
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 3095–3101
November 7–11, 2021. ©2021 Association for Computational Linguistics

3095

Investigating Numeracy Learning Ability of a Text-to-Text Transfer Model

Kuntal Kumar Pal, Chitta Baral
Department of Computer Science

Arizona State University, Tempe, Arizona, USA,
kkpal@asu.edu, chitta@asu.edu

Abstract

The transformer-based pre-trained language
models have been tremendously successful in
most of the conventional NLP tasks. But they
often struggle in those tasks where numerical
understanding is required. Some possible rea-
sons can be the tokenizers and pre-training ob-
jectives which are not specifically designed to
learn and preserve numeracy. Here we investi-
gate the ability of text-to-text transfer learning
model (T5), which has outperformed its prede-
cessors in the conventional NLP tasks, to learn
numeracy. We consider four numeracy tasks :
numeration, magnitude order prediction, find-
ing minimum and maximum in a series, and
sorting. We find that, although T5 models per-
form reasonably well in the interpolation set-
ting, they struggle considerably in the extrapo-
lation setting across all four tasks.

1 Introduction

Recent advances in transfer learning in NLP have
led to the emergence of pre-trained models which
show a much stronger contextual representation of
words than earlier static word embeddings. They
have all performed extremely well in conventional
NLP tasks. Yet, they fail to capture a better un-
derstanding of numbers. Numbers are integral part
of natural language texts which can change the
meaning of a sentence. So there is a need for NLP
models which can identify numbers represented in
any surface forms like words, floats or strings (Nu-
meration), understand its values in various context
(Magnitude Order Prediction), compare their val-
ues with others (List-MinMax) or able to rearrange
a series of numbers based on its values (Sorting).

The transfer-learned models are pre-trained on
huge amount of natural language texts with spe-
cially designed tasks and tokenizers to create
stronger word-embeddings. This causes the num-
bers embedded in the texts to lose their mean-
ing and inherent rules of numeracy guiding them

Figure 1: Examples of Numeracy Tests

(Thawani et al., 2021; Nogueira et al., 2021). This
is possibly the reason they perform worse in numer-
ical reasoning tasks on numbers absent in training
data (Nogueira et al., 2021; Wallace et al., 2019).

In this paper, we test this numeracy learning
ability of a text-to-text transfer learning generative
model, T5 (Raffel et al., 2020) which has outper-
formed its predecessors in conventional NLP tasks.
The text-to-text format of input and output helps
the model to generalize all the NLP tasks as a uni-
fied model. We use four numeracy tests both in
interpolation (training and testing on same range of
data) and extrapolation settings (training on lower
and testing on higher range of data) and study how
much numeracy skill it can acquire. Figure 1 shows
some examples of each of the numeracy tests.

Our contributions in this paper are: (1) Extensive
study on three versions of T5 models (small, base,
large) on four numeracy tests in interpolation and
extrapolation settings. (2) Reporting interesting
observations in the behavior of each model ver-
sion across multiple experimental settings through
detailed manual error analysis. The synthetically
generated data and codes are publicly available1

for future numeracy analysis in similar settings.

1https://github.com/kuntalkumarpal/T5Numeracy

3096

2 Numeracy Tests

We perform four essential numeracy tests to explore
model’s ability to understand numerical values.
Motivation: These four elementary tasks are sim-
ple and easy for the models, since they do not need
to generate a completely new number in a differ-
ent numerical range (like in mathematical tests :
multiplication, division, exponentiation). Here we
evaluate whether the models learn the numeracy
tasks or they simply learn bias from the number
range seen in training data.

2.1 Numeration

The probability of a number represented in mul-
tiple surface forms (word, scientific, float, inte-
ger) increases with the increase in the volume of
pre-training corpus of the language models. It is
impractical for an end-to-end NLP model to seman-
tically parse these numbers accurately and convert
into a single representation to retain its value or
reason with. This task tests the model’s ability to
understand word representation of a number and to
decode into integer form.

2.2 Magnitude Order Prediction

The task is to identify the order of magnitude of
a missing (masked) number which fits the context
of a natural language text. This task is important
in numerical commonsense reasoning (Lin et al.,
2020) and prompt-based methods (Liu et al., 2021).
Here, we do not expect the model to predict the
exact number that fits the context as this may vary
in different domains. Instead, this task tests the
model’s ability to understand a missing number’s
context and predict its appropriate range.

2.3 List-MinMax

We test the model’s ability to understand numerical
values and compare among them. Given a series
of n positive numbers, the task is to find the mini-
mum and the maximum number. This is the basis
of many question answering and commonsense nu-
merical reasoning dataset like SQuAD (Rajpurkar
et al., 2016), DROP (Dua et al., 2019) and NUM-
BERGAME (Mishra et al., 2020). We simplify the
task by generating templates so that the models can
concentrate on understanding the task rather than
getting confused by the language complexities.

TRAIN → 4.9K 1.3K 0.9K

TP Model IN EX IN EX IN EX

FL
T5-SM 45.31 0.08 1.90 0.01 0.33 0.00
T5-BS 92.16 1.03 66.47 0.45 37.20 0.42
T5-LG 98.06 1.91 89.49 1.96 79.48 1.58

SP
T5-SM 69.67 39.35 26.89 1.10 0.23 0.01
T5-BS 99.50 11.31 81.21 22.44 73.61 31.06
T5-LG 100.00 10.05 99.97 7.35 91.59 12.92

Table 1: Numeration EM scores w/ split (SP) and w/o
split (FL) representation on 4.9K, 1.3K, 0.9K train-data
in Interpolation (IN) and Extrapolation (EX) settings.

2.4 Sorting
In addition to understanding the values of each
number in a series, the model will have to rearrange
them in the correct order through this task, making
it even harder than List-MinMax. Even if a model
is successful in the previous test, it is necessary to
identify whether it has actually compared among
all the numbers in the series. Hence, sorting a list
of n numbers in ascending and descending orders
ensures that the model compares all the numbers
and rearrange them into two different sequences.

3 Experiments

3.1 Experimental Setup:
We use T5-SM (small, 60M parameters), T5-BS
(base, 220M), T5-LG (large, 770M) and positive in-
tegers for the experiments. The results are average
of three random seeds. We perform experiments
in two settings: interpolation (training and test-
ing on same numerical range) and extrapolation
(training on lower and testing on higher numerical
range). The latter helps us to analyze whether a
model has learnt the task, or it has exploited bias
in the numerical range of the training data.

3.2 Data Preparation:
Numeration: We create a dataset keeping in mind
that at least few examples of all unique words
needed to represent each number, are present in
the training data (Trask et al., 2018). In Table 1,
interpolation samples are from [0,10K) and 99K
extrapolation samples are from [10K,1000K). We
use num2words2 for generating word-form of each
integer. To simulate fewer shot setting, we care-
fully craft two smaller training sets taking only
20% and 10% data. We show two number represen-
tation schemes with split-digits (SP) and without

2https://github.com/savoirfairelinux/num2words

3097

LIST MINIMUM LIST MAXIMUM

ELEMENTS 3 5 10 3 5 10

Range Model IN EX IN EX IN EX IN EX IN EX IN EX

< 99
T5-SM 90.5 0.6 86.5 0.1 65.9 0.0 80.4 0.5 71.6 0.3 74.7 0.1
T5-BS 96.2 33.9 99.1 13.0 98.2 2.8 92.3 22.7 96.8 6.0 90.4 1.1
T5-LG 100.0 22.2 99.4 2.8 100.0 0.5 100.0 29.6 100.0 13.6 100.0 2.0

< 999
T5-SM 72.6 41.8 55.5 22.2 49.9 9.7 65.3 38.4 54.8 17.5 40.0 5.2
T5-BS 91.5 67.2 92.1 42.6 80.4 27.1 89.1 65.3 90.8 47.2 88.3 25.0
T5-LG 98.3 70.1 96.1 49.3 87.4 34.7 96.1 61.2 97.8 58.7 95.2 35.3

< 9999
T5-SM 59.1 44.7 43.5 30.4 30.7 17.1 51.2 47.0 36.0 27.0 20.9 11.1
T5-BS 89.6 68.8 86.9 53.8 85.4 38.1 87.1 58.6 83.1 43.4 81.6 29.9
T5-LG 97.1 81.3 93.7 71.8 94.0 58.2 96.2 84.9 94.9 76.4 94.9 59.1

Table 2: List-MinMax (series length: 3, 5, 10) in three different number ranges evaluated as Interpolation (IN)
and Extrapolation (EX) exact-match scores on 1K test data.

Datasets → AT MC

Models ↓ µF1 mF1 µF1 mF1

LR 62.49 30.81 71.25 60.80
CNN 69.27 35.96 77.17 58.49
GRU 70.92 38.43 78.25 58.08
BiGRU 71.49 39.94 80.16 62.74
CRNN 69.50 36.15 78.00 64.62
CNN-capsule 63.11 29.41 75.89 59.22
GRU-capsule 70.73 33.57 77.36 64.71
BiGRU-capsule 71.49 34.18 77.97 64.34
BiLSTM-DICE 75.56 46.80 - -

T5-SM 69.87 31.36 66.11 34.68
T5-BS 78.06 40.04 72.22 47.44
T5-LG 81.40 44.64 80.29 59.16

Table 3: Magnitude Order Prediction for Market
Comments (MC) and Article Titles (AT) datasets of nu-
meracy600K in micro-F1 (µF1) and macro-F1 (mF1).
Best score is in bold and second-best is underlined.

split (FL) hypothesizing that for a generative model
it would be easier to correctly generate individual
digits instead of full integer at once.
Magnitude Order Prediction: For this task we
work on Numeracy600K (Chen et al., 2019) dataset.
We consider this as a mask prediction task. We train
models to find the exact number that fits the mask.
Then, we map the predicted numbers into its magni-
tude order, save the model based on best magnitude
order and calculate the evaluation metrics on test
data. Since this is a generation task we reject those
answers which are not valid floating point numbers.
The baseline results in Table 3 are from (Chen et al.,
2019; Sundararaman et al., 2020). We also consider
extrapolation setting by showing the cross-domain
performance (train on market comments and test
on article title and vice-versa) in Table 4.
List Min-Max & Sort: We experiment on three
different number ranges: [0,100), [0,1K), [0,10K).

Train on → AT MC

Models ↓ µF1 mF1 µF1 mF1

BiGRU 25.59 10.58 31.38 11.08

T5-SM 28.88 12.04 37.35 10.81
T5-BS 35.53 14.48 31.51 12.25
T5-LG 50.18 21.24 38.43 12.32

Table 4: Cross Domain (Extrapolation) Tests of Order
Prediction. Train on MC, test on AT and vice-versa.

For interpolation tests, the numbers in the test data
are from the same ranges. The extrapolation num-
bers are from the maximum of respective ranges
to 100K. To prevent the model’s bias on number
lengths, we bring them closer following prior work
(Wallace et al., 2019). We extend the experiment
on a series of 3, 5 and 10 numbers (for each range)
to study how each of the models behave with in-
creasing series length. We consider the same data
for sorting experiments as well. The results are in
Table 2 for List-MinMax and Table 5 for List-Sort.

4 Results and Error Analysis

Table 1 shows, all versions of T5 benefit when
they are trained with split representation. When
trained with 4.9K data, T5-SM gains 24% points in
interpolation evaluation where T5-LG gains only
2%. None of the models perform well on unseen
number data ranges. In fewer shot interpolation set-
tings however, only the T5-LG model maintains its
performance beyond 90% which is not surprising
because of its large parameter-space. We noticed
that the best model could only partially decode
numbers having multiple zeros (Figure 2). In the
first example, the model predicts an extra seven
and in the second (extrapolation), it ignored the
key word ‘hundred’ as it attempts to fit this unseen

3098

LIST-SORT ASCENDING LIST-SORT DESCENDING

ELEMENTS 3 5 10 3 5 10

Range Model IN EX IN EX IN EX IN EX IN EX IN EX

< 99
T5-SM 54.0 12.4 7.6 0.0 0.0 0.0 56.0 12.6 5.9 0.4 0.0 0.0
T5-BS 80.6 12.2 87.2 0.0 0.4 0.0 84.3 12.9 75.5 0.0 6.2 0.0
T5-LG 100.0 5.8 99.9 0.0 69.7 0.1 100.0 13.1 96.6 0.1 57.6 0.1

< 999
T5-SM 32.6 15.1 1.4 0.6 0.0 0.0 38.0 22.3 3.4 1.3 0.0 0.0
T5-BS 74.7 45.7 64.0 8.0 12.5 0.0 73.1 42.0 62.6 9.6 16.8 0.1
T5-LG 95.1 64.2 91.8 16.8 61.9 1.7 94.7 63.5 92.5 25.7 61.2 1.6

< 9999
T5-SM 23.4 17.1 1.0 0.1 0.0 0.0 30.4 21.2 0.7 0.4 0.0 0.0
T5-BS 63.1 45.5 51.1 12.7 15.0 0.2 59.8 43.9 51.4 12.4 14.3 0.3
T5-LG 94.5 76.0 87.4 43.2 74.6 12.6 94.2 76.1 86.1 44.4 75.6 11.9

Table 5: List-Sort (Ascending & Descending) on series lengths: 3, 5, 10 in three different integer ranges evaluated
as Interpolation (IN) and Extrapolation (EX) exact-match scores on 1K test data.

Figure 2: Two incorrect predictions for each task.

data into a similar seen number range (4 digits).
In magnitude order prediction (Table 3), T5-

LG’s performance improves by 5 µF1 in article
title. For extrapolation (Table 4), all T5 versions
beats previous estimates (BiGRU) by at most 25%.
This shows that T5 can learn robust numeric rep-
resentations based on contexts. Both the samples
in Fig 2 are hard as they need prior explicit knowl-
edge. Yet they are able to predict numbers in sim-
ilar feasible ranges. This shows that the model is
not randomly assigning magnitude but has learnt
based on the domain and context. We found that,
the best T5 model predicted an order of 1 instead
of 2 for market and article data making a maximum
error of 39.07% and 33.59% respectively.

Table 2 shows List-MinMax results. Both T5-BS
and T5-LG perform over 80% across all ranges and
series lengths. T5-SM however, degrades in per-
formance as the range increases along with the list
size. As the model learns more variations in num-
bers, the extrapolation performance increases to a
max of 81% (List-Min) and 84.9% (List-Max). But
the performance drops as series length increases.
The best model predicted second minimum and
maximum element in the examples of Fig 2.

From the sorting results (Table 5), we see T5-
SM performance drops (18-22% from 2-3 digits,
8-9% from 3-4) as number ranges increase across
series length of 3. T5-SM fails to generate a sin-
gle correct order for a series of 10 elements and
achieves less than 10% success in 5-element se-
ries across all ranges. This degrading performance
can be attributed to its mere 60M parameter space.
As the number of parameters keep increasing the
models performs consistently across each of 3, 5,
10 elements in series, both for interpolation and
extrapolation settings. With the increasing range
of training data, the models become more robust
to extrapolated numbers across all series lengths
with 8-30% change in ascending order and 7-20%
change in descending order. Finally, for sorting,
we find a variety of incorrect predictions: miss-
ing order of one element, omission of one and two
elements or repeating a particular element.

Overall, none of the models were able to perform
well on extrapolation samples showing the inher-
ent rules of numeracy is difficult for these models
to learn. But, it also shows, more variations in
numbers (increasing the range) help them perform
better in extrapolation setting. The smaller model’s
limited parameter-space affects its performance in
all four tasks whereas larger models are able to
pick up some numeracy skills through training. We
show more predictions in Figure 3, 4, 5, 6.

Analysis of NT5: We test with the NT5 (Yang
et al., 2021) model on all our experiments and com-
pared the results with T5-small. For the Numera-
tion task with the split number representation NT5
performed 73.07 (accuracy), a 4% improvement
over T5. The performance however did not improve
for the MinMax and Sorting tasks. For 3-element
sorting it dropped by 10-20%. In the Magnitude

3099

Figure 3: Some predictions for Numeration task.

Figure 4: Magnitude Order Prediction Examples.

Order Prediction, we find the cross-domain (ex-
trapolation) µF1 score increases by 5-7% while
in-domain decreases by 3-6%. This might be be-
cause NT5 has seen more variety of contexts of
numbers and can generalize well on this task.

5 Related Works

Numeracy Tests: Multiple numeracy tests have
been proposed to evaluate the static word embed-
dings (Naik et al., 2019) like GloVe, Word2Vec,
FastText and contextual embeddings (Wallace et al.,
2019) like BERT through probing tasks like nu-
meration, magnitude comparison, addition, list-
maximum. Multilingual numeration (Johnson et al.,
2020) tests have been performed by probing mod-
els like DistilBERT, XLM, and BERT. CNN, Bi-
GRU models have been shown to perform well
in magnitude order prediction (Chen et al., 2019)
and T5 on addition and subtraction tasks (Nogueira
et al., 2021) through training on similar texts. We,
however focus on studying how much text-to-text
transfer models (T5) can learn across four funda-
mental numeracy tasks in samples containing both
in-domain and out-of-domain numerical ranges.
Specially Designed Models: NALU (Trask et al.,

Figure 5: Some predictions for List-MinMax task.

Figure 6: Some predictions for List-Sort task.

2018), NAU and NMU (Madsen and Johansen,
2020), numBERT (Zhang et al., 2020), GenBERT
(Geva et al., 2020), NT5 (Yang et al., 2021) have
emerged in the last few years to incorporate arith-
metic skills into models through specially designed
architecture or fine-tuning tasks which improves
the performance in synthetic arithmetic or crowd-
sourced numerical reasoning tasks like DROP.
Numerical Embeddings: There are limited prior
works in numeracy aware embeddings which show
good performance in extrapolation setting. One
approach (Jiang et al., 2019) represents numerals
as a weighted average of prototype numeral embed-
dings obtained using either self organizing map or
Gaussian Mixture models. DICE (Sundararaman
et al., 2020) is a deterministic numeral embedding
approach, independent of corpus, which preserves
the relative magnitude between two numerals and
their embeddings.

6 Conclusion & Future Works

We show that text-to-text models are able to learn
numeracy quite well in an interpolation setting. Our
extensive experiments show that T5 models strug-
gle to learn with numbers outside training data
ranges. We believe that, to make further progress
in transfer learning, models need to achieve such
elementary numeracy skills and this gap between
interpolation and extrapolation performance needs
to be reduced. We are of the opinion that, adding
more data would not bridge this gap since domain
of numbers is open. However, special pre-training
objectives for digits rather than whole numbers
can be designed to teach the inherent numeracy to
models. In future, we intend to explore these objec-
tives centered around preserving numeracy rules
in transfer-learned models to generalize between
in-domain and out-of-domain numbers.

Acknowledgement

The authors acknowledge support from DARPA
grant number FA875019C0003 for this project.

3100

Ethical Considerations

In this paper, we analyze performance of three pub-
licly available T5 models on four numeracy tasks.
For Magnitude Order Prediction task we use pub-
licly available dataset, Numeracy600K. We syn-
thetically create the data for rest of the tasks.

References
Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura,

and Hsin-Hsi Chen. 2019. Numeracy-600k: learn-
ing numeracy for detecting exaggerated information
in market comments. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 6307–6313.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 946–958, Online. Association for Com-
putational Linguistics.

Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo
Chu, Yinggong Zhao, Libin Shen, and Kewei Tu.
2019. Learning numeral embeddings. arXiv
preprint arXiv:2001.00003.

Devin Johnson, Denise Mak, Andrew Barker, and Lexi
Loessberg-Zahl. 2020. Probing for multilingual
numerical understanding in transformer-based lan-
guage models. In Proceedings of the Third Black-
boxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pages 184–192, Online.
Association for Computational Linguistics.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xi-
ang Ren. 2020. Birds have four legs?! numersense:
Probing numerical commonsense knowledge of pre-
trained language models. In Proceedings of EMNLP.
To appear.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.

Andreas Madsen and Alexander Rosenberg Johansen.
2020. Neural arithmetic units. arXiv preprint
arXiv:2001.05016.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, and Chitta Baral. 2020. To-
wards question format independent numerical rea-
soning: A set of prerequisite tasks. arXiv preprint
arXiv:2005.08516.

Aakanksha Naik, Abhilasha Ravichander, Carolyn
Rose, and Eduard Hovy. 2019. Exploring numeracy
in word embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3374–3380.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Li.
2021. Investigating the limitations of the transform-
ers with simple arithmetic tasks. arXiv preprint
arXiv:2102.13019.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Dhanasekar Sundararaman, Shijing Si, Vivek Subra-
manian, Guoyin Wang, Devamanyu Hazarika, and
Lawrence Carin. 2020. Methods for numeracy-
preserving word embeddings. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4742–4753.

Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip
Ilievski. 2021. Representing numbers in nlp: a sur-
vey and a vision. arXiv preprint arXiv:2103.13136.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae,
Chris Dyer, and Phil Blunsom. 2018. Neural arith-
metic logic units. In Advances in Neural Informa-
tion Processing Systems, volume 31. Curran Asso-
ciates, Inc.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know
numbers? probing numeracy in embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5307–
5315, Hong Kong, China. Association for Computa-
tional Linguistics.

Peng-Jian Yang, Ying Ting Chen, Yuechan Chen,
and Daniel Cer. 2021. Nt5?! training t5 to
perform numerical reasoning. arXiv preprint
arXiv:2104.07307.

Xikun Zhang, Deepak Ramachandran, Ian Tenney,
Yanai Elazar, and Dan Roth. 2020. Do language em-
beddings capture scales? In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 4889–4896, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.blackboxnlp-1.18
https://doi.org/10.18653/v1/2020.blackboxnlp-1.18
https://doi.org/10.18653/v1/2020.blackboxnlp-1.18
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://proceedings.neurips.cc/paper/2018/file/0e64a7b00c83e3d22ce6b3acf2c582b6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0e64a7b00c83e3d22ce6b3acf2c582b6-Paper.pdf
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/2020.findings-emnlp.439
https://doi.org/10.18653/v1/2020.findings-emnlp.439

3101

A Appendix

A.1 Data Statistics Experimental Setup
Numeration: We have 4906, 2097, 2997 in train,
dev and test respectively. We make sure that all
numbers within 10K are present in any of train,
dev or test. For extrapolation we select 1K integers
randomly from every 10K range from [10K,1000K)
making it a total of 99K.
Magnitude Order Prediction: For this data we
consider 450K, 50K and 100K samples for train,
dev and test data respectively from each of market
comments and article titles data.
List-Sort: We consider both the task of arranging
in ascending and descending orders since if a series
is already sorted in ascending order the model can
directly predict by copying it from the given input.

Figure 7: More predictions for Numeration task.

A.2 Hyperparameters
For all the experiments we use maximum sequence
length of 128 and 256 for question context. The
maximum sequence length of the answers is kept
as [5, 10, 20, 25] for different tasks. We ran for
20 epochs and save a model based on validation
EM performance. Our training and validation batch
size varies between [2, 4, 8, 16, 32] based on the
experiment. We work on 4 Tesla V100 GPUs. We
use AdamW optimizer and StepLR scheduler with
step size of 2, learning rate of 5e-5 and gamma of
0.1.

Figure 8: More Magnitude Order Prediction Examples.

Figure 9: More predictions for List-MinMax task.

Figure 10: More predictions for List-Sort task.

A.3 Results and Error analysis
Magnitude Order Prediction: We also experi-
mented with zero-shot magnitude order predictions.
We found 553 and 8783 exact-matches out of 100K
test data using T5-large which shows that the per-
formance is very poor without proper fine-tuning.
We show some more predictions of the best per-
forming T5 model in Figure 7, 8, 9, 10.

