)∏n−1
j=0

(
1 + (n−1)−j

B

)
. (8)

Rewriting the right side of Eq. 7 in a similar manner,
we have∏n−1

j=0

(
1 + (n−1)−j

B

)
<
∏n−1

j=0

(
1 + (n−1)−j

k

)
since B > k. This completes our proof.

3 Simulation Experiment

In the previous section we proved that WB
n is at

least as biased as V B
n , but such a bound tells us

little about how these estimators behave in practice.
In this section we provide a simulation experiment
which allows us to measure the bias and variance
of each estimator directly. We assume a distribu-
tion for Xi, which allows us to draw many samples
of size B so we can evaluate how these estima-
tors behave. Recall that the motivating application
of our estimators is when {Xi}ni=1 represent the
evaluations from different trials of hyperparameter
optimization, so designing a reasonable distribu-
tion for Xi allows us to evaluate the estimators
with tens of thousands of simulated trials without
having to train that many models.

3.1 Synthetic Experiments Setup

To begin, we sample 100,000 random values from a
Normal(0.6, 0.07) distribution (truncated to [0, 1]).
We then sample 10,000 values from this set, result-
ing in 9536 unique values, with a true maximum
of 0.854. Call this bag of values V . We then set
B = 30, and estimate the true EVP as a function
of n for n = 1, ..., 30, by drawing 50,000 samples
of size n from V , for each value of n, and reporting
the average maximum for each n (“True EVP” in
Figure 1, top). To estimate the mean and variance
of a given estimator we sample 10,000 B values
from V and compute the value of the estimator for
each, then calculate the mean and variance across
those 10,000 samples.

3.2 Bias, Variance, MSE

Figure 1 shows the estimated mean (top), variance
(middle), and MSE (bottom) of each estimator.
As can be seen in the top figure, Bias (WB

n ) ≤
Bias (V B

n ) ≤ Bias (UB
n ) = 0 with a a difference

that grows with n, confirming the proved bounds
for these estimators. In the middle figure we mea-
sure the variance of these estimators, and we see
that Var (WB

n ) ≤ Var (V B
n ) ≤ Var (UB

n ), with the
difference in variance again growing with n.

In the bottom of Figure 1 we plot the mean
squared error (MSE); as a reminder, MSE (θ̂) =
Bias (θ̂)2 + Var (θ̂), so lower is better. Although
UB
n is unbiased, and WB

n has the lowest variance,
V B
n strikes the balance between bias and variance

that leads to the lowest MSE.
Thus we see that a higher variance estimator may,

on average, be farther from the true value than a bi-
ased but lower variance estimator. Again tying this
back to our motivating application of hyperparam-
eter tuning, in this scenario V B

n is more likely to
underestimate than overestimate performance for a
given budget, but overall will have lower variance
between researchers running sets of experiments,
and will on average have closer predictions to the
true value than the other two estimators.

4 Incorrect Conclusions

While analyzing how close each estimator is to the
true expected maximum for one model is important,
in practice these curves are often used to compare
two or more different models. For example, NLP
practitioners may run hyperparameter searches for
two different models, compute the expected vali-
dation curves for each, and select the model which
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Figure 1: Expected value (top) variance (middle) and
mean squared error (MSE; bottom) of the three estima-
tors, based on a 10,000 simulations for a large random
bag of possible validation scores. As expected, UB

n is
unbiased while V B

n and WB
n have negative bias. How-

ever, WB
n has the lowest variance, and V B

n balances
bias and variance, leading to lowest MSE.

presents a higher estimated maximum performance
(Zhang et al., 2021; Gehman et al., 2020). In this
section we examine the three estimators in such
a scenario, asking how frequently each estimator
leads to drawing incorrect conclusions about which
model performs best for a specific budget.

4.1 Experimental Setup

We proceed by performing a sensitivity analysis:
we run 100 trials of random hyperparameter search
(far more than is typically necessary to establish
that one model outperforms another in current prac-
tice) for a CNN (Kim, 2014) and a linear bag-of-
embedding (LBoE) (Yogatama and Smith, 2015).
These models are trained on the Stanford sentiment
treebank 5-way text classification task (Socher
et al., 2013). We include details about the dataset
(and a link to download it) in Appendix B.

For all three estimators, the CNN has higher
expected performance than the LBoE, for all n ≤
B.3 We then simulate a more practical scenario

3See Appendix C for details. Figure 3 shows expected
validation curves for B = 100 for all three estimators; with

where a practitioner runsB ∈ {15, . . . , 30} rounds
of hyperparameter search for the two models and
compares their estimated maximum at n = B (so,
the estimated maximum of B points) to conclude
which is best (that is, which estimator has lower
error).

We are interested in the rate at which each esti-
mator would draw an incorrect conclusion about
which model performs best. To evaluate this ques-
tion we do the following: for each value of B we
sample 50,000 times from the 100 real experiments
and compute the fraction for which the value of
each estimator for the CNN is less than for LBoE.
For example, to estimate the proportion with which
UB
B draws an incorrect conclusion with B = 15

we draw 50,000 samples of size 15 from the 100
real experimental results for each of the CNN and
LBoE, then compute the fraction of those samples
for which UB

B for the CNN is less than UB
B for

LBoE. A stable estimator will make the same pre-
diction with small and large B.

4.2 Results

In Figure 2 we see the results of this experiment:
UB
B more frequently would lead a practitioner to in-

correctly conclude that the LBoE outperforms the
CNN for budgets B ∈ {15, . . . , 30} than V B

B or
WB

B . This scenario models what we expect a practi-
tioner would care about: the frequency with which
one draws conclusions that would be consistent
with conclusions drawn with a larger budget. Here
the high variance of UB

B likely plays a role the sta-
bility of its predictions; while it may be unbiased,
the lower variance estimators are more reliable.

5 Conclusion

Drawing reproducible conclusions from our ex-
perimental results is of paramount importance to
NLP researchers, practitioners, and users of lan-
guage technologies. Expected validation perfor-
mance curves are tools for comparing the results
of hyperparameter searches; we showed how two
previously-introduced estimators are connected
through combinatorial assumptions, and introduced
a third estimator by varying such assumptions. In
synthetic experiments, we analyzed the bias, vari-
ance, and mean squared error, and found a clas-
sic example of a bias-variance tradeoff; the unbi-
ased estimator UB

n had the largest variance, and
the most biased estimator WB

n had the lowest vari-

B this large, the three estimators are very similar.
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Figure 2: For a budget of B trials, what fraction of the
time does each estimator incorrectly predict that the
expected maximum of those B trials (so, n = B) is
higher for the LBoE than for the CNN? Lower is better.
The proportion of errors made by the unbiased estima-
tor UB

n when n = B is higher than for either of the
biased estimators, V B

n and WB
n . Confidence intervals

around this proportion are not shown, as they are small.

ance, while V B
n struck a balance leading to the

lowest mean squared error. Finally, in realistic ex-
periments we found that the unbiased estimator led
to incorrectly identifying the better of two models
at a higher rate than the lower variance estimator.
Overall, V B

n had the lowest MSE and the lowest
rate of drawing incorrect conclusions, so V B

n is
our recommendation for estimating the expected
maximum.
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Label Train Valid Test
0 1092 139 279
1 2218 289 633
2 1624 229 389
3 2322 279 510
4 1288 165 399

Table 1: Label distributions for SST-5. 0 is “very nega-
tive”, 2 is “neutral”, and 4 is “very positive”.

A Expected Validation Curves for two
models, all three estimators

We include expected validation curves of the same
data using all three estimators in Figure 3. They
look roughly the same.

B Training Data

The CNN and LBoE in Section 4 are trained
on the Stanford sentiment treebank 5-way text
classification task (Socher et al., 2013). There
are 8544 train examples, 2210 test examples,
and 1101 validation examples. It can be down-
loaded here: http://nlp.stanford.edu/
sentiment. We present label distributions in
Table 1.

C Hyperparameter Ranges

The hyperparameter bounds for the CNN and LBoE
in Section 4, which were trained on SST-5 as de-
scribed in Appendix B.

https://arxiv.org/abs/2006.05987
https://arxiv.org/abs/2006.05987
http://nlp.stanford.edu/sentiment
http://nlp.stanford.edu/sentiment
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Figure 3: UB
n (left), V B

n (middle) andWB
n (right) curves of the same data, a CNN and a Linear Bag of Embeddings

(LBoE), evaluated on SST-5, with B=100. With such a large B the three estimators are very similar. For all three
estimators, the CNN has higher expected performance than the LBoE for all n.

Computing infrastructure GeForce GTX 1080 GPU

Number of search trials 100

Search strategy uniform sampling

Best validation accuracy 41.3

Training duration 77 sec

HP number of epochs patience batch size embedding encoder max filter size

Search space 50 10 64 GloVe (50 dim) Convnet uniform-integer[1, 9]

Best assignment 50 10 64 GloVe (50 dim) Convnet 9

HP number of filters dropout LR scheduler patience reduction factor

Search space uniform-integer[64, 512] uniform-float[0, 0.5] reduce on plateau 2 epochs 0.5

Best assignment 390 0.2 reduce on plateau 2 epochs 0.5

HP optimizer LR

Search space Adam loguniform-float[1e-6, 1e-1]

Best assignment Adam 0.0004

Table 2: SST (fine-grained) CNN classifier search space and best assignments.
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Computing infrastructure GeForce GTX 1080 GPU

Number of search trials 100

Search strategy uniform sampling

Best validation accuracy 42.7

Training duration 41 sec

Hyperparameter number of epochs patience batch size embedding dropout

Search space 50 10 64 GloVe (50 dim) uniform-float[0, 0.5]

Best assignment 50 10 64 GloVe (50 dim) 0.4

Hyperparameter LR scheduler patience reduction factor optimizer LR

Search space reduce on plateau 2 epochs 0.5 Adam loguniform-float[1e-6, 1e-1]

Best assignment reduce on plateau 2 epochs 0.5 Adam 0.044

Table 3: SST (fine-grained) BOE classifier search space and best assignments.


