
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4051–4056
November 7–11, 2021. ©2021 Association for Computational Linguistics

4051

Multi-task Learning to Enable Location Mention Identification in the
Early Hours of a Crisis Event

Sarthak Khanal
Kansas State University
sarthakk@ksu.edu

Doina Caragea
Kansas State University
dcaragea@ksu.edu

Abstract

Training a robust and reliable deep learning
model requires a large amount of data. In
the crisis domain, building deep learning mod-
els to identify actionable information from the
huge influx of data posted by eyewitnesses of
crisis events on social media, in a time-critical
manner, is central for fast response and relief
operations. However, building a large, anno-
tated dataset to train deep learning models is
not always feasible in a crisis situation. In this
paper, we investigate a multi-task learning ap-
proach to concurrently leverage available an-
notated data for several related tasks from the
crisis domain to improve the performance on a
main task with limited annotated data. Specifi-
cally, we focus on using multi-task learning to
improve the performance on the task of identi-
fying location mentions in crisis tweets.

1 Introduction

Social media has evolved into a platform for peo-
ple to share their concerns, report information as
eyewitnesses of events, and also call for help, es-
pecially during crisis situations. The huge amount
of data that is posted on social media during crisis
events could be used to build reliable and robust
deep learning models for identifying information
useful to crisis management and response teams.
However, using social media data for a particular
task, oftentimes, requires intensive manual effort
in the form of annotation. The effort becomes even
more arduous when we consider the noisy nature
of social media content and the amount of labelled
data required for a typical deep learning model.

The domain of crisis-related social media analy-
sis, tweets in particular, is a well-researched field
with labelled data available for various tasks (Im-
ran et al., 2016; Middleton et al., 2014; Alam et al.,
2018). However, most of the available human-
annotated datasets consists of thousands of in-
stances, at best, which means that crisis datasets

are relatively small compared to those available
for tasks in other domains. Furthermore, for tasks
that can support a new, emergent crisis situation,
human-labelled data of large volume cannot be
acquired for the reasons discussed above. In this
work, we explore ways in which we can harness the
available small datasets from the domain to bolster
performance for individual tasks of interest.

One popular approach in addressing the size-
limitation of labelled data for a particular task is
to leverage unlabelled data. In the field of Natural
Language Processing (NLP), the recent advance-
ments in transformer-based architectures, and asso-
ciated pre-training with huge amounts of unlabelled
data, has largely been successful in addressing this
issue. Transformer-based architectures, currently,
hold state-of-the-art results for many NLP tasks.
However, the domain shift from the pre-training
corpus to a downstream task’s domain is still a
significant issue (Han and Eisenstein, 2019). More-
over, further pre-training with domain-specific un-
labelled data is compute-intensive (Devlin et al.,
2018) and it is not always feasible.

An alternative approach to address the limitation
in terms of labeled data is to concurrently leverage
smaller datasets available for different, but related
tasks using a multi-task learning strategy (Caruana,
1997). In the multi-task setting, some layers can be
shared across different tasks, while each task can
also have one or more task-specific layers, and the
entire model is trained in parallel for all the tasks.
A multi-task model is designed with the intuition
that the lower layers of the model learn abstract
features common to related tasks, while the upper
layers learn features specific to each individual task.
This approach is especially useful in the domain
of crisis-related social media analysis, given the
lack of large datasets, while smaller datasets are
available for different tasks.

In this work, our main focus is on the task of
identifying fine-grained locations from tweet texts.
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Figure 1: Multi-task model overview

Identification of location entities in tweets posted
during crisis events is vital in extracting actionable
situational awareness information. Furthermore,
identifying the entities according to a hierarchy of
location types can help in geographical location dis-
ambiguation and geo-coding. We use the English
subset of the dataset published by Middleton et al.
(2014), which has only a few thousands instances.

To address the issue of limited data size, we
use a multi-task learning setting to augment the
learning of fine-grained location identification with
three other tasks in the domain of crisis-related
tweets: key-phrase identification (Chowdhury et al.,
2020), eyewitness-account classification (Zahra
et al., 2020) and humanitarian categories classifica-
tion (Alam et al., 2018). We hypothesize that the
similar nature of the tasks and the common abstract
objective of identifying actionable information in
crisis-related tweets will result in a performance
boost for the main task considered, i.e., identifica-
tion of fine-grain locations in tweet texts.

2 Related Work

Multi-task learning is a well-researched topic in the
field of NLP, and deep learning, in general (Ruder,
2017). Caruana (1997) outlines one of the popu-
lar strategies for implementing multi-task learning:
hard parameter sharing. In hard parameter shar-
ing, a module shared by all tasks is followed by
task-specific modules. On the other hand, in soft
parameter sharing (Duong et al., 2015; Yang and
Hospedales, 2017), each task has its own set of lay-
ers, but the parameters of the task-specific layers
are constrained to be similar across tasks to enforce
exchange of information among tasks. Hard param-
eter sharing is known to reduce over-fitting (Ruder,
2017), and is thus useful for tasks with small train-

ing sets. The usefulness of multi-task learning has
been shown in a variety of applications, includ-
ing image (Zhang et al., 2014; Cheng et al., 2011),
voice (Stoller et al., 2018; Rao et al., 2018) and
text (Wang et al., 2020; Liu et al., 2019a; Pham
et al., 2019) analysis. In the crisis domain, Wang
et al. (2020) presented a multi-modal multi-task
model using a single multi-modal dataset contain-
ing labels for different tasks. Chowdhury et al.
(2020) used single-token keywords identification
as an auxiliary task when predicting multi-token
keyphrases. The work by Liu et al. (2019a) is the
closest to our work, in that they used separate task-
specific datasets in a multi-task learning setting.
However, they performed experiments on general
NLP benchmark datasets, such as GLUE (Wang
et al., 2018).

3 Background and Approaches

We use the hard-parameter sharing approach for
multi-task learning, where task-specific modules
(τ ) are attached on top of a shared module (γ) as
shown in Figure 1. We use the algorithm proposed
by Liu et al. (2019a) to train multiple task modules,
in parallel.
Multi-task Learning. Multi-task learning
can be formulated as follows: Given a
set of k tasks and their corresponding data
D = {(X1, Y1), (X2, Y2), · · · , (Xk, Yk)}, where
(Xi, Yi) ∈ D is the training dataset for the ith task,
the goal of multi-task learning is to minimize the
aggregate loss L(θ) on D given by:

L(θ) =
k∑
i=1

∑
(x,y)∈(Xi,Yi)

`i(y, T i(x, θ)) (1)

where `i is the loss function for the ith task,
T i(x, θ) = τ i(γ(x, θγ), θi) is the output of the ith

task module τ i (with parameter θi ⊂ θ) and γ is
the shared module (with parameter θγ ⊂ θ).
Token Classification Tasks. A token classifica-
tion task maps a sequence x = {x1, · · · , xn},
representing n input tokens, to a sequence y =
{y1, · · · , yn}, representing n task-specific tags cor-
responding to the tokens in the sequence x. The
mapping can be generically written as: τ i(θi) :
x→ y (where θi are the task parameters). The loss
`i that we use for these tasks is the negative log
likelihood. In our setting, the fine-grained location
identification and the keyphrase identification tasks
are token classification tasks.
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Sequence Classification Tasks. A sequence clas-
sification task maps a sequence of n tokens x =
{x1, · · · , xn} to a class y ∈ C, where C is the
task-specific set of classes. The mapping can be
generically written as τ j(θj) : x → y (where
θj are the task parameters). We use the standard
cross-entropy or the binary cross-entropy loss `j for
sequence classification tasks, depending upon the
number of classes. In our setting, the eyewitness-
account classification and the humanitarian cate-
gories classification tasks are seen as sequence clas-
sification tasks.
Shared Module. For the shared module, we exper-
iment with three base variants (hidden layer size of
768) of transformer-based language models: BERT
(Devlin et al., 2018), Albert (Lan et al., 2019) and
RoBERTa (Liu et al., 2019b). BERT is one of the
first and most popular transformer-based models,
and has been used widely in various applications.
We compare its performance with that of RoBERTa,
which was trained on a larger dataset than BERT
and it is considered to be more robust (Liu et al.,
2019b). We also compare BERT and RoBERTa
with Albert, a significantly smaller model, to under-
stand the effect that the size of the shared module
has on the the performance of the task at hand.

4 Experimental Setup

4.1 Datasets

Fine-grained Location Identification. We use
the dataset published by Middleton et al. (2014),
which has two sets of tweets posted during Hur-
ricane Sandy 2012 and Christchurch Earthquake
2012, respectively. Based on the place of the event,
in what follows, the set of tweets posted during
Hurricane Sandy 2012 will be referred to as NY,
while those posted during Christchurch Earthquake
2012 will be referred to as NZ. The NY and NZ sets
contain 1907 and 1762 unique tweets, respectively.
Both the NY and NZ tweets have human-labelled
location entities corresponding to three categories:
administrative location, building and transporta-
tion. We randomly select 1000 tweets from each set
for training, 500 tweets for test, and the remaining
tweets for development (dev) splits.
Keyphrase Identification. We use the dataset pub-
lished by Chowdhury et al. (2020) for keyphrase
identification. The dataset contains tweets from
various crisis events. The tokens in each tweet
are labelled as keyphrase or not, using the script
provided by Chowdhury et al. (2020). We use a

random sample of 1000 tweets for training to keep
the dataset size balanced across multiple tasks.
Eyewitness-account Classification. The dataset
published by Zahra et al. (2020) contains tweets
from flood, hurricane and earthquake. The tweets
are labelled using one of five eyewitness classes:
direct-eyewitness, indirect-eyewitness, vulnerable
direct-eyewitness, non-eyewitness, and don’t know.
As for the other tasks, we use a class-balanced
sample of 1000 tweets from the dataset for training.
Humanitarian Categories Classification. We
use the dataset published by Alam et al. (2018)
for humanitarian categories classification. The
dataset contains tweets from various crisis events,
labelled using the following humanitarian classes:
Infrastructure and utility damage, Vehicle damage,
Rescue, volunteering, or donation effort, Injured
or dead people, Affected individuals, Missing or
found people, Other relevant information, and Not
relevant or can’t judge. We use a class-balanced
sample of 1000 tweets from the dataset for training.

4.2 Baseline and Metrics
We use a single task-setting, where only one task-
module is attached over the base module, as the
baseline to which we compare the performance of
the multi-task learning setting. We use precision
(Pr), recall (Re) and F1 scores as metrics to com-
pare the performance of the models.

4.3 Experiments and Implementation Details
We perform the experiments on three levels of
task-sharing: a Single-task model (ST) (trained
on NY and NZ, respectively, and tuned/tested on
the corresponding dev/test sets), a Location-only
Multi-task model (LMT) (trained with NY and
NZ as two different location identification tasks in
a multi-task setting, and tuned/tested on the cor-
responding dev/test sets), and Multi-task model
(MT) (trained with all tasks in a multi-task setting,
and tuned/tested on the corresponding dev/test sets
for the location identification tasks). In addition,
we also combine the two location datasets NY and
NZ (Combined) and train a single-task model (ST),
and a multi-task model (MT), using the other three
tasks to understand the benefit of only using the
related tasks for general location identification (as
opposed to disaster-specific identication). The hy-
perparameter configuration used in the experiments
are shown in the Appendix A. All experiments are
run on a 4-GPU system of NVIDIA Tesla V100
GPUs.
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Task γ Dev-F1 Test
Pr Re F1

Dataset: NY

ST
BERT 75.40 79.18 79.41 79.30
RoBERTa 66.31 70.82 73.53 72.15
Albert 72.40 78.72 76.18 77.43

LMT
BERT 75.49 76.09 82.35 79.10
RoBERTa 69.69 81.72 69.71 75.24
Albert 73.29 76.68 77.35 77.01

MT
BERT 73.95 78.90 80.29 79.59
RoBERTa 70.12 76.95 69.71 73.15
Albert 77.43 84.00 74.12 78.75

Dataset: NZ

ST
BERT 67.68 58.55 66.86 62.43
RoBERTa 71.25 66.67 57.99 62.03
Albert 69.52 61.58 69.23 65.18

LMT
Bert 65.99 56.72 67.46 61.62
RoBERTa 69.01 66.67 63.91 65.26
Albert 70.83 70.35 71.60 70.97

MT
BERT 72.32 69.05 68.64 68.84
RoBERTa 70.37 72.79 58.58 64.92
Albert 75.14 67.47 66.27 66.87

Dataset: Combined

ST
BERT 75.95 73.14 85.07 78.66
RoBERTa 69.90 72.59 68.17 70.31
Albert 68.92 71.72 68.76 70.21

MT
BERT 76.33 76.01 80.94 78.40
RoBERTa 69.01 71.98 70.14 71.04
Albert 78.65 83.54 77.80 80.57

Table 1: Results for Fine-grained location identification
task in three settings: Single-task (ST), Location-only
Multi-task (LMT) and all-multi-task (MT) with three
variants of transformers (γ) as shared module. The re-
sults are grouped by dataset: NY, NZ and Combined.

5 Results and Discussion

Table 1 shows the results for the location identifi-
cation task grouped by dataset (NY, NZ and Com-
bined) in three different task-sharing settings, with
three variants of the transformer-based shared mod-
ule, as described in Section 4.3. The table shows
precision, recall and F1 scores for the test set, along
with F1 score on the corresponding development
set (Dev-F1) used to identify the best model.

As can be seen in Table 1, the multi-task mod-
els (MT) consistently outperform the correspond-
ing single-task models (ST) in terms of test F1
score, with the exception of the Combined set,
when BERT is used a the base module. It is in-
teresting to see that the models, however, have very
little or no gain when only using identical tasks
(LMT). On the other hand, we see the highest over-
all performance improvement of 14.76% for MT as
compared to ST, on the Combined set, with Albert
as shared module, and all the non-location tasks.

Table 2 shows the macro average of percentage
improvement in F1-score from single-task models
to the two variants of multi-task models for the

Transformer
Average performance

improvement (%)
ST → LMT ST → MT

BERT -0.78 3.43
RoBERTa 4.75 2.36
Albert 4.17 6.35

Table 2: Average (marcro) performance improvement
over three datasets for the three transformer variants,
when comparing single-task model (ST) to location-
only multi-task (LMT) and all-multi-task (MT) model.

three transformer-based modules. In general, we
see significant performance improvement from the
single-task to the multi-task model. From the table,
Albert has the best overall performance improve-
ment for the task of location identification. This
could be because Albert has significantly less pa-
rameters compared to the other two variants, and
given the small size of the datasets, that results in
better generalization and shared learning. The over-
all lower performance gain from ST to LMT could
be due to the fact that the two tasks are very similar
and thus, they do not help model’s generalization
capability. On the other hand, when using more dis-
similar tasks, the model benefits from variations in
the data and is able to generalize better; this results
in performance improvement across all variants.

6 Conclusions and Future Work

In this paper, we studied the effect of using other
closely related tasks in a multi-task setting for the
task of fine-grained location identification in the
domain of crisis-related tweets. Our results show
that using multi-task learning can improve the per-
formance significantly as compared to single-task
learning. The approach could be specially useful
when analysing an emergent crisis, where anno-
tating large amount of data is not feasible and the
entire analysis process is time-critical. Moreover,
our results also show that when a small amount
of data is available, the model may benefit more
from using other related tasks rather than using
additional data for the same type of task (i.e., two
location identification tasks).

In addition to studying the effect of multi-task
learning, we also studied the effect of different
transformer variants on the performance of the
model for the main task. With different variants
available, it is necessary to find the best-fitting one
for the task at hand. The results show that the
choice of the shared module has significant effect
on the performance.
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As part of future work, we plan to explore other
multi-tasking and domain adaptation strategies
with different collections of datasets to allow for
stress testing of the approach in terms of generaliza-
tion. Given the promising results with multi-task
learning, we plan to perform studies with respect
to the nature of the crisis for the dataset. This will
allow us to focus on specific datasets for specific
crises and potentially improve the state-of-the-art
on those datasets.
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