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Abstract

Automated Theorem Proving (ATP) deals with
the development of computer programs being
able to show that some conjectures (queries)
are a logical consequence of a set of axioms
(facts and rules). There exists several success-
ful ATPs where conjectures and axioms are
formally provided (e.g. formalised as First
Order Logic formulas). Recent approaches,
such as (Clark et al., 2020), have proposed
transformer-based architectures for deriving
conjectures given axioms expressed in natu-
ral language (English). The conjecture is veri-
fied through a binary text classifier, where the
transformers model is trained to predict the
truth value of a conjecture given the axioms.
The RuleTaker approach of (Clark et al., 2020)
achieves appealing results both in terms of ac-
curacy and in the ability to generalize, show-
ing that when the model is trained with deep
enough queries (at least 3 inference steps), the
transformers are able to correctly answer the
majority of queries (97.6%) that require up to 5
inference steps. In this work we propose a new
architecture, namely the Neural Unifier, and
a relative training procedure, which achieves
state-of-the-art results in term of generalisa-
tion, showing that mimicking a well-known in-
ference procedure, the backward chaining, it is
possible to answer deep queries even when the
model is trained only on shallow ones. The ap-
proach is demonstrated in experiments using
a diverse set of benchmark data. The source
code is available at this location1.

1 Introduction

Automated Theorem Proving (ATP) deals with the
development of computer programs being able to
show that some conjectures (queries) are a log-
ical consequence of a set of axioms (facts and
rules) (Sutcliffe et al., 2004). This problem has

∗Equal contribution.
1https://github.com/IBM/Neural_Unifica

tion_for_Logic_Reasoning_over_Language

wide applications in many domains, including prob-
lem solving (Green, 1981) and question answering
(MacCartney and Manning, 2007; Furbach et al.,
2010; Hermann et al., 2015; Clark et al., 2020),
and is being actively studied, an extensive refer-
ence can be found in Loveland (1986) and Nawaz
et al. (2019). Recent approaches, such as RuleTaker
(Clark et al., 2020), uses transformers (Vaswani
et al., 2017) as automated theorem prover over
queries, facts and rules expressed in natural lan-
guage (English). The theorem proving problem is
translated into a binary text classification problem,
where the transformers model is trained to predict
the truth value (True/False) of a textual query q
given an input knowledge base κ consisting of tex-
tual facts and rules.

This class of ATP is especially interesting since
it does not require the explicit translation of axioms
and conjecture to formal logical (e.g First Order
Logic) or probabilistic rules, making it possible
to reason on knowledge expressed verbatim. Fur-
thermore, these models do not specify an explicit
reasoning procedure, but learn to implicitly demon-
strate a query from example instances during the
learning phase. Figure 1 shows an example of an
instance of the logic reasoning problem in natural
language illustrated in Clark et al. (2020).

The results reported in Clark et al. (2020) demon-
strated that state-of-the-art pretrained language
models, such as ROBERTA (Devlin et al., 2019)
or BERT (Liu et al., 2019), can be fine-tuned with
labeled data to achieve appealing results both in
terms of accuracy and in the ability to generalize,
showing that when the model is trained with deep
enough queries (at least 3 inference steps), the trans-
formers are able to correctly answer the majority
of queries (97.6%) that require up to 5 inference
steps. This interesting result holds not only for
training and test data in the same domain, but also
for zero-shot testing on texts in other domains.

In this paper we propose an architecture that is

https://github.com/IBM/Neural_Unification_for_Logic_Reasoning_over_Language
https://github.com/IBM/Neural_Unification_for_Logic_Reasoning_over_Language
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Figure 1: A machine reasoning problem with an informally represented knowledge and query, and an example of
backward chaining inference to prove a query statement: “Bob is green."

able to answer deep queries (having large inference
depths) even when it is trained only with shallow
queries at depth 1 or 2. Our main assumption is
that by inducing a neural network to mimic some
elements of an explicit general reasoning proce-
dure, e.g. the backward chaining, we can increase
the ability of the model to generalize. In partic-
ular we focus on mimicking the iterative process
in which, at each step, a query is simplified by
unifying it with an existing rule to create a new
but simpler query for further checking (Baader and
Snyder, 2001). In a unification step, when the query
matches with the consequent (Then clause) of a
rule, the antecedent (If clause) of the rule is com-
bined with that query via symbolic substitution to
create a new query. For example, for the query
“Bob is green" shown in Figure 1, the following
steps lead to the answer (proof):

• Fact checking step 0: No fact in our knowledge
base matches with the query “Bob is green"

• Unification step 1: Given “Bob is green" and the
rule: “If someone is smart then it is also green.",
a new query is created “Bob is smart"

• Fact checking step 2: No fact matches with the
new query “Bob is smart"

• Unification step 3: Given that “Bob is green"
and the rule: “If someone is rough then it is also
green", a new query “Bob is rough" is created

• Fact checking step 4: “Bob is rough" matches
with a fact in the knowledge base, the proof com-
pletes and returns the answer: “Bob is green" is
a true statement.

As we can see in the given example, the query
“Bob is green" is simplified iteratively with the help

of the unification steps and is transformed into a fac-
tual query “Bob is rough", which is then checked
by the fact-checking step via a simple look-up in
the knowledge base. These sequences of inference
steps are the basis of the famous backward chain-
ing inference in formal logic (Russell and Norvig,
2010) illustrated in Figure 1.

The main building blocks of such inference meth-
ods are the unification and the fact checking algo-
rithms. While backward chaining inference with
formal representation can be formulated as a tree
search problem (Russell and Norvig, 2010), emu-
lating these algorithms for textual input data using
neural networks is still an open research problem,
mainly due to the ambiguity in mapping entities
and relations expressed in natural language to corre-
sponding mentioning entities and relations in free-
text knowledge bases.

In the following sections we describe the Neural
Unifier architecture, that mimics the unification and
the fact checking algorithms, in order to improve
generalisation on answering deep queries. We test
our approaches with publicly available datasets
where the Neural Unifier is trained with depth-1 or
depth-2 queries, and demonstrate that it can answer
queries at higher depths with high accuracy (up to
five inference steps). In particular, the proposed
approach achieved state-of-the-art results in these
benchmark datasets and outperformed the state-of-
the-art algorithms with a significant margin.

2 Preliminaries and problem definition

This section provides a formal problem definition
and introduces the main intuition of the approach
used for mimicking the backward chaining.

The backward chaining algorithm, described ex-
tensively in (Russell and Norvig, 2010), is one of
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the most used algorithms for reasoning with infer-
ence rules: it is based on a depth-first strategy to
explore the search space, and it generates a proof
including a sequence of unification and fact check-
ing operations. An example of execution of this
algorithm is shown in Figure 1.

Let q denote a the query (conjecture) and κ be
the knowledge base that consists of a set of rules
R and a set of facts F ; In this work we consider all
q, R, and F expressed in natural language, where
queries, facts and rules can be very simple lexi-
calizations of logical formulas (e.g, Figure 1); or
they can be paraphrased in a more creative way.
Experiments with both simple lexicalizations and
paraphrases are reported in Section 4.3 and Section
4.5 respectively. Let qn denote as depth-n query
that requires at least n inference steps in order to
provide an answer. For example, query 1 in Figure
1 is a depth-1 query because it requires a unifica-
tion with R2, plus a fact checking step (shown as
the success path in Figure 1).

The fact checking function denoted as f can
now be formalised as the operation that takes as
input a depth-0 query q0 and returns True if the
corresponding fact is present in the given κ, and
False otherwise:

f(q0, κ) =

{
True q0 ∈ κ

False q0 6∈ κ

The unification operation denoted as u can be
formalised as the operation that takes as input a
query qn and the set of facts and rules κ and pro-
vides as output a simpler query qn−1 at depth-(n-1):

u(qn, κ) = qn−1

while the application of k unification steps con-
secutively is denoted as uk(qn, κ) = qn−k, and for
the special case where n = k we have that:

un(qn, κ) = q0

Let now assume the existence of a perfect uni-
fication operator denoted as u∗, that is when it
explores the search tree defined by backward chain-
ing, always chooses the branch corresponding to
the optimal path (where an optimal path for a query
qn is a series of unification operations leading to a
query q0 with the same truth value of qn in n steps).
Considering a relaxed version of the problem where
the queries do not require closed or open word as-
sumption to prove, the truth value of a query qn can

therefore be found with n unification steps plus a
fact checking operation: f(un∗ (qn, κ), κ).

With a symbolic representation, the unification
and the fact checking operations can be done via
explicit mathematical transformations. However,
when the input is represented in natural language
without an explicit structure, it requires machines
to learn these tasks by examples under the presence
of language ambiguity. In this work, we propose
a neural network architecture called Neural Uni-
fier (NU) aiming at learning to approximate the
function f(un∗ (qn, κ), κ) with input expressed in
natural language. Details about our approach are
discussed in the next section.

3 Training Procedure

With a slight abuse of notation, in order to simplify
the discussion, when we use q to denote the query,
we also refer it as a notation of the embedding
vector of the query, because a textual query in a
neural network is represented as an embedding vec-
tor. The main idea behind the approach presented
is an architecture composed of two units trained in
two separate phases:

1. The first unit is the Fact-checking Unit (FU):
it approximates the fact checking operator
f(q0, κ). The model is pre-trained in a super-
vised manner on only depth-0 queries and the
related κ. After this initial training phase the FU
weights are frozen and the model is used solely
for predictions.

2. The second unit is the Unification Unit (UU): it
is trained in a second subsequent phase and the
goal is to approximates the un∗ (qn, κ) operator.
The model is trained on depth-n queries (with
n > 0) to produce an embedding vector q0. The
embedding vector q0 is then fed as an input to
the pretrained FU unit whose output prediction
(True or False) is used for back-propagating the
error in the NU model.

While the first phase of training is rather intu-
itive, the second phase teaches the unification unit,
starting from a query qn, to transform it into a vec-
tor embedding q0 such that the neural fact checking
unit can predict the correct truth value for the query
qn. Since the FU unit is pretrained to perform
fact-checking tasks, the UU unit is forced to pro-
duce a query q0 from a complex query qn so that
the answer given by the FU unit is correct, hence
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Figure 2: A Neural Unification network consists of a pretrained fact-checking unit and a unification unit. The
fact-checking unit is a model trained to check whether an embedding vector of depth-0 query q0 is true/false given
a knowledge base embedding vector C. The unification unit takes an embedding vector qn of a depth-n query
and an embedding vector C of the knowledge base as an input. It transforms the input vector qn, thanks to the
multi-attention layers, to predict an embedding vector q0 such that the pretrained fact look-up unit can make a
correct prediction of the query’s label.

mimicking the unification operations. The detailed
implementation and input/output of the two units
are described in detail in the following subsections.

3.1 Neural fact checking unit

Figure 2 illustrates the core components of our
proposed Neural Unifier (NU) architecture: the
Fact checking Unit (FU) and the Unification Unit
(UU). The FU component is implemented through
a standard Bert transformers model (Devlin et al.,
2018) with a binary classification head. The inputs
during the training phase are textual tuples contain-
ing the set of facts and rules κ (concatenated in
a single string), and a related depth-0 query. The
Bert tokenizer is used to transform κ into the cor-
responding embedding vector denoted as C ( C
stands for “context") and the depth-0 query into its
embedding vector representation q0. The output
of the tokenization step therefore follows the for-
mat: [CLS]C [SEP ] q0 [SEP ] where [CLS] and
[SEP ] are embedding vectors of special tokens
added by the BERT tokenizer to separate context
and query (Devlin et al., 2018).

The transformer model is then fed with the tok-
enized input and fine-tuned to output True if the
query is a correct conjecture with respect to the
set of textual facts and rules provided in the input,
False otherwise. Note that after the first learning
phase the weights of the FU unit are frozen when
the UU unit is being trained.

3.2 Neural unification unit

In our implementation, we also use a Bert trans-
formers as a unification unit, with the only differ-
ence that in this case the output is an embedding
vector (while the neural fact checking unit has a
binary classification head and output True/False la-

bels). The inputs for the unification unit are textual
tuples containing the set of facts and rules κ, and
the related depth-n query (n > 0).

The Bert tokenizer is used to transform κ into the
corresponding embedding vector C and the depth-
n query into the corresponding embedding vector
qn. The output of the tokenization step therefore
follows the format: [CLS] C [SEP ] qn [SEP ].
This input is fed into the transformers to get the
output (the hidden states of the transformers last
layers) in the format [CLS] C0 [SEP ] q0 [SEP ].
Where C0 and q0 are the transformations of C and
qn via transformers respectively.

3.3 Wiring unification and fact checking

Figure 2 shows the complete architecture when
two units are wired into one network. In particular,
the output of the UU unit is fed into the FU unit.
However, in our implementation, instead of using
[CLS]C0 [SEP ] q0 [SEP ] as a direct input to the
fact checking unit, we replace C0 by the original
context embedding C, hence the corrected input to
the FU unit is [CLS]C [SEP ] q0 [SEP ]. In doing
so the unification unit can focus on optimizing the
prediction of the query embedding q0 rather than
trying to reconstruct the original context. We ob-
served in experiments that this approach simplifies
the learning process and helps converging faster to
the optimal solutions. Detailed examples of inputs
and outputs can be found in the appendix.

4 Experiments and Results

This section discusses experimental settings and
results.
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4.1 Datasets and experimental settings
We used three datasets provided in (Clark et al.,
2020) to validate our approach. These datasets
were selected because they contains test queries
that require up to 5 inference steps, where we can
validate the induced generalization capability of
our approach. The three datasets are:

• Rule reasoning data: synthetically created from
a synthetic knowledge base (see (Clark et al.,
2020) for more information about the data cre-
ation process). It consists of 5 folders with depths
ranging from 0 to 5. We only use depth-0 train-
ing queries in the depth-0 folder for training the
fact-checking unit. Depth-1 and depth-2 train-
ing queries in the corresponding folders are used
for training the unification models. The folders
depth-3, depth-4 and depth-5 are used as holdout
sets only for testing purposes.

• Paraphrased data: created from rule reasoning
data where the questions, facts and rules are para-
phrased by crowd-workers. Paraphrased dataset
contains more complex and longer sentences,
such as: "Alan is young and green, and seems
to be cold and rough, but time will round him
into a decent person" (see (Clark et al., 2020)
for details). We use this dataset to test the zero
shot generalisation capability to a larger variety
of more natural linguistic forms.

• Electricity data: synthetically created from a set
of rules on an electrical circuit, describing the
conditions for an appliance to function. Contains
queries that require up to 4 inference steps (see
(Clark et al., 2020) for details).

All datasets, with the exception of the Electricity
data, are divided into training, validation and test-
ing sets. More details can be found in the appendix.

4.2 Methodology
In all experiments, we used BERT (specifically
bert-base-uncased) as our backbone model both for
the FU and the UU unit. For both training phases,
described in Section 3, we used the Adam optimisa-
tion algorithm (Kingma and Ba, 2014) with logloss
(Vovk, 2015), we set the mini-batch size as 8 to
fit our GPU memory and manually fine-tuned the
learning rate in the range [10−6, 10−2], choosing
the best learning rate by looking at the accuracy of
the prediction in the validation set during training
(0.0001). It is important to notice that the test sets

used for reporting experimental results are different
from the validation sets used for hyper-parameter
optimization to ensure that the comparison is fair.
In all the training we used early stopping technique
on the validation for avoiding overfitting, by setting
the maximum number of epochs to 20.

4.2.1 Neural Fact-checking unit (FU)
The FU unit used in the experiments is trained on
58,844 depth-0 queries (all depth-0 training queries
in the depth-0 folder of Rule reasoning data). The
training task on the Rule reasoning data turns out to
be particularly simple, after a few epochs (around
3 using the early stopping strategy) the model is
able to solve the task perfectly on the training and
validation set and the report an accuracy on the set
(1,6751 queries) is close to one (0.99968). The FU
also achieves an accuracy of 0.71 and 0.99 on the
respective Paraphrased data (2,968 queries) and
Electricity data (2,812 queries) test sets without
any further fine-tuning (zero shot setting). Achiev-
ing high accuracy in the fact-checking unit is par-
ticularly important as the subsequent UU training
assumes the FU prediction as ground truth to back-
propagate the gradient.

4.2.2 Neural unification unit
Since our work focuses on learning a general infer-
ence mechanism on shallow queries and applying it
to solve queries at higher depths (up to 5 inference
steps), we report the experiments on two variants
of the Neural Unifier, trained on queries with a
maximum depth of 2:

• NU (D = 1): that is a Neural Unifier network com-
posed of an UU unit trained on 27429 depth-1
queries (all depth-1 training queries in the depth-
1 folder of Rule reasoning data) and the previ-
ously trained FU as described in section 4.2.1

• NU (D = 2): that is a Neural Unifier network
composed of a UU unit trained on 14254 depth-2
queries (all depth-2 training queries in the depth-
2 folder of Rule reasoning data) and the previ-
ously trained FU as described in section 4.2.1

Both the models try to induce the inference
mechanism, using the procedure described in sec-
tion 3. NU (D = 1) reduces 1-depth queries to
0-depth equivalent vector embedding and then use
the fact checker to derive the truth value of the orig-
inal query. NU (D = 1) only observes queries at
depth 0 and 1 during the training phase. NU (D = 2)
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instead turns depth-2 queries to depth-0 equivalent
vector embedding and then uses the fact checker to
prove the conjecture. Therefore NU (D = 2) only
observes queries at depth 0 and 2 during the train-
ing phase. In the following sections, the results of
the two models will be reported (trained with the
settings described in subsection 4.2), focusing on
the generalization capacity to queries at depths not
observed during training.

4.3 Inference on queries deeper than those
observed at training time

Table 1 reports the performances of the NU D = 1
and NUD = 2 models and compares them with the
state-of-the art RuleTaker approach. There are two
version of RuleTaker in our experiments: RT is our
implementation that uses bert-base as backbone
architecture, while RR corresponds to the imple-
mentation of (Clark et al., 2020) with roberta-large
and is reported for completeness when the results
are available in the original paper.

As can be seen in this experiment, the NU mod-
els with D = 1 and D = 2 accurately answer
queries at unseen depths, and consistently out-
performs the state-of-the-art approaches on those
depths. The significant result is particularly evident
for NU D = 2 over depth-5 queries. More inter-
esting is that the model NU D = 2 not only learns
to transform depth-2 queries to depth-0 equivalent
vector embedding, but it can reduce a qn queries
with depths ranging from 3 up to 5 to depth-0
equivalent vector embedding effectively. Our hy-
pothesis is that the transformers-based architec-
ture, which in several applications has been shown
to efficiently learn recursive tasks (Vaswani et al.,
2017), effectively approximates the unification op-
erator un∗ (qn, κ) with its multi-layer architecture
described in section 2.

Although our implementation uses Bert, several
transformers can be used successfully while main-
taining the properties analyzed, as demonstrated in
Clark et al. (2020) and the additional experiments
are reported in the appendix.

4.4 Inference on provable queries deeper
than those observed at training time

Observing the table 1, it may be counter-intuitive
that the reported accuracy for NU (D = 1) and NU
(D = 2) increases as the depth of the queries in-
creases. This fact can be explained by observing a
bias present in the distribution of the queries that
does not have a proof, and its truth value is assigned

Table 1: Accuracy on the Rule reasoning test sets when
the depths of the test queries are varied. NU D = 1
and NU D = 2 are compared with our implemen-
tation of the-state-of-the-art RuleTaker (RT) approach
with bert-base-uncased back-bone and the original im-
plementation of the RuleTaker (RR) with roberta-large
back-bone pretained on the RACE dataset as reported
in Clark et al. (2020).

based on the closed word assumption (CWA). We
call those queries CWA while the other ones, which
have at least one successful proof, are called prov-
able queries in the test set.

Table 2: Distribution of CWA queries in the test data.

Table 2 shows the distribution of CWA and prov-
able queries in our test data. The statistics shows
an inversely proportional relationship between the
number of CWA questions and the accuracy of the
models reported in Table 1, thus suggesting that
NU network are especially effective on provable
queries, while they do not work so well on queries
that does not have a proof (CWA).

This assumption is verified by testing the models
on the subset of provable queries, as reported in
Table 3.

These results show that NU (in particular NU
D = 2) is able to answer provable queries, at all
depths very accurately. Based on this observation,
in the following subsections, we will demonstrate
that by combining NU with RuleTaker to form an
ensemble model, we are able to outperform each in-
dividual model for both CWA and provable queries.

4.5 Zero-shot generalization

In order to verify the ability to generalize to deep
unseen provable queries, we test the NU (D = 2)
on the provable queries in the Paraphrased and
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Table 3: Accuracy of NU D = 1, NU D = 2, RT
D <= 1 and RTD <= 2 on the provable queries in the
Rule reasoning test sets (queries that does not require
closed word assumption to prove the conjectures).

Electricity datasets, without fine-tuning the model
(zero shot setting).

The results, reported in Table 4, shows that NU
(D = 2) can effectively outperform the current
state-of-the-art by a significant margin in both ac-
curacy and generalisation capability.

Table 4: Accuracy of NU D = 2 and RT D <= 2 on
the subset of provable queries in the Paraphrased and
Electricity test sets (queries that does not require closed
word assumption to prove the conjectures).

4.6 Weighted Ensemble methods

While sections 4.3 and 4.5 show the effectiveness
of the NU approach on provable queries, we also
propose a linear weighted ensemble approach that
combines the prediction of both NU and the Rule-
Taker. The key idea behind the ensemble method is
that NU demonstrated working very well for prov-
able queries while the RuleTaker was very good
at answering CWA queries. Therefore, by combin-
ing these approaches we are able to handle both
types of queries effectively. In order to choose the
weights, we tune them to optimize the accuracy on
the available validation sets for each depth. The
results is reported on a separate test set.

Table 5 reports the results of the ensemble ap-
proach (W-NU-RT) on the test data. It can be seen
that the weighted ensemble of NU D = 2 and RT

Table 5: Accuracy of the weighted ensemble of NU
(D = 2) and RT (D <= 2) on the Synthetic and Para-
phrased test sets.

D <= 2 effectively leverages the advantages of
the two approaches to answer both CWA and prov-
able queries at all depths effectively. The ensemble
method outperforms the RuleTaker in both datasets
and at most depths.

4.7 Significance tests
We highlight below some significant results ob-
tained with statistical tests:

• Table 3: the model NU D = 2 has significantly
better (p-value 0.020 computed with randomiza-
tion test) results than RT D <= 2 (previous
state-of-the-art) on provable queries.

• Table 4: the model NU D = 2 has significantly
better (p-value 0.002 computed with randomiza-
tion test) results than RTD <= 2 (previous state-
of-the-art) on paraphrased provable queries.

• Table 5: W-NU-RT has significantly better (p-
value 0.008 computed with randomization test)
results than RT on paraphrased data (columns
3 and 4 of table 5) without compromising its
performance on rule-reasoning data (columns 1
and 2 of table 5).

We also highlight an aspect not evident from the
statistical tests, our proposed model outperforms
in all experiments, at depth 3,4,5 not seen during
training, previous state-of-the-art.

5 Related work

While our work is, to the best of our knowledge,
the first proposed architecture that emulates back-
ward chaining inference over rule sets and facts
expressed in natural language, there are several
methods which explore this research area. (Clark
et al., 2020) introduce the use of transformers to
reason over explicitly stated rule sets expressed in
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natural language; their approach show that trans-
formers are able to solve the problem with high
accuracy when the neural network is trained with
sufficiently deep reasoning paths, without imposing
any structure on the neural reasoning. Our main
contribution with respect to (Clark et al., 2020)
consists in emulating, through a neural network, a
general reasoning mechanism inspired by the back-
ward chaining algorithm used in formal logic pro-
gramming. Also, our method demonstrate better
accuracy for high depth queries, even when trained
only with shallow queries.

(Saha et al., 2020) and (Tafjord et al., 2020) mod-
ify the (Clark et al., 2020) approach in order to
generate proof together with the predicted truth
value, these methods however require the explicit
knowledge of the proof during the training phase.

Furthermore, our work is substantially different
from the methods that focus on an initial translation
of knowledge expressed in textual form to a for-
mal specification, with the aim of applying classic
reasoning algorithms, such as the architecture pro-
posed in (Singh et al., 2020) for translating text into
first order logic formulas. Our work is also differ-
ent from (Socher et al., 2013): the authors present
a neural network suitable for reasoning over re-
lationships between two entities of a knowledge
base, focusing specifically on predicting additional
true facts using only vector representations of ex-
isting entities in the knowledge base. Other ap-
proaches have combined neural and symbolic rea-
soning methods. One notable example is the Neu-
ral Theorem Proving (NTP) presented in (Rock-
täschel and Riedel, 2017). The authors propose an
end-to-end differentiable prover, operating on sym-
bolic representations, for automated completion
of a knowledge base: they recursively construct
neural networks to prove queries on the knowledge
base by following Prolog’s backward chaining algo-
rithm. Additionally, they introduce a differentiable
unification operation between vector representa-
tions of symbols. (Minervini et al., 2020) describes
an NTP capable of jointly reasoning over KBs and
natural language corpora. Although the method is
versatile, explicit mapping to entities in the KB is
required. Other relevant methods implement forms
of neural reasoning starting from a formal knowl-
edge base, including (Serafini and d’Avila Garcez,
2016), (Guha, 2014), and (Dong et al., 2019), or
starting from an ontology (which usually define not
just the predicates, but also rules) (Hohenecker and

Lukasiewicz, 2017). Conversely, we focus on us-
ing transformers both as a fact look-up model (over
a knowledge base expressed in natural language),
and as a unification unit for transforming queries,
which may require many steps of inference, into
factual queries that can be answered with the fact
look-up model. Some early work on simulating
the first-order algorithm of unification using neural
networks is presented in (Komendantskaya, 2011).
The author shows how error-correction learning
algorithm can be used for the purposes of unifica-
tion. However, this work considers a version of the
problem where the knowledge is represented using
a formal first order logic language, and uses an ex-
plicit mapping of each symbol of the language into
a input vector. Similarly to our work, (Weber et al.,
2019) approach the problem of reasoning over nat-
ural language emulating unification. They present
a model combining neural networks with logic pro-
gramming for solving multi-hop reasoning tasks
over natural language. In the proposed approach
the authors extend a Prolog prover to use a simi-
larity function over pretrained sentence encoders.
A substantial difference with respect to our work
is that (Weber et al., 2019) approach requires the
transformation of natural language text into triples
(by using co-occurrences of named entities), and
then embedding representations of the symbols in
a triple using an encoder.

In this paper, we take inspiration from the
method presented in (Hudson and Manning, 2018),
a recurrent cell that simulates a reasoning step, al-
though the architecture is specially designed for
performing visual reasoning given a textual query.

Our goal is quite different from answering com-
plex multi-hop questions using a corpus of docu-
ments as a virtual knowledge base as proposed in
the recent work by (Dhingra et al., 2020), which
requires selecting spans from paragraphs of texts.
Our work can be described as the formalization of
a model and a training process that leads the neural
network emulate a backward chaining inference
process for answering deep queries.

6 Conclusion and Future Work

In this paper we have shown (in a limited, but not
trivial setting) that machines can be trained to per-
form deep reasoning over language, even if trained
only on shallow reasoning. The presented approach
performs inference without the need for a transla-
tion phase from natural language to a formal specifi-
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cation, and it obtains high accuracy on the datasets
considered. Furthermore, with a particular learning
architecture that brings learning closer to a deduc-
tive argument form, help improving the ability to
generalize to deep queries. Although this work
is a step in the direction of combining the ability
of neural networks to emulate reasoning on non-
formal data with the explanatory power of a formal
demonstration procedure, further work is needed to
fill the gaps. In an ideal situation, a machine should
perform n inference steps (with explicit reference
to the parts of the text concerned) to answer a query
with depth n. Moreover, the reasoning procedure
should be able to reason on any possible textual
expression of rules or facts, excluding ambiguous
and irrelevant information. With further advances,
we may potentially be able to:

• Understand if there exists a relationship between
the output embedding of the Neural Unification
unit and an interpretable representation.

• Apply the Neural Unifier approach on other types
of logical inference (e.g. inductive and abductive)
on a different type of datasets, for example with
an open word assumption.

• Complement the answer to a deep query, pro-
duced by our Neural Unification unit, with a
(possibly approximate) formal and human inter-
pretable proof of the answer and identify the parts
of the text involved in the n inference steps that
led to a conclusion. One approach could be to
modify the architecture by explicitly requesting
evidence as input, in line with the ideas presented
in (Saha et al., 2020) and (Tafjord et al., 2020).
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A Input/Output of the Neural Unifier’s
units

This section provides a detailed example of the in-
put and output of the core units of the architecture.

A.1 Neural fact checking unit
A.1.1 Training phase
• Input: (κ, q0),

where κ is the set of facts and rules concatenated
in a single string and q0 is the depth-0 query, for
example:

κ = "Bob is big.Gary is not cold. ..."

q0 = "Bob is big?"

In the training phase, the input of the fact
checking unit is furthermore tokenized and
transformed into a numerical vector (using the
BERT embedding layer) that follows the format:
[CLS] C [SEP ]Q0 [SEP ],

where C is the embedding of κ and Q0 is the
embedding of q0. [CLS] and [SEP ] are embed-
ding vectors of special tokens added by the BERT
tokenizer to separate context and query (Devlin
et al., 2018).

• Output: (True/False)

A.1.2 Inference phase
When the fact checking unit is used for training
the neural unification unit or in the inference phase
(both with frozen weights), the input skips the tok-
enization phase.

• Input: [CLS] C [SEP ]NUO [SEP ],

where C is the embedding of κ and NUO is the
vector embedding given in output by Neural uni-
fication unit.

• Output: (True/False)

A.2 Neural unification unit
• Input: (κ, qn),

As for the other unit, the input of the unification
unit is furthermore tokenized and transformed in
the corresponding BERT embeddings, following
the format: [CLS] C [SEP ]Qn [SEP ],

where C is the embedding of κ and Qn is the
embedding of qn. [CLS] and [SEP ] are embed-
ding vectors of special tokens added by the BERT
tokenizer to separate context and query (Devlin
et al., 2018).

• Output: [CLS] C0 [SEP ]NUO [SEP ],

whereC0 is the embedding vector in output corre-
sponding to the tokens of the given input context.

As explained in the paper, C0 is replaced with
C in the embedding, before fed it to the fact
checking unit.

B Datasets

Tables 6, 7, 8 and 9 report some additional statistics
of the three datasets used. Detailed examples of
dataset instances are shown in (Clark et al., 2020).

Table 6: Distribution of CWA queries in the train data
in folder 1 (F=1).

Table 7: Distribution of CWA queries in the train data
in folder 2 (F=2).

Table 8: Distribution of CWA queries in the Para-
phrased test data.

Table 9: Distribution of CWA queries in the Electricity
test data.

C Results with different types of
transformers

Besides BERT, we also tried to use ROBERTA
and BERT fine-tuned with the scale adversar-
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ial dataset for grounded commonsense inference
(Zellers et al., 2018). The results are illustrated
in Table 10, which shows that our results are not
specific to BERT, but instead our approach works
well also for other types of models.

Table 10: Results on the rule reasoning and the para-
phrased datasets with different types of transformers
used as the basis of the NU neural network

D Runtime information and computing
infrastructure

The experiments reported in the paper were per-
formed on a cloud cluster with a Tesla v100 GPU,
16 GB of RAM and SSD. The training of the fact
checking unit on this instance takes less than 60
minutes, while the training of the unification unit
takes less than 240 minutes (4 hours). The in-
ference times are less than two minutes for all
datasets.


