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Abstract

Transformers (Vaswani et al., 2017) have
brought a remarkable improvement in the per-
formance of neural machine translation (NMT)
systems but they could be surprisingly vul-
nerable to noise. In this work, we try to in-
vestigate how noise breaks Transformers and
if there exist solutions to deal with such is-
sues. There is a large body of work in the
NMT literature on analyzing the behavior of
conventional models for the problem of noise
but Transformers are relatively understudied
in this context. Motivated by this, we intro-
duce a novel data-driven technique called Tar-
get Augmented Fine-tuning (TAFT) to incor-
porate noise during training. This idea is com-
parable to the well-known fine-tuning strategy.
Moreover, we propose two other novel exten-
sions to the original Transformer: Controlled
Denoising (CD) and Dual-Channel Decoding
(DCD), that modify the neural architecture as
well as the training process to handle noise.
One important characteristic of our techniques
is that they only impact the training phase and
do not impose any overhead at inference time.
We evaluated our techniques to translate the
English–German pair in both directions and
observed that our models have a higher toler-
ance to noise. More specifically, they perform
with no deterioration where up to 10% of en-
tire test words are infected by noise.

1 Introduction

NMT is the task of transforming a source sequence
into a new form in a particular target language
using deep neural networks. Such networks com-
monly have an encoder-decoder architecture (Cho
et al., 2014a,b; Sutskever et al., 2014), in which an
encoder maps a given input sequence to an inter-
mediate representation and a decoder then uses this
representation to generate candidate translations.
Both encoder and decoder are neural networks that

∗Equal contribution.
†Work done while Peyman Passban was at Huawei.

are trained jointly. Due to the sequential nature of
the NMT task, early models usually relied on recur-
rent architectures (Yang et al., 2020), or benefited
from the sliding feature of convolutional kernels to
encode/decode variable-length sequences (Kalch-
brenner et al., 2014; Gehring et al., 2017).

Recently, Transformers (Vaswani et al., 2017)
have shown promising results for NMT and be-
come the new standard in the field. They follow
the same concept of encoding and decoding but in
a relatively different fashion. A Transformer is fun-
damentally a feed-forward model with its unique
neural components (self-attention, layer norm, etc)
that altered the traditional translation pipeline ac-
cordingly. It is expected if such a new architec-
ture would behave differently than its recurrent or
convolutional counterparts, and our goal in this re-
search is to study this aspect in the presence of
noise.

NMT engines trained on clean samples provide
high-quality results when tested on similarly clean
texts, but they break easily if noise appears in the
input (Michel and Neubig, 2018). They are not
designed to handle noise by default and Transform-
ers are no exception. Many previous works have
focused on this issue and studied different archi-
tectures (Li et al., 2019). However, in this work,
we particularly focus on Transformers1 as they are
relatively new and to some extent understudied.

A common approach to make NMT models im-
mune to noise is fine-tuning (FT), where a noisy
version of input tokens is intentionally introduced
during training and the decoder is forced to gen-
erate correct translations despite deformed inputs.
FT is quite useful for almost all situations but it
needs to be run with an optimal setting to be ef-
fective. In our experiments, we propose a slightly
different learning-rate scheduler to improve FT. We
also define a new extension that not only modifies

1We assume that the reader is already familiar with the
Transformer architecture.
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input words but also adds complementary tokens to
the target side. We refer to this extension as Target
Augmented Fine-Tuning (TAFT), which is the first
contribution of this paper.

In our study, we realized that data augmenta-
tion techniques (FT and TAFT) might not be suf-
ficient enough and we need a compatible training
process and neural architecture to deal with noise.
Therefore, we propose Controlled Denoising (CD)
whereby noise is added to source sequences during
training and the encoder is supposed to fix noisy
words before feeding the decoder. This approach
is implemented via an auxiliary loss function and
is similar to adversarial training. CD is our second
contribution.

CD only takes care of noise on the encoder side.
We also propose a Dual-Channel Decoding (DCD)
strategy to study what happens if the decoder is
also informed about the input noise. DCD sup-
ports multi-tasking through a 2-channel decoder
that samples target tokens and corrects noisy input
words simultaneously. This form of fusing transla-
tion knowledge with noise-related information has
led to interesting results in our experiments. DCD
is the third and last contribution of this work.

The remainder of the paper is organised as fol-
lows: We first review previously reported solutions
for the problem of noise in NMT in Section 2. Then,
we present details of our methods and the intuition
behind them in Section 3. To validate our methods,
we report experimental results in Section 4. Finally,
we conclude the paper and discuss possible future
directions in Section 5.

2 Related Work

Fine-tuning (FT) is one of the most straightforward
and reliable techniques to protect NMT systems
from noise. Berard et al. (2019), Dabre and Sumita
(2019), and Helcl et al. (2019) studied its impact
and showed how it needs to be utilized to boost
NMT quality.

Adversarial training is another common solution
to build noise-robust models. Cheng et al. (2019)
proposed a gradient-based method to construct ad-
versarial examples for both source and target sam-
ples. Source-side inputs are supposed to attack the
model while adversarial target inputs help defend
the translation model. In their model, a candidate
word is replaced with its semantically-close peer to
introduce noise. This way, the neural engine visits
different forms of the same sample, which extends

its generalization. In other words, the network is
trained to deliver the same, consistent functional-
ity even though it is fed with different forms of
a sample. Although this strategy showed promis-
ing results, in our setting we replace input words
with real noisy candidates instead of synonyms or
semantically-related peers. We find this way of
adding noise more realistic and closer to real-world
scenarios.

Karpukhin et al. (2019) experimented another
idea by generating adversarial examples using syn-
thetic noise. Their proposed architecture relies on
Transformers but the encoder is equipped with a
character-based convolutional model (Kim et al.,
2016). This work is one of the few attempts that
studied Transformers’ behaviour in the presence
of noise. However, their results are based on rela-
tively small datasets. We know that NMT models’
performance could change proportionally with a
change in the size of training sets. Therefore, we
used larger datasets in our experiments.

The application of adversarial training is not
limited to the aforementioned examples. Cheng
et al. (2018) defined additional loss functions which
force the encoder and decoder to ignore pertur-
bations and generate clean outputs. This idea is
similar to our CD approach, but the underlying ar-
chitecture is different. Cheng et al. (2018) only
reported results on recurrent NMT models.

Providing better representations is as important
as designing tailored training strategies for noise-
robust models. A group of researchers focused
on how different segmentation schemes and en-
coding techniques can play a role. Sennrich et al.
(2016) and Michel and Neubig (2018) showed
that subwords are better alternatives than surface
forms (words) to handle perturbations and out-
of-vocabulary words. Belinkov and Bisk (2018)
comprehensively studied this by using different
character- and subword-based representations in
different architectures. Sakaguchi et al. (2017) also
carried out a similar investigation where they pro-
posed a new encoding that is invariant to the order
of characters.

Besides these approaches, translating noisy in-
puts can be viewed as a two-pass process performed
via two connected neural networks. The first one
acts as a monolingual translator to correct noisy in-
puts and the second one is an engine that consumes
denoised sequences to generate clean translations
(Sun and Jiang, 2019; Zhou et al., 2019). This
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idea can be implemented as an end-to-end, differ-
entiable solution or as a pipeline, but it should be
noted that such a mechanism could be hard to de-
ploy or slow(er) to run in practice.

3 Methodology

This section covers details of our proposed meth-
ods. FT is a well-known technique so we skip its
details and only focus on TAFT, our own extension
of it (Section 3.1). Besides FT and TAFT that lever-
age data, we introduce CD (Section 3.2) and DCD
(Section 3.3), which modify the training procedure
as well as the neural architecture of Transformers.

3.1 Fine-Tuning Transformers

FT simply exposes an already-trained translation
engine to noise during training in the hope of ex-
tending its coverage at test time. This simple idea is
quite effective, but it requires to be run with an op-
timal setting, e.g. the type/amount of noise added
to the training set directly impacts performance. It
is also crucial to find an optimal number of itera-
tions. Overrunning FT could hurt quality and be as
costly as training a new model, and running it for
an insignificant number of iterations might not be
enough to reveal its power. Clearly, a better choice
of these hyper-parameters leads to better results,
but in addition to this empirical side of FT, we real-
ized that it can be boosted even more via a simple
modification.

FT only alters source sequences. In our exten-
sion (TAFT), we change the target side as well
by appending clean versions of perturbed source
words to the target sequence. Table 1 provides an
example for this form of data augmentation. An or-
dinary model works with clean forms of source and
target tokens, as shown in the first block. The sec-
ond source word ‘anderen’ is randomly selected
to be substituted with its noisy version ‘andare. In
FT, a source sequence including this noisy form (or
its preprocessed version) is sent to the translation
engine but the target sequence remains untouched.
TAFT works with a slightly different data format
where the source sequence includes the noisy in-
put and at the same time its clean version (namely
‘anderen’) is appended to the original target se-
quence. With this simple technique, the NMT
model is forced to generate translations, spot noisy
source tokens, and correct them all together. This
could be considered as an implicit form of multi-
tasking without changing the neural architecture.

Original
alle anderen waren anderer meinung .
all of the others were of a different opinion .

FT
alle and@@ are waren anderer meinung .
all of the others were of a different opinion .

TAFT
alle and@@ are waren anderer meinung .
all of the others were of a different opinion . anderen

Table 1: How FT and TAFT process training examples.
Noise is added to the boldfaced word. This example
is selected from our German→English corpus. In each
block, the first sequence is from the source and the sec-
ond sequence is from the target side. Sequences are
pre-processed and tokenized.

The fusion of translation and correction knowledge
on the decoder side seems to be useful (see our
experimental results in Tables 3 and 4).

It should be noted that at test time in TAFT, the
engine only generates tokens of the target sequence,
i.e. it stops decoding as soon as it visits the end
of the target sequence. Generating target tokens
together with clean source words is a training-time
technique to improve the robustness of the model.
Therefore, this extension does not slow down the
model or change anything about it at inference.
Moreover, if any segmentation scheme such as
byte-pair encoding (bpe) (Sennrich et al., 2016)
is applied to input words during preprocessing, the
noisy form also needs to be preprocessed accord-
ingly. The same rule applies to the clean form ap-
pended to the target sequence too, namely it needs
to follow the segmentation scheme of the target
side. In Table 1, the noisy form ‘andare’ is seg-
mented into ‘and@@’ and ‘are’ via the source-side
bpe model and the correct form ‘anderen’ is ap-
pended as is because the target bpe model was able
to recognize it as an existing entry.

3.2 Controlled Denoising

FT and TAFT have no control over the encoder’s
output, and it is assumed that the decoder alone
is powerful enough to handle representations of
noisy inputs and deliver correct translations. This
assumption might fail in practice, so we place a
filter after the encoder to purify source representa-
tions before sending them to the decoder. We refer
to this process as Controlled Denoising (CD).

The idea behind CD is to force the encoder to
correct its noisy representations. To implement this
mechanism, we accompany the main encoder (the
one that is connected to the decoder) with an auxil-
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iary, pre-trained encoder. These two encoders have
an identical architecture and work with the same
vocabulary. The main encoder consumes sequences
that may include noisy tokens but the auxiliary one
is always fed with clean sequences. These two en-
coders meet before the first layer of the decoder to
ensure they both generate the same representations
regardless of any discrepancies that may occur in
their input. If there appears a noisy token in the
input of the main encoder its output would differ
from that of the auxiliary one. Therefore, we match
the output of these two encoders via a loss function
to ensure the main encoder is able to handle/ignore
the input noise.

In the absence of noise, the main encoder mim-
ics the auxiliary encoder, but when noise is added
the main encoder’s outputs may deviate from ex-
pected ones. The loss function in between the two
encoders helps the main encoder correct itself and
push its outputs closer to clean representations (aux-
iliary encoder’s outputs). This architecture is illus-
trated in Figure 1.

Figure 1: The CD architecture. Si
j is the j-th token of

the i-th sequence whose perturbed form is N i
j . REPmn

and REPax show the representations of the input se-
quences generated by the main and auxiliary encoders,
respectively. These two representations are compared
to each other via a loss function (denoted with ü) to
ensure that the main encoder is able to handle noisy in-
puts.

Conventional recurrent and convolutional en-
coders usually squeeze the representation of the
input sequence into a single vector, but Transform-
ers due to their non-recurrent architecture perform
differently and instead generate s vectors if the
input sequence consists of s tokens. This makes
the comparison between outputs of the main and
auxiliary encoders challenging. Because, when an
input sequence is perturbed with noise the length of

the noisy sequence could vary from the clean one,
e.g. one token can be added/dropped or the noisy
token can be decomposed into multiple units via
bpe (as shown in Table 1). In such cases, the shape
of encoders’ outputs does not even match and a
vector-to-vector comparison is impossible. To han-
dle these issues, we learn a dedicated representa-
tion for the entire input sequence, so comparing
outputs would be straightforward. We do this form
of sequence modelling by following the same idea
proposed for the CLS token in Devlin et al. (2019).
We refer to this sequence-level representation as
REP in our setting.

In Figure 1, the inputs to the main and auxiliary
encoders are [Si

1, N
i
2, S

i
3, S

i
4] and [Si

1, S
i
2, S

i
3, S

i
4],

respectively, and their sequence-level representa-
tions are REPmn and REPax. If our Transformer
encoder is fed with s tokens it returns s+1 vectors
with the last one being REP. This token is only
used for comparison purposes between encoders
and is not sent to the decoder.

To train our models with CD, we extend the
original translation loss (Ltr) with an additional
term, LCD, as defined in Equation 1:

L = αLtr + βLCD

LCD =
∑
i

MSE(REPimn,REP
i
ax)

(1)

where MSE() is the mean-square error and REPimn

and REPiax are the sequence-level representations
of the i-th training sequence generated by our two
encoders. α and β are weights to adjust the contri-
bution of each loss function in the training process.
Check Section 4 for their values.

As previously mentioned, the auxiliary encoder
is a pre-trained model (trained on the clean/original
sentences of the same dataset with an identical vo-
cabulary set and architecture as the main encoder)
and is only used to generate reference representa-
tions for the main encoder, so its parameters are
not updated during training and only main encoder
and decoder’s parameters are impacted in the back-
propagation phase. It should also be noted that the
auxiliary encoder is used during training and is de-
coupled later for inference. Therefore, the size of
the final model and inference time remain the same
as in the original Transformer.

3.3 Dual-Channel Decoding
This approach relies on the idea of data augmen-
tation and multi-tasking, and tries to break down
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noise-robust NMT into two tasks of denoising and
translation. Our DCD architecture has two decoder
channels: One for generating the rectified noisy
tokens (Ddn) detected in the input sequence and
the other one (Dtr) for actual translations. The ex-
tra task defined in addition to translation is meant
to guide the decoder by providing richer informa-
tion and make it robust against input noise. This
architecture is illustrated in Figure 2.

Figure 2: The DCD architecture. Ddn generates
[Si

1, S
i
3] whcih are the clean version of noisy tokens on

the input side and Dtr samples t tokens from the target
vocabulary to generate the final translation [T i

1, ..., T
i
t ].

The decoder has l layers where (l − 1) of them are
shared.

The original Transformer decoder has l layers.
In our DCD extension, the first l − 1 layers are
shared in between two tasks, but the last layer has
dedicated components for each. Ddn is a unique
decoder layer that is responsible to generate clean
forms of any noisy token that can appear in the
input, e.g. in Figure 2 the first (N i

1) and third (N i
3)

tokens are perturbed so Ddn generates Si
1 and Si

3

(their clean versions) as its output. Ddn is trained
via a dedicated loss function (Ldn) designed for
this task. On the other side, Dtr is another decoder
layer that shares no parameter withDdn. This layer
is placed over the decoder’s lexicon and samples
target words to generate the final translation. This
layer is connected to Ltr to penalize incorrect trans-
lations. In this setting, the final loss function is a
composition of two losses, as defined in Equation
2:

L = αLtr + βLdn (2)

The main purpose of having such a semi-shared
architecture for each task is to benefit from the
power of multi-tasking. Both Dtr and Ddn are trig-
gered with a mixture of information about transla-
tion and denoising provided by the first l− 1 layers
of the decoder; then they use their dedicated mod-
ules/parameters to generate different outputs for
their particular task. Similar to CD, this technique
is also employed during training and at inference
we do not require Ddn. This should ensure similar

memory consumption and inference speed as the
vanilla Transformer model.

4 Experimental Study

Datasets To evaluate our models, we trained
engines to translate the English–German (En–De)
pair in both directions. In the interest of fair com-
parisons, we used the same datasets as the orig-
inal Transformer (Vaswani et al., 2017), so our
training set is the WMT-14 dataset2 with 4.5M par-
allel sentences and for development and test sets
we used newstest-13 and newstest-14, re-
spectively.

Nowadays, almost all state-of-the-art NMT mod-
els rely on subwords. We also followed the same
tradition and preprocessed the target side of our
datasets with bpe (Sennrich et al., 2016). For
the source side, we used different segmentation
schemes with different granularities as we are
studying the impact of noisy inputs. Our source
tokens can appear in surface forms (words) or can
be segmented into bpe tokens or oven characters.
We refer to these settings as word2bpe, bpe2bpe,
and char2bpe, respectively.

The size of the lexicon generated by our bpe
model also matches the setting proposed for the
original Transformer model (Vaswani et al., 2017).
For the word2bpe setting, we keep the top 48K
frequent words for each English and German sides
and ignore the rest by substituting with a special
UNK token. This configuration is learned through
an empirical study to maximize translation quality.

Hyper-parameters We carried out multi-
ple experiments to study how each of word2bpe,
bpe2bpe, and char2bpe settings react in conjunc-
tion with our models and what values should be
used for hyper-parameters.

In these experiments, we did not change the
neural architecture for the FT and TAFT mod-
els and only trained translation engines with aug-
mented datasets. We realized that fine-tuning can
be improved if we slightly change the learning-
rate scheduling. The original Transformer uses
the Noam scheduling (Vaswani et al., 2017) that
employs a linear warm-up strategy followed by a
decaying function. We changed it to a simple expo-
nential staircase decay with an initial learning rate
of 0.001 and a decay rate of 0.5 after every 5, 000

2http://statmt.org/wmt14/
translation-task.html

http://statmt.org/wmt14/translation-task.html
http://statmt.org/wmt14/translation-task.html
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steps.
As our translation engines are already trained

and we only need to fine-tune them, we can ignore
the warm-up strategy. We can start from a non-
zero value and carefully decrease the learning rate
until models converge. We fine-tune all our mod-
els for 50, 000 steps with this scheduler. Figure 3
illustrates the difference between Noam and our
scheduler.

Figure 3: Comparing Noam to our custom learning rate
scheduler. The y axis represents the learning rate and
the x axis shows the number of steps.

Apart from char2bpe that uses the batch size of
12, 288, all other settings process 4, 096 tokens in
each batch. char2bpe is a character-based model
and the more characters it processes, the better
performance it gains. We set α and β (loss weights)
to [0.75, 0.25] and [0.9, 0.1] for CD and DCD,
respectively. Our models are trained using Adam
(Kingma and Ba, 2014). If the value of any other
hyper-parameter (such as the embedding dimension
etc) is not clearly mentioned in the paper that means
we use the original value of it proposed by Vaswani
et al. (2017).

4.1 Introducing Noise

To train/test our engines, we need to perturb source
sentences by injecting noise. A noisy word can be
created by adding, dropping, or replacing a char-
acter in a word or by imposing any other defor-
mations (Cheng et al., 2018; Michel and Neubig,
2018). However, all these techniques artificially
produce new forms that might not necessarily re-
flect real-world noise. We thus use a particular type
of noise which is known as natural noise in the lit-
erature (Belinkov and Bisk, 2018). This form is
an error that can naturally appear in any text. Re-
searchers collected lists3 of frequently-occurring

3https://github.com/ybisk/
charNMT-noise/tree/master/noise

mistakes/typos in different languages from existing
corpora and made them available. In our exper-
iments, we randomly pick a candidate word and
retrieve its noisy version from the aforementioned
lists. This way we could ensure that our noisy
dataset is representative of what we may encounter
in real life.

To create our training sets, we randomly select
50% of sentences to perturb with noise. We only de-
stroy one word in each sentence. Noise is added to
surface forms, so if the neural encoder is designed
to work with a different granularity, all necessary
preprocessing steps are applied accordingly, e.g.
in Table 1, first the candidate word (anderen) is
perturbed (andare), then bpe is applied to the noisy
form to have a consistent input (and@@ are) with
the encoder’s vocabulary.

To add noise to our test sets we have a slightly
different and relatively aggressive approach. We
are interested in challenging our models to see if
they can tolerate high volumes of noise, so we
created 4 noisy test sets in which 5%, 10%, 20%,
and 30% of entire words (not sentences) are de-
stroyed. Adding noise based on the percentage of
words instead of sentences makes translation quite
challenging because perturbing for example 10%
of sentences (with one noisy word) in our 3003-
sentence test set only generates 300 noisy words
whereas this number would be around 7000 if we
perturb 10% of the entire words. Unlike the train-
ing setting where we only perturb one word in a
sentence, in the test setting, multiple words can be
impacted.

Since, this is the first work (to the best of our
knowledge) that particularly studies Transformers
for their ability to tackled noise we only selected
to work with natural noise, which seems to be
the most realistic form. However, our work can
be extended by investigating the impact of other
famouse noise classes such as Swap, Mid, Rand
etc. For detailed information on noise classes see
Belinkov and Bisk (2018), Khayrallah and Koehn
(2018), and Michel and Neubig (2018).

4.2 Baseline Models

As our baseline, we trained a Transformer with
a slight modification in its architecture. Kasai
et al. (2020) conducted research and showed that
the number of encoder and decoder layers do not
necessarily need to match and we can have imbal-
anced Transformers with deep(er) encoders and

https://github.com/ybisk/charNMT-noise/tree/master/noise
https://github.com/ybisk/charNMT-noise/tree/master/noise
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0% 5% 10% 20% 30%

En→De

word2bpe 28.48 22.21 (-22%) 17.05 (-40%) 10.28 (-64%) 5.99 (-79%)
bpe2bpe 28.46 24.82 (-13%) 21.58 (-24%) 15.98 (-44%) 11.89 (-58%)
char2bpe 26.07 24.23 (-7%) 21.84 (-16%) 18.37 (-30%) 15.01 (-42%)
ConvT 25.46 22.55 (-11%) 20.13 (-21%) 14.9 (-41%) 11.29 (-56%)

De→En

word2bpe 25.94 23.28 (-10%) 20.32 (-22%) 15.79 (-39%) 12.00 (-54%)
bpe2bpe 28.04 24.87 (-11%) 21.61 (-23%) 16.11 (-43%) 11.48 (-59%)
char2bpe 26.59 25.01 (-6%) 22.73 (-15%) 19.42 (-27%) 15.93 (-40%)
ConvT 27.08 24.01 (-11%) 21.39 (-21%) 16.44 (-39%) 11.59 (-57%)

Table 2: BLEU scores of baseline models. Numbers inside parentheses show how much noise impacts models’
performance. The first row shows the percentage of perturbed test words. All our encoders and decoders have 8
and 4 layers, respectively. The char2bpe models consumes one character at a time. The ConvT model consumes
one word at each step but applies a convolutional operation over all characters of the word before feeding it to the
first encoder layer.

shallow(er) decoders. Inspired by that work, we
increased the number of encoder layers4 from 6
to 8 and decreased the number of decoder layers
from 6 to 4. Our Transformer still has 12 layers
in total, but the encoder is more powerful which
is favourable in our scenario. Noise appears on
the source side and we require better encoders to
tackle this. Based on our experiments, the 8–4 con-
figuration (T 8

4 ) is able to handle noise better than
the 6–6 version and all other variants. T 8

4 is our
baseline for all experiments and our other novel
architectures are also implemented based on the
8–4 setting.

Belinkov and Bisk (2018) and Karpukhin et al.
(2019) used a convolutional, character-based en-
coder and showed that this improves the robustness
of NMT models. They tested this configuration
with relatively small datasets or recurrent architec-
tures. We adapted the same idea and equipped the
Transformer model with the same convolutional
module. This model, which is referred to as ConvT
in this paper, is another baseline for our experi-
ments. Similar to Karpukhin et al. (2019), character
embeddings have 256 dimensions and the convo-
lutional module follows the specifications of Kim
et al. (2016). Table 2 summarizes our baseline re-
sults. We use the BLEU metric (Papineni et al.,
2002) to compare our models. All scores are cal-
culated on detokenized outputs using SacreBLEU5

(Post, 2018).
As the table shows, no matter how powerful the

engine is, adding even 5% noise is enough to break

4The original Transformer architecture (Vaswani et al.,
2017) proposes 6 encoder and 6 decoder layers.

5https://github.com/mjpost/sacrebleu

the model. Each segmentation scheme shows a
unique behaviour. We were expecting a significant
deterioration in the word2bpe case but for both di-
rections it provides relatively competitive results.
bpe2bpe seems to be the best as it gives the highest
baseline where no noise is involved and shows less
drop for noisy test sets. char2bpe has the least de-
cline when noise is added but it should be noted that
it is not able to compete with others in the absence
of noise. Although its degradation is minimal, it de-
grades from a non-optimal baseline. ConvT, despite
its sophisticated architecture, could not outperform
bpe2bpe and this was expected as tuning such a net-
work over our (relatively) large dataset (wmt-14
with 4.5M samples) could be challenging.

4.3 Results for Proposed Models

In this section we report results for word2bpe,
bpe2bpe, and char2bpe settings when used with
our solutions (TAFT, CD, and DCD).

Table 3 summarizes results related to word2bpe.
When translating into German, DCD outperforms
all other models where up to 10% noise is added
to the test set. For extreme cases with 20% and
30% noise, FT is more effective. In the opposite
direction, FT and our TAFT extension provide the
best performance. TAFT also shows a very promis-
ing result for the 30% test set and even defeats
the noise-free setting. The huge gap between the
vanilla T 8

4 and engines equipped with our tech-
niques shows the necessity of building noise-robust
NMT models, specially if they are supposed to be
deployed in real-world applications.

Results for bpe2bpe models are reported in Ta-
ble 4. For the En→De direction, CD is superior

https://github.com/mjpost/sacrebleu
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Model 0% 5% 10% 20% 30%

En→De
T 8
4 28.48 22.21 17.05 10.28 5.99

FT 29.21 27.15 25.32 21.93 17.79
TAFT 29.47 27.33 25.35 21.33 17.29
CD 29.03 27.02 25.00 20.70 16.75
DCD 29.48 27.52 25.65 21.68 17.76

De→En
T 8
4 25.94 23.28 20.32 15.79 12.00

FT 27.16 26.96 26.69 26.16 25.83
TAFT 27.00 26.87 26.84 26.27 26.08
CD 27.1 26.83 26.61 26.04 25.57
DCD 27.06 26.86 26.83 26.13 26.03

Table 3: word2bpe results. T 8
4 is a Transformer with 8

encoder and 4 decoder layers. Boldfaced numbers are
the best scores of each column.

for all test sets, and this indicates that a loss func-
tion over a bpe-based encoder could remarkably
increase robustness. We observe a similar trend
in the previous experiment for the De→En direc-
tion. DCD is also quite successful when test sets
are fairly noisy. It seems bpe-based Transformers
benefit a lot from multi-tasking since both TAFT
and DCD force the decoder to perform a second
task in addition to translation.

Model 0% 5% 10% 20% 30%

En→De
T 8
4 28.46 24.82 21.58 15.98 11.89

FT 28.8 27.95 27.01 24.6 21.84
TAFT 28.96 28.03 26.65 24.02 21.16
CD 29.49 28.51 27.68 25.27 22.63
DCD 28.91 28.02 26.89 24.37 21.47

De→En
T 8
4 28.04 24.87 21.61 16.11 11.48

FT 28.46 28.4 28.22 27.83 27.51
TAFT 28.73 28.53 28.51 27.93 27.63
CD 28.52 28.42 28.25 27.84 27.50
DCD 28.65 28.49 28.4 27.98 27.65

Table 4: bpe2bpe results.

Finally, we summarize results of char2bpe mod-
els in Table 5. Trends for this set of experiments
are relatively consistent with previous ones. For
the En→De direction, the best result on average is
delivered by CD but DCD also shows comparable
performance. For the opposite direction, TAFT and

Model 0% 5% 10% 20% 30%

En→De
T 8
4 26.07 24.23 21.84 18.37 15.01

ConvT 25.46 22.55 20.13 14.9 11.29
FT 27.24 26.50 25.92 24.51 23.36
TAFT 27.11 26.41 25.56 23.90 22.14
CD 27.29 26.5 26.05 24.71 23.37
DCD 27.2 26.73 25.88 24.58 23.12

De→En
T 8
4 26.59 25.01 22.73 19.42 15.93

ConvT 27.08 24.01 21.39 16.44 11.59
FT 27.31 27.14 27.07 26.83 26.49
TAFT 27.64 27.52 27.32 26.95 26.53
CD 27.26 27.15 26.89 26.78 26.4
DCD 27.71 27.52 27.45 27.06 26.78

Table 5: char2bpe results. ConvT is added as addi-
tional baseline as encoders rely on characters.

DCD are better choices and multi-tasking again
shows its impact. Because char2bpe is a character-
based model we also added results from ConvT as
another baseline to study if the convolutional op-
eration can mitigate the problem and handle noise
better. Experimental results demonstrate that there
is no need for such a complex configuration and
our techniques can train high-quality engines.

5 Conclusion and Future work

In this paper, we studied the problem of noise in
the context of NMT and particularly focused on
Transformers. We proposed three novel techniques
to augment data and change the training procedure
as well as the neural architecture. Experimental
results show that our techniques can protect NMT
engines from noise. Our models only affect the
training phase and do not add any overhead in terms
of space and/or time complexities at inference time.
The findings of our research can be summarized as
follows:

• There is no clear winner among our proposed
models. Each approach has its own strength
and should be adapted with respect to the prob-
lem.

• FT and TAFT are data-driven techniques and
can be applied to existing translation models
with minimal effort.

• CD and DCD require some modifications in
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the neural architecture but they are able to
provide promising results.

• Multi-tasking was quite useful in this scenario
and it seems Transformers benefit a lot when
their decoder is informed about source-side
noise.

In this research, we ran an extensive number
of experiments in order to find the best configura-
tion of each model and optimize hyper-parameters,
but there still exist some unexplored topics/areas.
In our future work, we are planning to experiment
with other language pairs with different morpholog-
ical and grammatical structures.We are also inter-
ested in studying other noise classes. We could only
afford to work with one class and we selected natu-
ral noise as we find it more realistic among others,
but this work can be extended to other noise classes.
Finally, our models are not unique to Transformer
and NMT. We aim to evaluate them in other lan-
guage processing/understanding tasks with other
architectures.
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