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Abstract

Although researches on word embeddings
have made great progress in recent years,
many tasks in natural language processing
are on the sentence level. Thus, it is es-
sential to learn sentence embeddings. Re-
cently, Sentence BERT (SBERT) is proposed
to learn embeddings on the sentence level,
and it uses the inner product (or, cosine sim-
ilarity) to compute semantic similarity be-
tween sentences. However, this measurement
cannot well describe the semantic structures
among sentences. The reason is that sen-
tences may lie on a manifold in the ambi-
ent space rather than distribute in a Euclidean
space. Thus, cosine similarity cannot approxi-
mate distances on the manifold. To tackle the
severe problem, we propose a novel sentence
embedding method called Sentence BERT
with Locality Preserving (SBERT-LP), which
discovers the sentence submanifold from a
high-dimensional space and yields a compact
sentence representation subspace by locally
preserving geometric structures of sentences.
We compare the SBERT-LP with several ex-
isting sentence embedding approaches from
three perspectives: sentence similarity, sen-
tence classification, and sentence clustering.
Experimental results and case studies demon-
strate that our method encodes sentences better
in the sense of semantic structures.

1 Introduction

Word embeddings aim to learn semantically mean-
ingful word representations based on distribution
hypothesis (Mikolov et al., 2013). Both context-
free (Pennington et al., 2014) and contextual (Pe-
ters et al., 2018) word embeddings have made great
progress in various downstream tasks: Text Clas-
sification (Aggarwal and Zhai, 2012), Dialogue
System (Chen et al., 2017) and Text Clustering (Al-
lahyari et al., 2017). However, in the real world,
most Natural Language Processing tasks are on the
sentence level. Hence, recent studies (Lin et al.,

2017; Wang and Kuo, 2020) encode sentences into
a dense vector space, which is described as the
sentence space. These sentence embedding ap-
proaches generally fall into two categories: one is
based on supervised learning, including: InferSent
(Conneau et al., 2017), Universal Sentence En-
coder (Cer et al., 2018) and SBERT (Reimers and
Gurevych, 2019). While the other one is based
on unsupervised learning, such as SkipThought
vectors (Kiros et al., 2015), FastSent (Hill et al.,
2016) and Transformer-based Sequential Denois-
ing Auto-Encoder (TSDAE) (Wang et al., 2021).
The unsupervised way overcomes the limitation of
labeled data in different domains and data anno-
tations, to some extent. Both of them represent a
sentence as a point in the sentence space, where
similar sentences are close.

There are two important problems in text pro-
cessing: how to represent texts and how to evaluate
their semantic similarity (He et al., 2004). Recently,
various strategies have been taken to represent a
sentence. For example, the SBERT (Reimers and
Gurevych, 2019)learns semantic sentence represen-
tations with a Siamese Network on top of BERT.
Additionally, some variants have been proposed
such as SBERT-WK (Wang and Kuo, 2020) and
BERT-flow (Li et al., 2020). The sentence space of
the SBERT is associated with a Euclidean structure
and the cosine similarity is employed to measure
the semantic similarity. However, previous studies
have demonstrated that human-generated text data
are probably sampled from a submanifold of the
ambient Euclidean space (Cai et al., 2005). As a
result, sentence representations yielded from the
SBERT may lie on a manifold, which is either lin-
ear or non-linear. The semantic similarity between
sentences is the shortest distance, which may be
curves, on the manifold. Hence, making use of
the cosine similarity to approximate the length of a
curve is inaccurate.

For obtaining correct semantic structures of the
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sentence space, one straight way is to calculate the
geodesic distance (Varini et al., 2006), which is the
length of the shortest path between two points on
the possibly curvy manifold (Ghojogh et al., 2020).
However, because of requiring traversing from one
point to another on the manifold, the geodesic dis-
tance is hard to approximate. Therefore, we aim
to find an optimal Euclidean subspace of the sen-
tence manifold. In the subspace, cosine similarity
is effective to measure sentence semantic relations.

For implementing it, we borrow the idea of Lo-
cally Linear Embedding (Roweis and Saul, 2000),
which is an effective way to develop low dimen-
sional representations when data arises from sam-
pling a probability distribution on a manifold (Cai
et al., 2005). Then, we propose the Sentence BERT
with Locality Preserving (SBERT-LP), which mar-
ries up the locality property and BERT. Our method
highlights the local geometric structures of sen-
tences. To be specific, the SBERT-LP firstly discov-
ers the intrinsic manifold structure from the orig-
inal sentence space. A novel Euclidean sentence
subspace is then learned from the sub-manifold
by preserving local geometric information of sen-
tences. The local geometric structures are defined
by each sentence and its neighbor sentences. Pre-
serving locality avoids losing too much useful infor-
mation of sentences during the projection. Finally,
cosine similarity between sentences is consistent
with their semantic similarity. Our contributions
are summarized in three-folds:

(1) We theoretically analyze from the perspec-
tive of the manifold hypothesis that why the BERT-
induced sentence embeddings show poor perfor-
mance when retrieving semantically similar sen-
tences.

(2) We propose the SBERT-LP, which obtains
better representations in the sense of semantic struc-
ture by using locality preserving. Sentences related
to the same semantics are still close to each other
in the new Euclidean subspace. Our model is unsu-
pervised and without any fine-tuning.

(3) We conduct experiments on three tasks. Ex-
perimental results and case studies demonstrate
that the SBERT-LP is superior to other existing
sentence embedding methods on various tasks.

2 Related work

Existing sentence embedding approaches are di-
vided into two categories: non-parametric sentence
embeddings and parametric sentence embeddings

(Wang and Kuo, 2020).
The non-parameterized way is to derive sentence

embeddings from pre-trained word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) via
linear aggregations. For example, SIF (Arora et al.,
2017) uses smooth inverse frequency to weigh each
word in a sentence and remove some special direc-
tions with PCA. Besides, uSIF (Ethayarajh, 2018)
builds upon the random walk model by setting the
probability of word generation inversely related to
the angular distance between the word and sentence
embeddings. Although the non-parametric meth-
ods have been proved to be efficient, neglecting
word orders and sentence structures degrades their
performance.

In order to incorporate richer sentence informa-
tion, parametric sentence embeddings are proposed.
For example, SkipThought (Kiros et al., 2015) bor-
rows the idea of skip-gram in word2vec. It encodes
sentences intending to predict adjacent sentences.
With the success of BERT (Devlin et al., 2019)
on various NLP tasks (Sun et al., 2019; Clinchant
et al., 2019), some BERT-based sentence embed-
ding methods have been proposed recently. In ad-
dition to the SBERT, the SBERT-WK encodes sen-
tences with QR factorization, re-weighting each
word in a sentence. Furthermore, BERT-flow (Li
et al., 2020) leverages Normalized Flows to trans-
form the BERT sentence space into a standard
Gaussian latent space that is isotropic. It concludes
that the inner product may not accurately represent
semantic similarity in the sentence space because
of the non-smoothing semantic structure. In con-
trast, the SBERT-LP analyzes and solve the cosine
metric problem of the SBERT sentence space on a
manifold. Our work is inspired by the investigation
of local geometry in the word space (Hasan and
Curry, 2017; Yonghe et al., 2019). These meth-
ods solve semantic problems in word space. Since
both word and sentence embeddings share the same
high-dimensional space, problems with word em-
beddings may exist in sentence embeddings (Li
et al., 2020). To the best of our knowledge, this
paper is the first to solve the semantic metric prob-
lem in the sentence space with the incorporation of
locality preserving ability.

3 Methodology

In this section, we first give a brief introduction to
SBERT. Then, we will show how to effectively pre-
serve the locality of sentences to solve the problem
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Figure 1: The architecture of SBERT-LP: (a) obtaining the high-dimensional sentence space from pre-trained
SBERT; (b) constructing the kNN graph on the sentence submanifold; (c) calculating the optimal reconstruction
weights of each sentences on the submanifold; (d) encoding sentences to a new Euclidean subspace, which has
better semantic structures.

of semantic similarity metrics.

3.1 Sentence BERT
The sentence BERT (SBERT) is an efficient way
to produce semantically meaningful sentence em-
beddings. It integrates the Siamese network with
a pre-trained BERT language model. The SBERT
pre-trained sentence embedding is trained on the
SNLI and Multi-Genre NLI, and it uses cosine sim-
ilarity to obtain semantic similarity between sen-
tences. More details are provided in (Reimers and
Gurevych, 2019).

3.2 Sentence BERT with Locality Preserving
To solve the semantic metric problem in the sen-
tence space, we develop the SBERT-LP to encode
sentences. Specifically, our method first constructs
an adjacency graph, which captures the local ge-
ometrical structure of the original sentence space.
Then, a new Euclidean subspace for sentence rep-
resentation is learned by leveraging Locally Linear
Embedding. The new subspace allows cosine simi-
larity to metric semantic similarity correctly.

3.2.1 Problem Definition
Given a set of sentences S ={s1, s2, . . . sm}, we
first use SBERT to obtain high-dimensional rep-
resentations of S. The representations denote as
D ={d1, d2, . . . dm}, where di ∈ Rn. The prob-
lem is how to find a lower-dimensional embedding
yi of di so that

∣∣yi>yj∣∣ can represent the correct
semantic relationship between di and dj .

3.2.2 Locality Preserving Embedding
Learning sentence embeddings via preserving the
locality of each sample is divided into the following
four steps:
Step 1: Obtaining the original sentence space
from pre-trained sentence embeddings

Given a set of sentences S ={s1, s2, . . . ,sm},
where m is the total number of sentences. We
make use of the SBERT to project sentences into a
high-dimensional sentence space:

di = SBERT (si) (1)

where di ∈ Rn, and n is the dimensionality of the
sentence space. In this paper, we use BERT-base
and BERT-large pre-trained model, respectively.
Therefore, the corresponding values of n are 768
and 1024 respectively.
Step 2: Constructing a k-Nearest Neighbors
graph of sentences

We denote sentence representations obtained by
SBERT as D={d1, d2, . . . ,dm}. For all sentences
on the sub-manifold, we construct a k-Nearest
Neighbors graph. Specifically, we first calculate
pairwise Euclidean distance between sentences.
Then, we select the top-k nearest sentences as the
neighbors of each sentence. Let dij ∈ Rn denote
the j-th neighbor of the i-th sentence vector di and
let the matrix Rn×k 3 Di := [di1, . . . ,dik] repre-
sent the k neighbors of di.
Step 3: Reconstructing sentences via local geo-
metric structures on the manifold

The third step is to find the optimal reconstruc-
tion weights of every sentence based on the kNN
graph. To optimize the linear reconstruction in the
sentence space, we formulate it as:

miniW ε(W ) :=
m∑
i=1

∥∥∥∥∥∥di −
k∑
j=1

wijdij

∥∥∥∥∥∥
2

2

(2)

where weights of each sentence subject to
m∑
i=1

wij = 1,∀i ∈ {1, . . . ,m}. Rn×k 3
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W := [w1, . . . , wm]
> represents the reconstruc-

tion weight matrix. Rk 3 wi := [wi1, . . . , wik]
>

denotes the reconstruction weights of the i-th sen-
tence.

Then, the objective function can be restated as:

ε (W ) =
m∑
i=1

||di −Diwi||22 (3)

Then, we can imply that di = di1
>wi from

the weight constraint. The objective can be further
simplified as:

‖di −Dwi‖22 =
∥∥∥di1>wi −Diwi

∥∥∥2
2

=
∥∥∥(di1

> −Di

)
wi

∥∥∥2
2

= w>i

(
di1
> −Di

)> (
di1
> −Di

)
wi

= w>i Giwi

(4)

where Gi is a gram matrix: Rk×k 3 Gi :=(
di1
> −Di

)> (
di1
> −Di

)
. Eventually, we

rewrite the objective function (2) as:

minwi
m
i=1

n∑
i=1

w>i Giwi

subject to : 1>wi = 1,∀i ∈ {1, . . . ,m}.
(5)

For finding the optimal W , we first define the
Lagrangian for equation (5) as L:

L =

m∑
i=1

w>i Giwi −
m∑
i=1

λi

(
1>wi − 1

)
(6)

Then, we set the derivative of Lagrangian to
zero:

∂L
∂wi

= 2Giwi − λi1 = 0

=⇒ wi =
1
2G−1i λi1 = λi

2 G−1i 1.
∂L
∂λ = 1>wi − 1=0 =⇒ 1>wi = 1

(7)

We combine the two derivative results in Eq.(7):

λi
2

1>G−1i 1 = 1 =⇒ λi =
2

1>G−1i 1
(8)

Making use of Eqs. (7) and (8), we then have:

wi =
λi
2

G−1i 1 =

2
1>G−1

i 1

2
G−1i 1=

G−1i 1

1>G−1i 1
(9)

Finally, we obtain the optimal reconstruction
weights W . Actually, each sentence and its neigh-
bors reflect local geometric structures of the sen-
tence manifold. The optimal weights indicate in
what proportion the information should be passed
from the neighbors.
Step 4: Finding the optimal Euclidean sentence
subspace

The SBERT-LP aims to make the locality (the
optimal weights) on the sentence manifold be main-
tained within the Euclidean sentence sub-space.
Thus, in this step, we encode sentences into the Eu-
clidean sub-space with the locality on the sentence
manifold. Then, we formulate the optimization
problem of this embedding as:

minimize
Y

m∑
i=1

∥∥∥∥∥∥yi −
m∑
j=1

wijyj

∥∥∥∥∥∥
2

2

(10)

subjects to 1
m

∑m
i=1 yiy

>
i = I, and

∑m
i=1 yi = 0.

I is the identity matrix, while yi ∈ Rp is the i-th
embedded sentence, and p is the dimensionality
of the Euclidean sentence embeddings. Then, we
denote the set of embedded sentences as a matrix:
Y =[y1, y2, . . . ,ym]

>, and Y ∈ Rm×p. wij is
weight between two sentences. If the j-th sentence
is the neighbor of the i-th sentence, the wij is set
to wij , which we have obtained in the third step.
Otherwise, it equals to zero. Then the weight wij
can be formulated as:

wij :=

{
wij if dj ∈ Di

0 otherwise
(11)

We then define the weight for the i-th sentence
as: wi = [wi1, wi2, . . . , wim]

>. Besides, we set
a one-hot vector: 1i = [0, . . . , 1, . . . ., 0]> where
i-th element is one while the others are zero. Then,
the objective function can be rewritten as:

m∑
i=1

||yi −
m∑
j=1

wijyj ||22

=
m∑
i=1

||Y>1i −Y>wi ||22

(12)

The formula is then simplified into matrix form:

m∑
i=1

∥∥∥Y>1i −Y>wi

∥∥∥2
2
|=
∥∥∥Y>(I−W )>

∥∥∥2
F

(13)
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where W=[w1, w2, . . . , wm]
>, W ∈ Rm×m,

while .F denotes the Frobenius norm of matrix.
We further simplified the Eq. (13) as:∥∥∥Y>(I−W )>

∥∥∥2
F
= tr

(
(I−W )YY>(I−W )>

)
= tr

(
Y>(I−W )>(I−W )Y

)
= tr

(
Y>MY

)
(14)

where tr( · ) is the trace of matrix and M=(I −
W )>(I−W ), M ∈ Rm×m. Then, the objective
function in Eq. (10) is formulated as:

min
Y

tr
(
Y>MY

)
(15)

Therefore, if we ignore the second constraint,
the Lagrangian L′ for Eq. (15) is:

L′ = tr
(
Y>MY

)
− tr

(
Λ>

(
1

n
Y>Y − I

))
(16)

where Λ ∈ Rm×m is a diagonal matrix including
the Lagrange multipliers. Then, we set the deriva-
tive of L′ to zero:

∂L′

∂Y
= 2MY− 2

n
YΛ = 0 =⇒MY = Y

(
1

m
Λ

)
(17)

Thus, the columns of Y are the eigenvectors
of M, and the Y represents the target sentence
embeddings.

4 Experiments

In this section, we perform experiments on three
tasks to demonstrate the effectiveness of the
SBERT-LP. We firstly introduce experimental set-
tings for the datasets and hyper-parameters. Then
we compare the SBERT-LP with several state-of-
the-art sentence encoding methods. Finally, we
analyze the effect of different parameters on the
SBERT-LP, and we make use of some cases from
STS datasets to illustrate the effectiveness of our
model on semantic metric recovery. Sentence em-
beddings aim to cluster semantically similar sen-
tences. Therefore, we mainly focus on the perfor-
mance of different models on the STS task and take
the results of the other two tasks as references.

4.1 Experimental Settings and Datasets
To verify that SBERT-LP is able to learn better
sentence representations in the sense of semantics,

we set three downstream tasks: Semantic Textual
Similarity, Text Classification, and Text Clustering,
respectively. We obtain high-dimensional sentence
embeddings from two pre-trained models without
fine-tuning: SBERT-base and SBERT-large. Fif-
teen datasets are leveraged for three tasks:

(1) For the Semantic Textual Similarity task,
we use seven standard semantic textual similarity
datasets: the STS tasks 2012-2016 (Agirre et al.,
2012, 2013, 2014, 2015, 2016), the STS bench-
mark (Cer et al., 2017), and the SICK-Relatedness
datasets (Marelli et al., 2014). The datasets are
labeled between 0 and 5 on the semantic similarity
of sentence pairs.

(2) For the Text Classification task, we use seven
standard datasets in the SentEval (Conneau and
Kiela, 2018) to evaluate sentence embedding ap-
proaches: MR (Pang and Lee, 2005), CR (Hu and
Liu, 2004), SUBJ (Pang and Lee, 2004), MPQA
(Wiebe et al., 2005), SST (Socher et al., 2013),
TREC (Li and Roth, 2002) and MRPC (Dolan et al.,
2004).

(3) For the Text Clustering task, we make use of
the 20 Newsgroup dataset for evaluation.

4.2 Baselines
We compare the BSERT-LP with several groups of
state-of-the-art methods for sentence representation
learning:

(1) non-parameterized sentence encoders: Avg.
GloVe embeddings; Avg. BERT embeddings; Avg.
Fasttext embeddings (Joulin et al., 2017); BERT
CLS-TOKEN.

(2) parameterized sentence encoders: InferSent-
GloVe; Universal Sentence Encoder; SBERT;
SBERT-WK; BERT-flow.

4.3 Evaluation on Semantic Textual
Similarity

4.3.1 Task Description
We evaluate the model for STS without leveraging
any STS specific training data. We directly evaluate
sentence embedding methods on the test data and
compute the cosine similarity between sentences
as the similarity score. The metric is Spearman’s
correlation, which is the same as (Reimers and
Gurevych, 2019).

4.3.2 Results and Analysis
In table 1, we report the performances of the dif-
ferent sentence embedding methods in terms of
Spearman’s correlation on the STS datasets. From
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Models STS12 STS13 STS14 STS15 STS16 STS-b SICK-R
Avg. GloVe embeddings 55.14 70.66 59.73 68.25 63.66 58.02 53.76
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 46.35 58.40

BERT-CLS-TOKEN 20.16 30.01 20.09 36.88 38.08 16.50 42.63
InferSent-GloVe 52.86 66.75 62.15 72.77 66.87 68.03 65.65

Universal Sentence Encoder 64.49 67.80 64.61 76.83 73.18 74.92 76.69
SBERTbase 70.97 76.53 73.19 79.09 74.30 77.03 72.91
SBERTlarge 72.27 78.46 74.90 80.99 76.25 79.23 73.75

BERTbase-flow 68.95 78.48 77.62 81.95 78.94 81.03 74.97
BERTlarge-flow 70.19 80.27 78.85 82.97 80.57 81.18 74.52

SBERT-WK 68.20 68.80 74.30 77.50 77.00 - -
SBERTbase-LP 73.11 80.90 74.71 76.04 72.56 78.86 75.94
SBERTlarge-LP 72.12 84.59 78.88 80.42 76.50 82.31 76.70

Table 1: Spearman coefficient results for different models on the STS task. The best results are bolded and the
second-best results are underlined.

this table, the proposed model SBERT-LP markedly
outperforms the other competing methods in terms
of the metric. Specifically, we can see that the
SBERT-LP can improve the performance signifi-
cantly compared with SBERT. This confirms that
the SBERT-LP does a better job than SBERT in
capturing semantic similarity between sentences
by preserving local geometric structures of each
sentence lying on the submanifold embedded in the
ambient space. Besides, the SBERT-LP yields bet-
ter results than the SBERT-flow, which is a strong
baseline for sentence embedding, on five datasets.
It is reasonable to say that the manifold distribution
hypothesis of sentences is more efficient for sen-
tence representations in the sense of semantic struc-
tures, compared with the Gaussian latent space.

4.4 Evaluation on Text Classification
4.4.1 Task Description
SBERT leverages Logistic Regression as the clas-
sifier on the text classification task. However, pa-
rameters in LR classifier may influence the exper-
imental results. Hence, we make use of the non-
parametric k-nearest neighbor (kNN) algorithm as
the classifier. The distance metric of kNN is the Eu-
clidean distance, while the k is set to 3 empirically.
Accuracy is leveraged to evaluate the classification
performance of models.

4.4.2 Results and Analysis
The Accuracy comparison results of the seven Sen-
tEval datasets are depicted in table 2. Even though
transfer learning is not the purpose of SBERT-LP, it
outperforms other state-of-the-art sentence embed-
dings methods on three datasets. We can observe

from these results that SBERT-LP performs better
than SBERT. Therefore, we can attribute the im-
provement achieved by SBERT-LP over SBERT
and its variants to locality preserving character,
which is brought LLE. However, the result of the
SBERT-LP on the TREC dataset is not satisfactory.
The reason is that the USE is trained on question-
answer tasks, which are the same type with the
TREC dataset (Reimers and Gurevych, 2019).

4.5 Evaluation on Text Clustering

4.5.1 Task Description

We make use of K-means (MacQueen et al., 1967),
which is based on a distance metric, for clustering.
Four indicators are employed to evaluate the per-
formance: Mutual Information (MI), Normalized
Mutual Information (NMI), Adjusted Rand Index
(ARI), and Purity.

4.5.2 Results and Analysis

As shown in table 3, it is worth mentioning that
the SBERT-LP significantly outperforms SBERT.
This provides empirical evidence that accounting
for the better semantic relationships among sen-
tences obtained from the SBERT-LP encodes the
clustering structure even better. Similar sentences
are closer in the sentence space given by SBERT-
LP, while dissimilar sentences are further apart.
However, we can also find that the Universal Sen-
tence Encoder (USE) achieves the best in terms of
all metrics. The reason is that the USE has more
intra-class consistency compared to other sentence
embedding methods.
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Models MR CR SUBJ MPQA SST TREC MRPC
Avg. GloVe embeddings 82.94 85.25 92.51 90.02 83.69 78.40 80.00
Avg. BERT embeddings 85.15 89.43 96.06 91.19 86.55 89.00 80.99

Avg. fast-text embeddings 83.36 86.54 93.12 91.14 83.96 89.20 79.36
BERT CLS-TOKEN 82.87 84.19 93.88 88.50 82.10 81.40 78.78

InferSent-GloVe 85.53 89.03 93.86 92.60 88.08 85.20 75.88
Universal Sentence Encoder 80.09 85.19 93.98 86.70 86.38 93.20 70.14

SBERTbase 86.96 93.38 93.07 93.71 90.88 81.40 83.07
SBERTlarge 89.15 94.38 93.33 93.80 92.92 79.80 83.94

SBERTbase-LP 87.19 93.64 93.23 93.88 91.32 83.06 83.94
SBERTlarge-LP 88.89 94.65 93.58 94.18 92.75 83.60 84.35

Table 2: The accuracy of different models on the text classification task. The best results are bolded and the
second-best results are underlined.

4.6 Parameters Analysis

Having shown the superiority of the SBERT-LP, in
this section, we compare the performance in differ-
ent neighborhood numbers and the performance in
different dimensionalities.
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Figure 2: Spearman’s coefficient of SBERT-LP on STS-
b and SICK-R datasets with different number of neigh-
bors.
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Figure 3: Accuracy of SBERT-LP on three SentEval
datasets with different number of neighbors.

4.6.1 Selection of the number of neighbors
Our method is based on LLE, thus the selection of
the number of neighbors is very important for con-
structing the local geometric structure on the sen-
tence manifold. And several different algorithms,

such as Residual Variance and Procrustes Statistics,
have been proposed to find the optimal number of
neighbors (Ghojogh et al., 2020). However, we
experimentally find that the number of neighbors
obtained by these methods is not optimal. There-
fore, grid search is employed to get the optimal
number of neighbors. Figures 2 and 3 demonstrate
the relationship between the number of neighbors
and the performance of different downstream tasks.

4.6.2 Dimensionality of the Euclidean
embeddings

The dimensionality of the original sentence space is
usually 768 or 1024. Although high-dimensionality
sentence representations contain a wealth of seman-
tic information, only part of the information can
benefit downstream tasks. Besides, overwhelm-
ingly complex sentence feature sets will slow the
classification or regression models down and make
finding global optima difficult. SBERT-LP im-
proves this problem to a large extent. Specifically,
it maps sentences into a lower-dimensional space,
which reduces the number of learnable parameters
for downstream tasks.

We experimentally observe that there are no spe-
cific laws for the selection of dimensions. To be
specific, the dimensionality of the target space of-
ten varies greatly from task to task. For example,
for Sentiment Analysis, the classification result is
optimal when the dimensions are in the range of 16-
64. While the optimal range is 128-300 for the STS
task. This may be due to the fact that universal sen-
tence embeddings obtained by SBERT-LP contain
much less information related to sentiment than
semantic information. More details are reported in
figure 2.



3057

Models MI NMI ARI Purity
Avg. GloVe embeddings 1.0444 0.3558 0.1797 0.3327
Avg. BERT embeddings 0.7320 0.2520 0.1030 0.2380

Avg. fast-text embeddings 0.5491 0.1886 0.0708 0.2057
BERT CLS-TOKEN 0.1056 0.0361 0.0104 0.1020

Universal Sentence Encoder 1.6585 0.5628 0.3732 0.5740
SBERTbase 0.9659 0.3255 0.1745 0.3540
SBERTlarge 0.9412 0.3166 0.1590 0.3330

SBERTbase-LP 1.2400 0.4467 0.1917 0.4570
SBERTlarge-LP 1.3171 0.4594 0.2656 0.4906

Table 3: Performance of different models on the text clustering. The best results are bolded and the second-best
results are underlined.
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Figure 4: Spearman’s coefficient of the SBERT-LP on
STS-b and SICK-R datasets with different number of
dimensionalities.
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Figure 5: Accuracy of SBERT-LP on three SentEval
datasets with different number of dimensionalities.

4.7 Qualitative Analysis

To verify that the SBERT-LP can make cosine sim-
ilarity a valid measure of semantic similarity, we
select some cases for illustration. The cases are
shown in table 4.

The two pairs of sentences and labels are se-
lected from the STS13 dataset. The labels demon-
strate that the semantic distance between the two
sentences of sentence pair 0 should be smaller than
that of sentence pair 1. However, following the
result of Sim_1, we can observe the relationship
between the two pairs of sentence is reversed by the

SBERT. The phenomenon shows that making use
of the cosine similarity to capture semantic struc-
tures of the SBERT is invalid. Then, the result of
Sim_2 shows that the SBERT-LP well solves the
semantic similarity problem existing in the SBERT.
To be specific, the SBERT-LP takes advantage of
the locality preservation property to transform the
sentence manifold in the ambient space into Eu-
clidean sentence embeddings while keeping the se-
mantic relationships between sentences unchanged.

Order Sentence_0 Sentence_1 Sim_0 Sim_1 Sim_2
0 the words in this

frame describe a pe-
riod of time, as op-
posed to a point in
time.

the period during
which something
is functional (as
between birth and
death);

2.2 0.6408 0.2335

1 torres moving on af-
ter Olympic bid fails

torres finishes 4th,
misses out on sixth
Olympics

3.0 0.6236 0.4234

Table 4: sentence pairs and their similarity scores given
by cosine similarity. Sim_0 is the manual label; Sim_1
is given by SBERT; Sim_2 is given by the SBERT-LP.

5 Conclusion

In this paper, we propose the SBERT-LP that is sim-
ple yet effective. To solve the metric problem in the
sentence space, this method well exploits the idea
of locality preserving to recovery the cosine similar-
ity. It not only captures the sentence submanifold
but also rebuilds a Euclidean sentence subspace.
Experimental results on three tasks demonstrate
that the SBERT-LP learns better sentence represen-
tations in the sense of semantic structures.
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