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Abstract

One of the central aspects of contextualised
language models is that they should be able
to distinguish the meaning of lexically ambigu-
ous words by their contexts. In this paper we
investigate the extent to which the contextu-
alised embeddings of word forms that display
multiplicity of sense reflect traditional distinc-
tions of polysemy and homonymy. To this end,
we introduce an extended, human-annotated
dataset of graded word sense similarity and
co-predication acceptability, and evaluate how
well the similarity of embeddings predicts sim-
ilarity in meaning.

Both types of human judgements indicate that
the similarity of polysemic interpretations falls
in a continuum between identity of meaning
and homonymy. However, we also observe
significant differences within the similarity rat-
ings of polysemes, forming consistent patterns
for different types of polysemic sense alterna-
tion. Our dataset thus appears to capture a sub-
stantial part of the complexity of lexical ambi-
guity, and can provide a realistic test bed for
contextualised embeddings.

Among the tested models, BERT Large shows
the strongest correlation with the collected
word sense similarity ratings, but struggles
to consistently replicate the observed simi-
larity patterns. When clustering ambiguous
word forms based on their embeddings, the
model displays high confidence in discerning
homonyms and some types of polysemic alter-
nations, but consistently fails for others.

1 Introduction

Capturing lexical ambiguity has been a driving fac-
tor in the development of contextualised language
models (e.g. Peters et al., 2018; Devlin et al., 2019).
Evaluating their performance, much of the focus
has been on homonymy, a variety of multiplicity
of meaning exemplified by word forms such match
in (1), whose different meanings are entirely unre-
lated.

(1) a. The match burned my fingers.
b. The match ended without a winner.

And indeed, research such as (Wiedemann et al.,
2019; Loureiro and Jorge, 2019; Blevins and Zettle-
moyer, 2020) has achieved promising results on
using contextualised language models to disam-
biguate homonyms. But homonymy is not the
only form lexical ambiguity can take (Pinkal, 1995;
Cruse, 1995; Poesio, 2020): in polysemy, word
forms like school in (2) can elicit different distinct
but related senses (Lyons, 1977).

(2) a. They agreed to meet at the school.
b. The school has prohibited drones.
c. The school called Tom’s parents.

Polysemy is in fact much more common than
homonymy, and most words can be consid-
ered polysemous to some degree (Rodd et al.,
2004; Falkum and Vicente, 2015; Poesio, 2020)
–however, the ability of contextualised language
models to capture this phenomenon has been stud-
ied much less. In this paper, we shift the focus
to polysemy proper, and investigate how well con-
textualised language models capture graded word
sense similarity as observed in human annotations.

It is important to carefully distinguish polysemy
from homonymy, as multiplicity of meaning and
multiplicity of sense have almost opposing seman-
tic effects: while a homonym needs to be inter-
preted correctly in order to arrive at the correct
meaning of an utterance, polysemes refer to differ-
ent aspects or facets of the same concept, and might
not even need to be completely specified to elicit a
good-enough interpretation of what is meant (Kle-
pousniotou, 2002; Pylkkänen et al., 2006; Recasens
et al., 2011; Frisson, 2015; Poesio, 2020). Evidence
from psycholinguistic studies supports this distinc-
tion, indicating that polysemes are processed very
differently than homonyms (Frazier and Rayner,
1990; Rodd et al., 2002; Klepousniotou et al., 2008,
2012). A growing body of work recently also has
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started to challenge the uniform treatment of po-
lysemic sense postulated by traditional theories
such as the Generative Lexicon (Pustejovsky, 1991;
Asher and Pustejovsky, 2006; Asher, 2011), and
put forward proposals of a more structured mental
representation of polysemic sense (Ortega-Andrés
and Vicente, 2019). Using co-predication tests,
studies such as Antunes and Chaves (2003); Traxler
et al. (2005); Schumacher (2013) show that not all
polysemic interpretations can be co-predicated, and
that some sense interpretations lead to zeugma:1

(3) # They took the door off its hinges and
walked through it.

Joining a range of recent work seeking to provide
empirical data of graded word use similarity, in
Haber and Poesio (2020a,b) we recently released
an experimental small-scale dataset of graded word
sense similarity judgements for a highly controlled
set of polysemic targets to investigate the notion of
structured sense representations. Analysing results
for ten seminal English polysemes, we observed
significant differences among polysemic sense in-
terpretations (Erk et al., 2013; Nair et al., 2020;
Trott and Bergen, 2021) and found first evidence of
a distance-based grouping of word senses in some
of the targets.

In this paper we present a modified and extended
version of this initial dataset to i) provide additional
annotated data to validate previous observations,
and ii) include new targets allowing for the same
alternations as the initial set. This expansion en-
ables us to carry out analyses not possible with the
original dataset, including iii) investigating simi-
larity patterns and polysemy types, iii) performing
a detailed analysis the correlation between human
judgements and sense similarities predicted by con-
textualised language models, and iv) obtaining pre-
liminary insights on how well their ‘off-the-shelf’
representations of word sense can be used to cluster
different sense interpretations of polysemic targets.

The new data confirms previous observations of
varying distances between polysemic word sense
interpretations, and provides tentative evidence for
similarity patterns within targets of the same type
of polysemy. These patterns can to some degree
be replicated by the similarities of embeddings ex-
tracted from BERT Large, opening up potential
avenues of research utilising contextualised em-
beddings to proxy costly human annotations for

1Example from Cruse (1995)

the collection of a large-scale repository of fine-
grained word sense similarity. The collected data
is publicly available online.2

2 Methods

The data for this study was created by revising and
extending the dataset of contextualised word sense
similarity presented in Haber and Poesio (2020a,b),
and contains annotated sample contexts for differ-
ent sense interpretations of 28 English polysemic
nouns.

2.1 Target words

Our initial dataset contained one target word
for twelve frequently discussed types of logical
metonymy (Dölling, 2020). We focused on this
form of regular (Apresjan, 1974; Moldovan, 2019)
or inherent (Pustejovsky, 2008) polysemy as it al-
lows us to investigate and analyse the same inter-
pretation patterns across a number of target word
forms. We included the original data for eight tar-
gets, excluded two proper noun samples because
their vanilla embeddings pooling sub-token encod-
ings did not yield stable results under a simple
cosine comparison, and re-collected annotations
for two others that exhibited a high degree of anno-
tation noise in the first collection effort. We then
selected 18 additional targets for our second anno-
tation effort, each allowing for the same alterna-
tions as one of the initial ten in order to investigate
potential patterns in their distribution of sense inter-
pretations. The new dataset contains the following
set of seminal and experimental English polysemic
target words:

animal/meat: lamb, chicken, pheasant, seagull;
food/event: lunch, dinner; container-for-content:
glass, bottle, cup; content-for-container: beer,
wine, milk, juice; opening/physical: window,
door; process/result: building, construction, settle-
ment; physical/information: book, record; physi-
cal/information/organisation: newspaper, maga-
zine; physical/information/medium: CD, DVD;
building/pupils/directorate/institution: school,
university

2.2 Sample sentences

Following the approach detailed in Haber and Poe-
sio (2020b), instead of collecting corpus samples

2https://github.com/dali-ambiguity/
Patterns-of-Lexical-Ambiguity

https://github.com/dali-ambiguity/Patterns-of-Lexical-Ambiguity
https://github.com/dali-ambiguity/Patterns-of-Lexical-Ambiguity


2665

containing the selected target words, custom sam-
ples were created such that i) the ambiguous target
expression is the subject of the sentence, ii) the
context is kept as short as possible, and iii) the con-
text invokes a certain sense as clearly as possible
without mentioning that sense explicitly.3 With
this method, pairs of sample sentences can easily
be tested for target word similarity, as well as com-
bined into co-predication structures to obtain ac-
ceptability judgements. As an example, polyseme
newspaper is traditionally assumed to allow for at
least three sense interpretations: (1) organisation,
(2) physical object and (3) information content. In
the materials, each of these senses is invoked in
two different contexts a and b:

1a The newspaper fired its editor in chief.
1b The newspaper was sued for defamation.
2a The newspaper lies on the kitchen table.
2b The newspaper got wet from the rain.
3a The newspaper wasn’t very interesting.
3b The newspaper is rather satirical today.

Comparing targets with the same number identifier
results in what traditionally would be considered a
same-sense scenario, and comparing targets with
different number identifiers results in a cross-sense
comparison. For co-predication, two contexts are
combined into a single sentence by conjunction
reduction (Zwicky and Sadock, 1975). As an ex-
ample, contexts 1a and 1b are combined into co-
predication sample 1ab as follows:

1ab The newspaper fired its editor in chief and was
sued for defamation.

Besides polysemic alternations, some of the tar-
gets also allow for homonymic alternations (e.g.
magazine with different senses related to the print
medium, but also a homonymic interpretation as a
storage type). Feedback on homonymic interpreta-
tions will allow us to better put into perspective the
results obtained for polysemic alternations.

We omitted a collection of additional word class
judgements trialled in Haber and Poesio (2020a) as
we found that these judgements performed poorly
in distinguishing polysemes from homonyms, and
did not seem to exhibit the degree of sensitivity
required for our analysis.

3As in “The school is an old building." for sense building.
See Haber and Poesio (2020b) for more details.

2.3 Human Annotation

We collected human annotations online through
Amazon Mechanical Turk (AMT). As a first mea-
sure of word sense similarity, we asked participants
to rate the similarity in meaning of a target word
shown in two different contexts –providing a meta-
linguistic signal. Like in the initial data collec-
tion run, we did so by highlighting target expres-
sions in bold font and asking annotators to rate the
highlighted expressions using a slider labelled with
“The highlighted words have a completely differ-
ent meaning” on the left hand side and “The high-
lighted words have completely the same meaning”
on the right. The submitted slider positions were
translated to a 100-point similarity score, providing
us with a graded word sense similarity judgement
(Erk et al., 2013; Lau et al., 2014). As a second
measure of word sense similarity, we asked partici-
pants to rate the acceptability of a co-predication
structure combining two contexts with the same
target. We again used a slider, this time labelled
with “The sentence is absolutely unacceptable” on
the left and “The sentence is absolutely acceptable”
on the right. In the co-predication setting, the poly-
semic target was not highlighted, providing us with
a more ecological similarity judgement.

Annotators were paid 0.70 USD for a completed
survey with 20 items, for an average expected
hourly rate of 7.00 USD. To improve judgement
quality, we required annotators to be located in
the US, and have completed at least 5000 previous
surveys with an acceptance rate of at least 90%.
Annotators judged items without any prior training
based on minimal guidelines only.4

2.4 Contextualised Language Models

Models of polysemy have previously been pro-
posed in distributional semantics (see for example
Boleda et al., 2012), but for the most part, such
models found limited application in computational
linguistics. This changed with the emergence of
a new generation of contextualised language mod-
els like ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019) and GPT-2 (Radford et al., 2019),
which led to impressive improvement in a num-
ber of NLP applications. In order to assess word
sense similarity encoded in contextualised embed-
dings, we extracted target word embeddings from
the different disambiguating contexts and calcu-

4For full instructions and a screenshot of the annotation
interface see Appendix A
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lated their cosine similarity (1-cosine). For ELMo
we used the pretrained model on TensorFlow Hub5

and extracted target word vectors from the LSTM’s
second layer hidden state, which has previously
been shown to encode the most semantic informa-
tion (see e.g. Ethayarajh, 2019; Haber and Poesio,
2020b). We used the pretrained BERT Base (12
layers, hidden state size of 768) and BERT Large
(24 layers, hidden state size of 1024) from the Hug-
gingface transformers package.6 As suggested by
Loureiro and Jorge (2019), we experimented with
both the last hidden state and the sum of the last
four hidden states as contextualised representation
of a target word.7 Lastly, we established a baseline
by averaging over the static Word2Vec (Mikolov
et al., 2013) encodings of all words in a sample con-
text to create a naive contextualised embedding.

3 Results

In our analyses we focused on three different as-
pects. First, we computed graded similarity and
acceptability ratings based on the collected anno-
tations, and investigated how these ratings relate
to traditional distinctions of lexical ambiguity and
recent proposals of a more structured representa-
tion of polysemic senses, especially considering
the patterns of word sense similarities observed
across different target words allowing for the same
set of sense alternations. We then analysed how
the different contextualised language models’ tar-
get embeddings correlate with either of the human
annotations, and to what degree they replicate the
patterns of word sense similarity observed in the
human annotations. Lastly, we analysed the contex-
tualised embbedings themselves, for a preliminary
assessment of how well these ‘off-the-shelf’ word
sense encodings fare in clustering samples based
on their sense interpretation.

3.1 Word Sense Similarity Ratings
In our second annotation effort, we collected an
additional 8980 pairwise judgements from 220
unique AMT participants rating the similarity of
highlighted target words in different contexts. Af-
ter filtering, we retained a total of 5862 judgements

5https://tfhub.dev/google/ELMo/3
6https://huggingface.co/transformers/

pretrained_models.html
7We also tested a pretrained implementation of GPT-2,

but excluded this model from our analysis, as due to its more
traditional left-to-right text processing, all of our samples intro-
ducing targets as "The target....", led to identical embeddings
in different contexts.

Polysemy

Condition
Same
Cross

0.0 0.2 0.4 0.6 0.8 1.0
Word Sense Similarity

Homonymy

Polysemy

Condition
Same
Cross

0.0 0.2 0.4 0.6 0.8 1.0
Co-predication Acceptability

Homonymy

Figure 1: Distributions of explicit word sense similarity
ratings and co-predication acceptability ratings given
to same-sense (blue) and cross-sense (orange) samples
with polysemic and homonymic alternations.

(including those of Haber and Poesio, 2020b), with
an average of 16.5 annotations per item (minimum
7)8 and a per-questionnaire inter-annotator agree-
ment rate of 0.62 (Krippendorff’s alpha, Artstein
and Poesio, 2008) –which is relatively high consid-
ering the continuous rating scale provided to our
annotators.

We first investigated potential effects of predi-
cate ordering by applying a Mann-Whitney U test
(Mann and Whitney, 1947) to ratings for identical
context pairs that were presented in a different or-
der during annotation. Only 22 of 229 pairwise
tests yielded p-values <0.05, and none passed Bon-
ferroni correction. We therefore concluded that –as
expected– predicate ordering effects are negligi-
ble for the explicit word sense similarity ratings
based on our materials, and combined results for
further analysis. Figure 1 (left column) shows the
distributions of word sense similarity ratings col-
lected across all target words, separated on whether
or not there is a sense alternation in the sample,
and whether this alternation is traditionally con-
sidered to be polysemic or homonymic in nature.
Homonymic cross-sense samples obtained a mean
similarity rating of just 0.17, significantly lower
than the overall same-sense mean of 0.89 (p-value
<0.05). Polysemic cross-sense samples received a
mean similarity score of 0.73, which is both sig-
nificantly lower than the same-sense mean, and
significantly higher than the homonym mean (see
Table 1, row 1). These results support the tradi-
tional view that polysemy occupies a distinctive
middle ground between identity of meaning and
homonymy (Pinkal, 1995).

8See Appendix B for more details on filtering

https://tfhub.dev/google/ELMo/3
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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Figure 2: Distributions of embedding similarity scores obtained for same-sense (blue) and cross-sense (orange)
samples with polysemic and homonymic alternations. BERT results for summing over the last four hidden states.

Next, we grouped the data based on target words,
and performed pairwise comparisons on all ratings
given to their cross-sense interpretations. A large
number of significant comparisons would indicate a
high variance in the assigned ratings; a low percent-
age of significant differences indicates a consistent
rating of samples. Due to the large number of tests,
we then carry out a Bonferroni correction on the
obtained results to establish a corrected, more con-
servative significance level and determine a lower
bound on this statistic. Comparing all combina-
tions of same-sense pairings for example, 20 of 58
tests yielded significantly different results (p-values
<0.05), but only 4 entries passed Bonferroni correc-
tion (6.90%), indicating that same-sense samples
are quite consistently rated to invoke very similar
interpretations. 14.71% of the 34 pairwise compar-
isons of homonymic cross-sense samples passed
Bonferroni correction, as did 23.44% of the 337
pairwise comparisons between ratings for polyse-
mic cross-sense samples. Ratings for cross-sense
samples therefore are less consistent than same-
sense ratings, and polysemic alternations are rated
more inconsistently than homonymic ones. Ob-
serving this variance in similarity scores justifies
our use of a continuous rating scale for the anno-
tation experiments. With almost a quarter of the
similarity ratings for polysemic sense alternations
showing significant differences to those of other
senses, these results also provide a novel type of
empirical evidence against a uniform treatment of
polysemic senses.

3.2 Co-Predication Acceptability Ratings

Besides these explicit similarity ratings, we col-
lected an additional 8640 judgements from 192 par-
ticipants rating the acceptability of co-predication

Same-Sense Cross-Sense
Measure Pol. Hom. p Pol. Hom. p
Similarity 0.89 0.96 0.03 0.73 0.17 <0.05
Acceptability 0.83 0.86 0.10 0.64 0.41 <0.05
Word2Vec 0.60 0.65 0.12 0.55 0.58 0.06
ELMo 0.90 0.87 0.14 0.87 0.82 <0.05
BERT Base 0.91 0.93 0.22 0.88 0.78 <0.05
BERT Base (L4) 0.93 0.95 0.27 0.91 0.82 <0.05
BERT Large 0.79 0.85 0.15 0.72 0.44 <0.05
BERT Large (L4) 0.88 0.91 0.18 0.84 0.64 <0.05

Table 1: Word sense similarity distribution means for
the different measures investigated in this study. p-
values calculated through Mann-Whitney U.

structures created from our sample sentences. Af-
ter adding judgements for selected targets from the
initial data and filtering noisy annotations, we re-
tained a total of 7379 judgements, for an average of
16.75 annotations per target word (minimum 12).
Co-predication acceptability is meant to provide
a more ecological signal of word sense similarity
than the explicit similarity ratings, with partici-
pants less aware of the factors that influence the
perceived acceptability of the evaluated sentence.
Per-questionnaire inter-annotator agreement here
only reached a Krippendorff’s alpha rating of 0.34,
indicating stronger individual differences in the
participants’ use of the continuous rating scale.

Investigating order effects in our co-predication
samples revealed that only 1 of 229 pairwise com-
parisons between the acceptability scores of co-
predication structures with different predicate or-
derings passed the Bonferroni corrected signifi-
cance level of 0.00021. We therefore argue that
our samples are free from any secondary accept-
ability factors based on predication order (Murphy,
2021), and therefore indeed primarily test for the
acceptability of invoking different senses of the
target words. Based on this observation, we again
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Combination Correlation Ordinary Least Squares (OLS) Regression Analysis
First Measure Second Measure r p Coef. R2 F-stat. Prob. Omnib. Prob.
Similarity Acceptability 0.698 1.09E-25 0.484 0.487 156.571 1.09E-25 9.733 0.008
Acceptability Similarity 0.698 1.09E-25 1.005 0.487 156.571 1.09E-25 0.967 0.617
Word2Vec Similarity 0.206 0.008 0.675 0.042 7.309 0.008 31.562 0
Word2Vec Acceptability 0.311 4.39E-05 0.707 0.097 17.625 4.39E-05 9.668 0.008
ELMo Similarity 0.515 1.11E-12 2.863 0.265 59.475 1.11E-12 10.43 0.005
ELMo Acceptability 0.523 4.39E-13 2.018 0.273 61.973 4.39E-13 6.552 0.038
BERT Base Similarity 0.641 1.02E-20 4.070 0.411 115.185 1.02E-20 3.496 0.174
BERT Base Acceptability 0.560 3.43E-15 2.469 0.314 75.521 3.43E-15 2.07 0.355
BERT Large Similarity 0.687 1.22E-24 2.181 0.472 147.361 1.22E-24 15.96 0
BERT Large Acceptability 0.550 1.40E-14 1.212 0.302 71.520 1.40E-14 5.324 0.07

Table 2: Correlations between measures of contextualised word sense similarity. The first set of columns displays
pairwise correlation based on Pearson’s r, the second set shows the key statistics obtained from an OLS regression
analysis. BERT results for summing over the last four hidden states.

combine results before further analysis. Figure 1
(right column) shows the distributions of collected
co-predication acceptability ratings split by sam-
ple condition and ambiguity type. The average
acceptability rating for co-predication structures
invoking the same sense in both predications is
0.83, the mean acceptability for homonymic cross-
sense samples is 0.41, and the mean acceptability
for polysemic alternations is 0.64 –significantly
lower than the same-sense mean but significantly
higher than the homonym mean (see Table 1,
row 2). These results support previous observa-
tions of co-predication acceptability, too, being a
non-binary signal but rather forming a continuum
(Lau et al., 2014) and provide an additional chal-
lenge to co-predication as a linguistic test to dis-
tinguish polysemy from homonymy. Same-sense
and homonymic samples were rated quite consis-
tently, with only 10.34% and 5.88% of pairwise
comparisons passing Bonferroni correction, respec-
tively. Polyseme samples again show some de-
gree of inconsistency, with 21.66% of comparisons
among polysemic cross-sense samples passing the
corrected significance threshold of 0.00015. These
results duplicate the observations made above, and
provide additional evidence for the non-uniformity
in interpreting polysemic samples.

3.3 Computational Ratings

We extracted contextualised embeddings of target
word forms using the models described above, and
determined pairwise similarity scores by calculat-
ing the embeddings’ cosine similarity (1-cosine).
As samples were encoded individually, there are no
potential order effects here. Figure 2 visualises the
distribution of target embedding similarity scores,
and the bottom part of Table 1 details their distribu-
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Figure 3: Correlations of co-predication v word sense
similarity ratings (left) and BERT Large cosine simi-
larity scores v word sense similarity ratings (right), to-
gether with the best linear fit. Scaling of x-axis adjusted
for clarity. BERT results for summing over the last four
hidden states.

tion means. It is instantly noticeable that all com-
putational models assign a much narrower range
of similarity scores to the ambiguous samples –
an observation already made in Ethayarajh (2019).
Homonymic and polysemic cross-sense ratings do
not form significantly different distributions in the
embeddings of the static Word2Vec model (p-value
0.06), and –even more problematic– homonymic
cross-sense samples show no significant difference
to same-sense samples (p-value 0.09). ELMo sur-
prisingly struggles with the same distinction (p-
value 0.09), but all BERT models produce clearly
distinct distributions for polysemic, homonymic
and same-sense samples (all p-values <0.05).

In order to establish a measure of correlation
between the similarity scores predicted by the
contextualised models and the collected human
judgements, we calculated their pairwise correla-
tion (Pearson’s r), and performed an ordinary least
squares (OLS) regression for each combination of
contextualised language model and human sense
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similarity measure. The results of these calcula-
tions are displayed in Table 2, and a selection of
the pairwise comparisons is visualised in Figure
3. The non-contextualised Word2Vec baseline dis-
plays a low but significant correlation with both
human similarity measures, and shows an overall
low goodness-of-fit, with R2 values of the OLS
regression at 4% and 10%, respectively. ELMo
clearly outperforms this baseline, both in terms of
correlation with the human measures, as well as
in its goodness-of-fit in the OLS regression anal-
ysis. For both BERT models, summing over the
last 4 hidden states improved correlation with the
similarity ratings by about 6 points, and the correla-
tion with the co-predication acceptability ratings by
about 4 points. We will therefore report only results
on this version in the remainder of this paper. Both
models show a similar performance in predicting
co-predication acceptability ratings as ELMo, with
a slight lead by BERT Base, but BERT Large is
clearly the best-performing model when predicting
explicit similarity scores, with a correlation of 0.69
to the human annotation, and an R2 goodness-of-fit
of 47%. This high degree of correlation is also
visible in the scatter plot in Figure 3. These results
suggest that particularly BERT Large seems to be
able to capture nuanced word sense distinctions in
a similar way as human annotators, and are in con-
trast to our initial findings reported in Haber and
Poesio (2020b), where we measured a correlation
of only 0.21 between BERT Base target embed-
ding cosine similarities and word sense similarity
judgements. We suggest that this difference in cor-
relation is due to a number of factors, including i)
the omission of the unstable proper noun targets,
ii) the re-collection of annotations for particularly
noisy items, iii) the use of a significantly larger
amount of data, and iv) the inclusion of a number
of homonymic targets, which populate the lower
end of the spectrum and facilitate a better fit.

3.4 Similarity Patterns

One of the key reasons for extending our initial
dataset was to add more target words for each of the
tested types of polysemic sense alternation in order
to allow for an investigation of sense similarity pat-
terns across targets. Utilising the extended dataset,
we established a set of similarity maps containing
the mean similarity ratings for each combination
of senses a given target word can take on, and com-
pared these between targets of the same type. For

Pairwise Overall
Measure r p <0.05 r p
Similarity 0.44 3/24 (12.5%) 0.53 8.260e-10
Acceptability 0.44 4/24 (16.7%) 0.62 5.306e-14
ELMo 0.14 0/24 (0%) 0.21 0.025
BERT Large 0.28 1/24 (4.2%) 0.27 0.003

Table 3: Mean Pearson correlation of polysemic word
sense similarity patterns across different target words
allowing the same alternation of senses, number of sig-
nificant comparisons, and overall pattern correlation.

Criterion t #C NMI F1 P R
Inconsistency <0.7 3.54 0.60 0.77 0.86 0.71
Distance 31 4.21 0.75 0.75 0.90 0.64

Table 4: Best-performing settings for inconsistency and
distance-based hierarchical Ward clustering of target
word senses. #C is the average number of clusters pro-
duced per target.

example, Figure 4 displays the similarity maps for
target words newspaper and magazine. The corre-
lation between these similarity maps reaches 0.89
(p-value = 0.001) in human similarity ratings, and
0.95 (p-value = 6.88e-05) for co-predication ac-
ceptability, indicating a clear pattern in the target’s
similarity ratings. In the similarity maps based on
the cosines between BERT Large embeddings, the
correlation reaches only 0.65 (p-value = 0.06), and
just 0.34 (p-value = 0.37) in the ELMo similarity
maps. The overall pattern correlations across target
words of the same polysemy type can be found in
Table 3. The first set of scores are based on the
correlations of all pairwise comparisons of poly-
semes that allow for the same alternations. Due to
the small number of senses tested in this study, in
most cases this comparison however does not allow
for significant results. We therefore also calculated
a second score by appending all pairwise compar-
isons into two separate lists and determining the
correlation between these two lists. This is likely to
represent a better estimate of overall pattern consis-
tency, but might under-value inconsistent patterns.
The mean correlation between BERT Large’s sim-
ilarity maps and the human sense similarity maps
is 0.49, with one significantly similar pairing, and
0.52 compared to co-predication similarity maps (4
significant pairings) –rates comparable to the cor-
relation between the two human annotations (mean
r = 0.54, 10 comparisons with p<0.05).

A qualitative analysis of the similarity maps re-
vealed that while some alternation types like ani-
mal/meat do exhibit consistent similarity patterns
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Figure 4: Similarity patterns in the sense similarity ratings for polysemes newspaper and magazine.
Senses: 1-physical, 2-information, 3-organisation. Colour scales adjusted for computational measures.
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Figure 5: Dendograms of BERT Large contextualised
embedding similarity for a selection of target words.
Numbers indicate traditional sense distinctions.

across targets, others like the content-for-container
alternation do not display any discernible similarity
patterns at all.9 These observations suggest that
sense similarity patterns are best to be investigated
within a given type of alternation, and further re-
search will be needed to develop a more detailed
account of polysemy types and sense similarity
patterns.

3.5 Sense Clustering

As BERT Large displayed a high correlation with
the human judgements of word sense similarity,
and some capability in replicating similarity pat-
terns across target words, we next wanted to in-
vestigate how well BERT’s contextualised embed-
dings can be used to cluster our polysemous tar-
gets according to their interpretation (McCarthy
et al., 2016; Garí Soler and Apidianaki, 2021). To
provide a tentative analysis, we grouped BERT
Large’s contextualised target encodings based on

9See Figure 7 in the Appendix for the similarity maps of
the animal/meat targets

their similarity using the hierarchical Ward clus-
tering method implemented in SciPy.10 We opted
for hierarchical clustering as this method has to de-
termine the optimal number of clusters itself, and
does not take this number as an argument like most
clustering methods do. We experimented with two
different clustering criteria based only on a thresh-
old parameter t. The quantitatively best-performing
settings are displayed in Table 4.11 Both settings
produce more clusters than the traditional grouping
of the tested targets would assume, which indicates
that especially precision scores might be artificially
high –but overall the clustering seems to produce
sensible results. Figure 5 displays a selection of
dendograms produced by the clustering. The group-
ing of newspaper interpretations clearly separates
the organisation sense 1 from the physical object
interpretation 3, but splits the information sam-
ples 2 among the two, indicating the similarity in
their contextualised embeddings. For magazine,
the clustering of samples creates four clear group-
ings, with the organisation reading showing the
most similarity with the information interpretations,
and clearly separating the three polysemic senses
from the homonymic storage reading 4. The clus-
tering of alternations like food/event, animal/meat
and process/result appears work consistently well,
while others like the content-for-container alterna-
tion lead to consistently wrong sense groupings.

10https://docs.scipy.org/doc/scipy/
reference/generated/scipy.cluster.
hierarchy.fcluster.html

11See Appendix D for more detail on clustering

 https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
 https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
 https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
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4 Related Work

Most work focused on the word sense disambigua-
tion capabilities of contextualised language models
investigates the classification of homonyms with
clear-cut evaluation criteria (see Loureiro et al.
2021 for a recent summary). Polysemy proper adds
another dimension of difficulty, since related senses
can be perceived to be very similar to one another,
and some form of graded relatedness criterion in
necessary to properly evaluate model predictions
(Erk et al., 2013; Lau et al., 2014). Datasets that
capture graded similarity judgements usually do
so for word pairs in isolation –often intended to
evaluate static word sense embeddings (Taieb et al.,
2019), or are conducted on a small number of items
(Erk et al., 2013). Notable exceptions are the Word
in Context (Wic) dataset by Pilehvar and Camacho-
Collados (2019), which contains over 7,000 sen-
tence pairs with an overlapping English word, but
was annotated based on a binary classification task.
The CoSimLex dataset (Armendariz et al., 2020)
on the other hand collects graded similarity judge-
ments –but does so for different, related targets.

In parallel to our work, Nair et al. (2020) re-
cently conducted an investigation of 32 polyse-
mic and homonymic word types extracted from
the Semcor corpus (Miller et al., 1993) by compar-
ing the distances between a selection of cross-sense
samples as determined by participants arranging
them in a 2D spatial arrangement task. In line with
our results, they reported polysemic senses to be
rated significantly more similar to one another in
both the human annotations and BERT Base em-
beddings, and found a strong correlation between
the cosine distance of BERT sense centroids and
aggregated relatedness judgements. In a similar ap-
proach, Trott and Bergen (2021) recently presented
a novel dataset of 112 polysemes and homonyms,
for each of which a number of highly controlled
sentence pairs were annotated for similarity of use.
While their data is very similar to ours, one no-
ticeable difference can be found in the distribution
of cross-sense polyseme ratings. Based on our
samples, different polyseme interpretations were
rated to be mostly quite similar still, but their data
displays an almost even distribution of similarity
scores assigned to them. A closer inspection of the
targets used in their study revealed two main factors
that are likely to have contributed to this difference.
Firstly, while all of our targets were specifically
chosen to be regular, metonymic polysemes, a large

part of Trott and Bergen’s polysemic targets are ex-
amples of metaphoric polysemy. Re-analysing their
data after distinguishing these different branches
of polysemy might help to further investigate their
respective effects. And secondly, we noticed the
use of compound nouns (i.e. ice cone vs traffic
cone) to disambiguate target words. Considering
polysemy as a form of under-specified language
use, we argue that these expressions might under-
mine the raison d’être of polysemy proper as they
over-specify the ambiguous target –but highlight
an interesting additional facet of this research.

5 Conclusion

We present a revised and extended dataset of graded
word sense similarity for 28 seminal, lexically am-
biguous word forms. The collected data supports
previous observations of significant similarity dif-
ferences between polysemic interpretations and led
to the discovery of tentative patterns of word sense
similarity for certain types of alternations. While
more work on this matter will be needed before def-
inite conclusions can be drawn, both of these obser-
vations can be taken as additional evidence against
linguistic models proposing a uniform treatment of
polysemic senses. We also used the collected data
to test how well different ‘off-the-shelf’ contextu-
alised language models can predict human word
sense similarity ratings. Among the tested models,
especially BERT Large seems to capture nuanced
word sense distinctions in a similar way to human
annotators, and to some degree is capable of group-
ing sense interpretations by their contextualised
embeddings. We hope to further expand the dataset
presented in this paper to create a novel, more com-
plex benchmark for the word sense disambiguation
(WSD) task. In this endeavour, contextualised lan-
guage models could be used to automatically detect
relevant target word forms, and to collect corpus
samples exhibiting specific targets and interpreta-
tions to be rated by human annotators for a more
realistic, real-world test bed.
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A Annotation Instructions and Interface

In the word sense judgement task, participants
were given the following set of instructions:

"Carefully read each pair of sentences and
specify how similar the highlighted words are
by using the slider. The slider ranges from ’The
highlighted words have a completely different
meaning’ on the far left to ’The highlighted words
have completely the same meaning’ on the far right.

There are 20 sentence pairs.

The survey contains a number of test items that
can be used to determine whether you are carefully
reading the sentences or are submitting random
answers. Submissions that fail the test items will
be rejected."

A screenshot of the the AMT interface for this
task is displayed in Figure 6. In the sentence
acceptability task, the following instructions were
shown to the participants:

"Carefully read each sentence and specify
how acceptable it is by using the slider. The
slider ranges from ’The sentence is absolutely
unacceptable’ on the far left to ’The sentence is
absolutely acceptable’ on the far right.

There are 20 sentences.

The survey contains a number of test items that
can be used to determine whether you are carefully
reading the sentences or are submitting random
answers. Submissions that fail the test items will
be rejected."

B Filtering

In order to reduce annotation noise, we filtered
out submissions from participants who failed to
rate test items according to a set of custom criteria.
Surveys in both experiments each contained two
test items.

In the word sense similarity annotation study,
one test item would show a (homonymic) target
interpreted in the same way in both sentences, with
minimal changes to the context (test-same):

(4) 1. The mole dug tunnels all throughout the
garden.
2. The mole dug tunnels under the flower
bed.

The second test item would include two
sentences with unrelated (homonymic) targets
(test-random):

(5) 1. The model wore a new dress designed
by Versace.
2. The seal indicated that the letter had
never been opened.

Submissions were excluded from analysis if ei-
ther the test-same item was rated below 0.7
similarity, or the test-random item was rated
above 0.2 similarity.

In the co-predication study, the test-same
item would be no actual co-predication structure (to
prevent any potential infelicitous co-predication),
but a similar-looking sentence with a conjunctive
phrase:

(6) A group of boys were playing Frisbee in
the park and a girl tried to balance on a
slack line.

The test-random item would have the first
part of a conjunctive sentence, but end it a randomly
scrambled phrase:

(7) The match ended without a clear winner
and the off the managed bass hook get to.

Submissions were excluded from analysis if
both, the test-same item was rated below 0.7
similarity and the test-random item was rated
above 0.2 similarity.

C Animal/Meat Similarity Maps

Figure 7 shows the similarity maps for the tested
animal/meat alternation polyseme targets chicken,

http://arxiv.org/abs/1909.10430
http://arxiv.org/abs/1909.10430
http://arxiv.org/abs/1909.10430
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Figure 6: Screenshot of the the AMT interface for the explicit word sense similarity annotation task.

lamb, pheasant and seagull. Both, chicken and
lamb are common variants, pheasant is less fre-
quent, and seagull would typically not be consid-
ered a member of this type, but still shows a similar
pattern in the co-predication acceptability ratings
and BERT Large cosine similarity.

D Clustering

We experimented with two clustering criteria: us-
ing node inconsistency, all leaf descendants of a
cluster node belong to the same cluster if that node
and all these descendants have an inconsistent value
less than or equal to a threshold value t. Under the
distance criterion, clusters are formed so that the
observations in each cluster have no greater dis-
tance than the set threshold value t. Figure 8 shows
the development of cluster purity, Normalised Mu-
tual Information (NMI) and weighted F1 scores for
different values of threshold t using the inconsis-
tency criterion (left) and distance criterion (centre).
The right graph plots the average number of clus-
ters produced by both measures with increasing
threshold t (gold mean: 3.0).
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Figure 7: Similarity patterns in the sense similarity ratings for animal/meat alternation polysemes.
Senses: 1-animal, 2-meat. Colour-scales adjusted for computational measures.
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Figure 8: Clustering performance for the inconsistency (left) and distance (centre) criterion when grouping BERT
Large contextualised embeddings with linear Ward clustering based on clustering threshold t. Right: Average
number of clusters produced by the clustering methods (gold mean: 3.0).


