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Abstract

Knowledge graph embedding (KGE) using
low-dimensional representations to predict
missing information is widely applied in
knowledge completion. Existing embedding
methods are mostly built on Euclidean space,
which are difficult to handle hierarchical struc-
tures. Hyperbolic embedding methods have
shown the promise of high fidelity and concise
representation for hierarchical data. However,
the logical patterns in knowledge graphs are
not considered well in these methods. To ad-
dress this problem, we propose a novel KGE
model with extended Poincaré Ball and po-
lar coordinate system to capture hierarchical
structures. We use the tangent space and ex-
ponential transformation to initialize and map
the corresponding vectors to the Poincaré Ball
in hyperbolic space. To solve the bound-
ary conditions, the boundary is stretched and
zoomed by expanding the modulus length in
the Poincaré Ball. We optimize our model us-
ing polar coordinate and changing operators
in the extended Poincaré Ball. Experiments
achieve new state-of-the-art results on part of
link prediction tasks, which demonstrates the
effectiveness of our method.

1 Introduction

Knowledge graphs (KGs) (Dong et al., 2014) , con-
sisting of (subject, relation, object) triples, are es-
sential for question answering, information extrac-
tion and recommendation systems. In real-world,
KGs are usually incomplete (Lin et al., 2015), so
predicting missing links in KGs via knowledge
graph embedding (KGE) into vector spaces be-
comes more and more important. Hierarchical
structures are common in KGs and used to manage
the relations and concepts, typically forming hierar-
chical data. However, existing KGE methods often
encounter challenges when dealing with hierarchi-
cal structures, because it is particularly difficult
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Figure 1: An example of long-tail distribution and
Poincaré Ball in the NELL.

for models which are built on Euclidean space to
preserve hierarchical structures (Nickel and Kiela,
2017).

Recent works proposed hyperbolic representa-
tion learning represented by Poincaré Ball (Cannon
et al., 1997). Figure 1 shows part of knowledge
in the NELL KG (Mitchell et al., 2018), in which
the entities show a long-tailed distribution with dis-
tance from the The United States. Namely, the
hierarchical relationships between entities can be
approximated as a tree structure, while the num-
ber of entities in each layer increases exponentially
with depth of tree increasing. Such a knowledge
structure can be well represented with the Poincaré
Ball (Ungar, 2001), which is a type of hyperbolic
space suitable for embedding the hierarchical struc-
tures and entities in KGs. Even most hyperbolic
KGE models choose Poincaré Ball model to embed
the structures, they still suffer from the problems
of restricted capacity and floating-point precision
when majority of points are embedded near by the
boundary of Poincaré Ball due to long-tail distribu-
tion.

To tackle these challenges, this paper proposes
a novel hyperbolic knowledge embedding method
named HBE (Hyperbolic extended Poincaré Ball
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Embedding), which employs a extended Poincaré
Ball for KG embedding and captures hierarchical
structures with polar coordinate system in a hyper-
bolic transformation (Chami et al., 2019). First,
HBE uses tangent space to initialize the entity and
relation vectors in conventional Euclidean space.
Then, it projects embedded entities into polar co-
ordinate to gain hierarchical information and takes
embeddings into radius and angle parts to absorb
hyperbolic information. The boundary is stretched
and zoomed via expanding the modulus length in
the Poincaré Ball. At the same time, the addition
rule in the extended Poincaré Ball are changed ac-
cordingly, so that the model can be optimized in
the extended Poincaré Ball. The overall training
process adopts the idea of TransE, that is, through
the transformation of positive and negative exam-
ples, the measurement distance between the result
of the head entity and the relationship and the tail
entity is as small as possible.

In summary, the main contributions of this paper
are three-fold: (1) We propose a novel hyperbolic
knowledge embedding method, HBE, to apply ex-
tended Poincaré Ball for KGE and captures hierar-
chical structures. (2) In order to enable the model
to be optimized in extended Poincaré Ball, we fine-
tune the operator and fix model in polar coordinate
system to embed entities and relations. (3) Experi-
ments show that HBE outperforms state-of-the-art
methods on link prediction tasks at a moderate di-
mension.

2 Hyperbolic Geometry

The hyperbolic space is one of the three kinds of
isotropic spaces, which includes Euclidean (flat),
spherical (positively curved) and hyperbolic (nega-
tively curved) spaces (Cannon et al., 1997). Com-
pared with the Euclidean and spherical spaces, the
amount of space covered by a hyperbolic geometry
increases exponentially rather than polynomially
(Buser, 1992). This property allows us to capture
KG structures with hyperbolic space and suits those
forming hierarchies. For the hyperbolic geometry,
there are several important isometric models in-
cluding the hyperbolic model, Klein disk model
and Poincaré Ball model. This paper chooses the
extended Poincaré ball model due to its feasibil-
ity for gradient optimization (Abramowicz et al.,
2002) and its infinite boundary. We hereby intro-
duce some basic operations of hyperbolic geometry
and Poincaré Ball, and then address the way to ex-

tend Poincaré Ball and modify some operators in
extended one.

Specifically, a d-dimensional Poincaré Ball with
a negative curvature -c (c > 0) is defined by the
manifold

(
Bd, gx

)
(Ungar, 2001). The geodesic

distance (or hyperbolic distance) d(u,v) between
vectors u and v in the Poincaré Ball with c = 1 is
given by (Ungar, 2001):

d(u,v) = cosh-1

(
1 + 2

‖u− v‖2

(1− ‖u‖2) (1− ‖v‖2)

)
(1)

When the points move from the origin towards the
ball boundary, their geodesic distance increases
exponentially, offering a larger capacity of space
for embedding concepts and entities (Ungar, 2001).

The vector translation in the Poincaré Ball is
defined by the Möbius addition (Ungar, 2001):

x⊕c y =

(
1+2cx·y +c‖y‖2

)
x +

(
1−c‖x‖2

)
y

1 + 2cx · y + c2‖x‖2‖y‖2
(2)

where x,y are hyperbolic vectors and c is the cur-
vature of hyperbolic space.

Previous work defines the matrix-vector multi-
plication between Poincaré Balls using the expo-
nential and logarithmic maps (Ungar, 2001). The
hyperbolic vectors are first projected into the tan-
gent space at 0 using the logarithmic map (log0)
then multiplied the transformation matrix like what
in the Euclidean space, and finally projected back
on the manifold with the exponential map (exp0)
(Nickel and Kiela, 2017). Specifically, the two pro-
jections on vector v ∈ B are defined as follows:

expc0(v) = tanh(
√
c||v||) v√

c||v||
(3)

logc0(y) = tanh-1(
√
c‖y‖) y√

c||y‖
(4)

Through such projections, we can apply any Eu-
clidean counterpart operations on hyperbolic vec-
tors. The transformation can be done using the
Möbius version of matrix-vector multiplication:

M⊗c x = expc0 (M logc0(x)) (5)

Möbius scalar multiplication can be obtained in the
same way as:

r ⊗c x = expc0 (r logc0(x))

= (
1√
c
) tanh

(
r tanh−1(

√
c‖x‖)

) x

‖x‖
(6)
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3 Methodology

Poincaré Ball model can suit hierarchical structure
of KGs, in which entities can form different hier-
archies under different relations. For example, in
WordNet (Fellbaum, 1998) the chair is a parent
node to different chair types (e.g. folding_chair,
armchair) under the relation hypernym. And
both chair and their types are parent nodes to parts
of a typical chair (e.g. backrest, leg) under the re-
lation has_part. The parent node chair would be
embedded closer to the origin and node backrest
would be farther to origin.

An ideal embedding model should capture all
hierarchies simultaneously. Take bilinear models
(Wang et al., 2014) as an example, they can mea-
sure similarity between the subject entity embed-
ding and an object entity embedding using the Eu-
clidean inner product. However, a clear correspon-
dence to the Euclidean inner product does not exist
in hyperbolic space. The Euclidean inner prod-
uct can be expressed as a function of Euclidean
distance and norms. Noting this, Poincaré GloVe
(Tifrea et al., 2019) absorbed the squared norms
of the embeddings into the biases by replacing the
Euclidean with the Poincaré distance dB(u,v) to
obtain the hyperbolic version of GloVe.

Meanwhile, the capacity of Poincaré Ball model
is restricted by floating-point precision when ma-
jority of points locate near by the boundary due
to long-tail distribution. To tackle this problem,
we utilize an extended Poincaré Ball to expand the
border into infinity and adjust some operators to
align with Euclidean geometry, which redefines the
distance dB(u,v).

3.1 Extended Poincaré Ball

In Poincaré Ball, it is obvious that the whole space
is symmetric along the center but the apparent
Euclidean distance from the origin to any point
is not equal to the hyperbolic distance (Chami
et al., 2019). In order to make the apparent dis-
tance consistent with the actual hyperbolic dis-
tance, we establish a new model to ensure the dis-
tance from any point to the center is just equal
to which in hyperbolic space, which is called the
extended Poincaré Ball. Suppose that the polar co-
ordinates of any point in the original coordinate
system (Poincaré disk) is(r, θ), and that in the new
space is (2tanh−1r, θ) (Buser, 1992). As Figure
2 shown, circles in extended Poincaré Disk (in 2-
dimension) are twisted.

Figure 2: Circle in extended Poincaré Disk

In this way, the radius of ball space is
infinite. Therefore, points near the bound-
ary are extremely compressed in Poincaré Ball
while there is no such problem in the extended
one. Meanwhile, it can be proved that Hy-
perbolic Cosine Theorem still holds for the op-
erators in extended Poincaré Ball: cosh(c) =
cosh(a)cosh(b) − sinh(a)sinh(b) cos γ (a, b, c
stand for the geodesic distance of triangle and
γ stands for the angle between a, b). Extended
Poincaré Ball and Poincaré Ball share the same dis-
tance form when calculated by cosine theorem as
well (see appendix A.1 for detailed information).

Furthermore, inspired by the Hyperbolic Cosine
Theorem, in which the hyperbolic distance can be
composed of modulus and angle, we use polar coor-
dinates to embed entity and relation into extended
Poincaré Ball. The score function can be formed
as two parts – polar radius and polar angle.

dB = αdrB + βdθB (7)

where α and β are the weights to be learned. The
radius part plays an essential role in levels of enti-
ties in extended Poincaré Ball. And the angle aims
to distinguish entities in the same level. The whole
function shares the similar way as works in entity
typing proposed by Federico (Lopez et al., 2019)
which does not satisfy Cauchy inequality.

So we can formulate the polar radius with
Möbius addition and multiplication as follows:

drB = ‖2 tanh-1((R⊗c h)⊕c −(r ⊕c t))‖2 (8)

where h, r, t stand for hyperbolic embeddings of
head entity, relation and tail entity. And R stands
for relation matrix in hyperbolic space inspired by
MuRP (Balazevic et al., 2019). Due to the property
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of extended Poincaré Ball, one can classify the
embedding levels of different entities by Euclidean
Norm.

A point in polar coordinates system in high di-
mension can be formulated as:

xB


x1 = r cos θ1

x2 = r sin θ1 cos θ2

. . .
xd−1 = r sin θ1 . . . sin θd−2 cos θd−1

xd = r sin θ1 . . . sin θd−2 sin θd−1

(9)
In consider of convergence and efficiency, we

can simplify and formulate the polar angle as:
∆θ = π−|π−|θ−θ′||. Consequently, we simplify
Equation 9 in TransE form (Bordes et al., 2013) as:

dθB = ‖(θh + θr − θt)mod 2π‖ (10)

From another perspective, angle parts can be
replaced with radius parts by Cosine Theorem in
hyperbolic space. However, to better capture com-
plex relation such as symmetry, anti-symmetry,
inversion and composition, it is necessary to uti-
lize extra angle part for downstream tasks like link
predictions. On the other hand, the introduction
of angle part can simulate the rotation in RotatE
(Sun et al., 2019). Theoretically, any algebraic sys-
tem hold the fundamental properties of congruence
can be used as angle part in HBE when embed-
ding complex relations. Take angles as an exam-
ple, suppose that a relation θr ∈ [0, 2π) is close
to π, then a symmetric relation can be formed as
(θh+ θr + θr)mod 2π = θhmod 2π with arbitrary
θh and 6= for asymmetric relations.

3.2 Optimization

Since the Poincaré Ball has a Riemannian mani-
fold structure, we optimize radius parameters with
stochastic Riemannian optimization methods such
as RSGD or RSVRG (Bonnabel, 2013). Let ∇E
denote the Euclidean gradient of L(P ). Using
RSGD, the Riemannian gradient can be computed

as ∇R =
(1−‖Pt‖2)

2

4 ∇E . In summary, the full
update for a single embedding is calculated by:

P t+1 = P t − ηt

(
1− ‖P t‖2

)2

4
∇E (11)

where η denotes the learning rate.
According to the isometric projection of

Poincaré Ball, the angle part can be optimized by

Euclidean optimization methods such as SGD or
Adam (Kingma and Ba, 2015).

To train the model, we use the negative sampling
loss functions with self-adversarial training (Sun
et al., 2019).

s =− log (σ (λ− dB(h, r, t)))

−
n∑
i=1

p
(
h′i, r, t

′
i

)
log
(
σ
(
dB
(
h′i, r, t

′
i

)
− λ

))
(12)

where λ is margin. For negative samples,

p
(
h′j , r, t

′
j | {(hk, rk, tk)}

)
=

eyf(h
′
j ,tj)∑size

k=1 e
yf(h′k,t

′
k)

(13)
where p is the probability distribution of sampling
negative triples, and α is the temperature of sam-
pling.

4 Experiments

To evaluate our approach, we choose the widely
used KG datasets WN18RR (Dettmers et al., 2018)
and FB15K-237 (Bordes et al., 2013). WN18RR
is a subset of WordNet, a hierarchical collection
of relations between words, created from WN18
by removing the inverse of many relations from
validation and test sets to make the dataset more
challenging, containing 40,943 entities and 11 re-
lations. FB15k-237 is a subset of Freebase, a col-
lection of real world facts, created from FB15k in
the same way as WN18RR. FB15k-237 contains
14,541 entities and 237 relations. The statistics of
datasets are shown in Table 1. Noteworthily, the
lower the metric EG is, the more tree-like the KG
is (EG is the mean of the estimated curvatures of
the sampled triangles. See (Chami et al., 2020) for
more details).

We evaluate HBE on the task of KG link pre-
diction, which is critical for practical applications.
We use the scoring function to rank the correct tail
or head entity against all possible entities for link
prediction tasks in KGs. The evaluation metrics
are: (1) mean reciprocal rank (MRR), which mea-
sures the mean of inverse ranks assigned to correct
entities; and (2) hits at K (H@K, K ∈ 1, 3, 10),
which measures the proportion of correct triples
among the top-K predicted triples.

Table 2 and table 3 shows the performance of
HBE and previous models. Our model outperforms
more complex models such as DistMult, ConvE on
all datasets, and beats the model RotatE (Sun et al.,
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Dataset Ent. Train Valid. Test EG Ave. deg.
WN18RR 40,493 86,835 3,034 3,134 -2.54 2.19

FB15k-237 14,541 272,115 17,535 20,466 -0.65 18.71

Table 1: Statistics of WN18RR and FB15k-237.

WN18RR
MRR H@1 H@3 H@10

TransE .226 - - .501
DisMult .437 .397 .444 .490
ConvE .436 .401 .448 .527

HyperKG .411 - - .500
MuRP .481 .440 .495 .566
RotatE .476 .428 .492 .571
HBE .488 .448 .502 .570

Table 2: WN18RR results for link predictions.

FB15k-237
MRR H@1 H@3 H@10

TransE .294 - - .465
DisMult .241 .155 .263 .419
ConvE .325 .237 .356 .501

HyperKG .280 - - .452
MuRP .323 .235 .353 .501
RotatE .338 .241 .375 .533
HBE .336 .239 .372 .534

Table 3: WN18RR results for link predictions.

2019) on WN18RR datasets, which demonstrates
the promising potential of hyperbolic space and po-
lar coordinate. Nevertheless, the results in FB15k-
237 shows that HBE has similar preformance with
RotatE . The reason may lies in special structure of
FB15k as many points with low level of hierarchy
and great degree in KGs, which confuse the radius
part of HBE. Because low-level points with low
level trends to be embedded near by border in raw
Poincaré ball while great-degree points not.
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Figure 3: Visualizations of models.

As shown in the Figure 3(a), the hierarchy in
RotatE is not distinguished, and the overall distri-
bution is more uniform after dimension reduction,

WN18RR
MRR H@1 H@3 H@10

HBE .488 .448 .502 .570
HBE-polar .160 .013 .262 .448
HBE-dis .377 .304 .417 .515
HBE-raw .479 .429 .494 .564

Table 4: WN18RR ablation results for link predictions.

which may be related to the design of complex num-
ber and rotation. Figure 3(b) shows that the points
in the Poincaré ball are obviously more sensitive
to hierarchy, which is to say there are sparse in the
middle and dense near by boundaries. Meanwhile,
it is specific that most of the points are concentrated
near the boundary, which makes the model prone
to the problems of poor convergence and shortage
of floating-point precision. HBE in Figure 3(c) uti-
lizes extend boundary and releases the problem of
dense distribution.

Finally, according to Table 4, HBE-polar is the
polar version in Euclidean space. HBE-dis shows
the result of radius part only, HBE-raw is the model
in Poincaré Ball without extension of boundary. De-
tail information about weights of polar coordinate,
analysis on hierarchical embeddings, and the rela-
tion case study is addressed in A.2, A.3, and A.4,
respectively.

5 Conclusion

We introduce a novel translational method for em-
bedding hierarchical KGs in extended Poincaré
ball of hyperbolic geometry. Our model learns
hierarchy-specific parameters with polar coordinate
by Möbius multiplication and Möbius addition. We
show that HBE outperforms on the link prediction
task on some hierarchical KG dataset.
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A Appendix

A.1 Hyperbolic Distance in Extended
Poincaré Ball

Theorem A.1. Given P , Q : (r, θ), (r′, θ′) are
points in the polar coordinate system of extended
Poincaré Ball, then the hyperbolic distance is x:

coshx=cosh(r)cosh
(
r′
)
−sinh(r)sinh

(
r′
)
cos(∆θ)

(14)
where ∆θ = π − |π − |θ − θ′||.

Proof: Suppose a hyperbolic triangle with
P,Q,O (O is the origin) which forms a 2-
dimension plane from Poincaré Ball into Poincaré
Disk. According to the distance formulation in
Poincaré Disk:

x = log
1 + s

1− s
, s =

|w − w′|
1− ww̄′

(15)

Suppose the polar coordinate of points P and Q in
the raw Poincaré disk:

(R, θ),
(
R′, θ′

)
(16)
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Then:

s =

√
R2 +R′2 − 2RR′ cos ∆θ

1 +R2R2 − 2RR′ cos ∆θ
(17)

And,

cosh(x) =
exp(x) + exp(−x)

2

=
1

2

(
1 + s

1− s
+

1− s
1 + s

)
=

1 + s2

1− s2

(18)

Take s into Equation 18:

cosh(x) =
1 +R2 +R′2 +R2R′2 − 4RR′ cos θ

(1−R2) (1−R′2)
(19)

Take this transformation

r = tanh(R/2), r′ = tanh
(
R′/2

)
(20)

into Extended Poincaré Disk (Ball):

cosh(x)=cosh(r) cosh(r′)−sinh(r) sinh(r′)cos(∆θ)

= 1+R2

1−R2 · 1+R2

1−R′2 − 4 RR′ cos ∆θ
(1−R2)(1−R2)

(21)
Theorem is proved.

A.2 Weights of Polar Coordinate
To analyze influence of curvature and the weight of
radius and angle part, we collect ratio and curvature
with different dimensions.

Figure 4(a) shows the weight ratio of radius and
angle in different dimension. And x-axis stands for
dimension and y-axis is the ratio of β

α+β , which
stands for weight of radius part and dimension.
With dimension grows by, the share of radius part
descends rapidly and the curvature of extended
Poincare Ball tends to be 0 (more flat and close to
Euclidean Space) in Figure 4(b). And the perfor-
mance of KEEN in high dimensions will close to
RotatE.

A.3 Analysis on Hierarchical Embeddings
For certain relations, we sample some triplets with
hierarchical relation _hypernym from WN18RR
and show their head and tail entity embeddings’
radius parts of distribution.

As we expected in Figure 5(a), the tail
level is higher than head level. And relation
/film/film/genre in FB15k-237 has a similar
situation which can be leveled and distinguished
by radius part in Figure 5(b). To compare with, we
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Figure 4: Ratio and Curvature. The ratio β
α+β stands

for weight of angle part in sum of total weights. With
dimension increases, angle part accounts for more part
of total weights.

(a) hypernym. (b) genre.

(c) derivational. (d) friend.

Figure 5: Distribution of Entities. For a certain rela-
tion, we sample triplets and gather the radius part dis-
tribution of head and tail entities. And blue histogram
stands for tail while orange one for head.

choose relation _derivationally_related_form
which is symmetric as an example in Figure
5(c). And radius part distribution of head and
tail entities with _derivationally_related_form
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relations
WN18RR

EG MRR H@1 H@3 H@10
also_see -2.09 .627 .589 .643 696
has_part -1.43 .192 .108 .230 363
hypernym -2.46 .190 .135 .209 .306
verb_group -0.50 .974 .974 .974 974
synset_domain -0.69 .370 .294 .412 509
member_meronym -2.90 .287 .204 .320 .437

Table 5: Link prediction results for some relations on WN18RR.

is much more irregular than hierarchical ones in
_hypernym. In other words, angle parts are in a
leading position when representing this kinds of
symmetric relations. Furthermore, this happens
on relation /celebrities/friendship/friend in
FB15k-237.

Furthermore, we can calculate the KL diver-
gence of several head-tail distribution mentioned
above for further analysis. On the other hand, it
is apparent that _hypernym has more hierarchical
structure than /film/film/genre when compar-
ing 0.084 with 0.078 in radius part, which can be
inferred in Table 5 by EG in Appendix A.4.

A.4 Relation Case Study
In order to further analyze the performance on dif-
ferent relations, we conducted the relation case
study. Table 5 illustrates the link prediction per-
formances of 6 relations, in which a relation is
supposed to be more hierarchical with lower EG.

There are obvious different performances
between semantic hierarchical relations (such
as hypernym or haspart) and semantic non-
hierarchical relations (such as verb_group or
also_see). As is mentioned above, EG is used for
measuring tree-like level of a KG. And relation
alsosee with smaller EG and semantic symmetric
property could be well embedded by HBE. It is
worth noting that results of verb_group are sur-
prisingly good and it may not be so reliable due
to its small amount in test set, which needs further
analysis. From another standpoint, the hierarchical
level of a KG may not be well defined by EG .


