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Abstract

Query Rewriting (QR) is proposed to solve the
problem of the word mismatch between queries
and documents in Web search. Existing ap-
proaches usually model QR with an end-to-end
sequence-to-sequence (seq2seq) model. The
state-of-the-art Transformer-based models can
effectively learn textual semantics from user
session logs, but they often ignore users’ ge-
ographic location information that is crucial
for the Point-of-Interest (POI) search of map
services. In this paper, we proposed a pre-
training model, called Geo-BERT, to integrate
semantics and geographic information in the
pre-trained representations of POIs. Firstly, we
simulate POI distribution in the real world as
a graph, in which nodes represent POIs and
multiple geographic granularities. Then we use
graph representation learning methods to get
geographic representations. Finally, we train
a BERT-like pre-training model with text and
POIs’ graph embeddings to get an integrated
representation of both geographic and seman-
tic information, and apply it in the QR of POI
search. The proposed model achieves excellent
accuracy on a wide range of real-world datasets
of map services.

1 Introduction

Point-of-Interest (POI) search plays an important
role in map services, such as Google Maps, Gaode
Maps, Didi, etc. Query Rewriting (QR) is critical
for POI search(Rieh et al., 2006) to solve the se-
mantic gap between queries and POIs, created by
users’ mistype.

Currently, lots of methods have been tried to
solve the QR problem(Antonellis et al., 2008; Ali
et al., 2014; Bahdanau et al., 2014; Sutskever
et al., 2014; He et al., 2016; Chen et al., 2020).
Recently, the Transformer-based seq2seq models
(Ashish Vaswani and Polosukhin, 2017; Yu et al.,
2020) significantly improve the feature representa-
tion ability and rewriting performance.

While the Transformer-based rewriting method
shows its effectiveness in QR, it could be further
improved in the following aspects when applyed in
POI search: (1) The input of POI search is different
from the general search scenario, as it may contain
rich geographic information such as the user’s cur-
rent location. For example, when people located in
cityA search "the olive" (a POI in cityB), yet they
actually want to find "ten olive"(a POI in cityA).
However, it is extremely hard to rewrite "the olive"
without the position information. (2) Sometimes
the location information is useless, while user’s
intention city is mainly obtained through query.
Effectively capturing the geographic information
corresponding to the query becomes particularly
crucial to QR tasks in POI search.

To solve the above challenges, we propose a pre-
training model called Geo-BERT that combines
geographic feature graph with textual semantics
in the QR task. First, we introduce a geographic
feature graph to map multiple geographic granu-
larity information to a unified graph representation
space. Specifically, we connect the neighboring
POIs to each other based on the longitude and lati-
tude, meanwhile we connect the different adminis-
trative district granularity together with the above
POI. After that, we propose a pre-training model
that integrates text and POIs’ graph embeddings,
and fuse geographic features into the text semantic
space by predicting masked geographic informa-
tion. Finally, we fuse the pre-training model of
geographic text into a Transformer-based seq2seq
model.

Our contributions can be summarized as follows.

• We construct a novel geographic feature graph
to map multiple geographic granularities into
a unified latent space, which helps obtain the
POI embeddings with geographic informa-
tion.

• We proposed a pre-training model called Geo-
BERT, to combine geographic knowledge and
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Figure 1: The overall architecture of the proposed model, including the (a):Geo-BERT layer and the (b):Transformer-
based QR model. (a.1):GNN-based G-Encoder is GNN-based graph representations of multi-granularity geographic
information; (a.2):BERT-based T-Encoder is the encoder layer of tokens, which is POI when pre-train and query
when predict; and we fused the G-Encoder and T-Encoder by (a.3):Geo-BERT Fusion Layer. Finally, the token
output of (a) is added into both the encoder and decoder of (b).

textual information, which integrates the ge-
ographic information into the text semantic
space by predicting the masked geographic
knowledge.

• We conduct extensive experiments to fuse
Geo-BERT into the Transformer-based
seq2seq model. The results show that it
can achieve an excellent improvement on
real-world datasets.

2 Background

Usually, incorporating external knowledge could
enhance the performance of NLP tasks(Liu et al.,
2020; Zhou et al., 2020; Han et al., 2018). Graph-
based representation is able to express structured
external knowledge effectively, (Hamilton et al.,
2017) and leverages node feature information to
infer unseen data by aggregating subsampled local
neighborhoods. (Grover and Leskovec, 2016) in-
corporate breadth-first search and depth-frst search
in neighborhood sampling to learn node embed-
dings. (Chiang et al., 2019) use subgraph sam-
pling to reduce time and memory cost when using
graph convolutuoin neural networks to learn larger
graphs.

Recently, pre-training models such as BERT
(Jacob Devlin and Toutanova, 2019) have shown
their power in both understanding and generative
tasks (Zhu et al., 2020). (Zhang et al., 2019)
raise a BERT-like model to incorporate informa-
tive entities in knowledge graphs. Considering that
POIs’ geographic neighborhood relationship can

be also expressed as graphs, we follow (Zhang
et al., 2019) to incorporate geographic information
in Transformer-based query rewrite models.

3 Methodology

In this section, we present the overall frame-
work(See Figure 1) of the proposed model.

3.1 Graph for Geographic Information

Queries in POI search may contain the adminis-
trative region information, e.g. city, district and
road, so we consider constructing a fine-grained
geographic graph.

Figure 2: The illustration of geographic graph. The
distance between POIA and POIB is below 1 km and
thus they are connected. POIC is over 590 km far from
the above two POIs, so there is no edges between them.

Considering the inclusion relationship among
four geographic granularities, we build an undi-
rected graph through the available geographic in-
formation with the following rules,

• Consider each POI as a node and connect ad-
jacent nodes whose distance is less than 1 km;
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• Consider each administrative region (city, dis-
trict and road) as a node and connect it to the
POI nodes in this region;

• Connect the administrative region nodes with
their inclusive regions, and all the city nodes
are connected;

• All the edges are unweighted.

Figure 2 illustrates the geographic graph. The
graph is not only based on the neighborhood rela-
tionship between POIs, but also fuses the inclusion
relationship between administrative regions. It is
unweighted because two following reasons: (1) we
have no idea about the path between two POIs for
the lack of complete map information; (2) we hope
to simplify the graph to make the learned represen-
tations more robust.

We use graph embedding algorithms, e.g.
node2vec (Grover and Leskovec, 2016), to get the
node representations that contain geographic infor-
mation.

3.2 Geo-BERT Architecture

The whole pre-training model Geo-BERT consists
of two stacked modules: (1) the underlying tex-
tual encoder (T-Encoder) responsible for captur-
ing basic lexical and syntactic information from
the input tokens; (2) the upper geographic en-
coder (G-Encoder) responsible for integrating ex-
tra token-oriented geographic information into tex-
tual information from the underlying layer.

Let a token sequence be w1, ..., wn, where n
is the length of the token sequence. Meanwhile,
we denote the POI sequence aligning to the given
tokens as p1, ..., pn. Furthermore, we denote the
whole vocabulary as V, and the POI list in the
geographic graph as P. If a token w ∈ V has a
corresponding POI geographic sequence p ∈ P,
their alignment is defined as f(w) = p. Besides,
we denote the number of T-Encoder layers as N ,
and the number of G-Encoder layers as M . In this
paper, we hope that each word in a query could
reconstruct geographic information through pre-
training. Thus, we align a geographic phrase to
every corresponding token as shown in Figure 3.

Masked Mechanism: the pre-training contains
two tasks, one of which is the masked language
model (MLM(Jacob Devlin and Toutanova, 2019))
to learn semantic features and the other is masked
geographic information model (MGM) to learn ge-
ographic features. The MGM, which is designed
for learning geographic information, masks geo-

graphic granularities with a probability of 0.5.
T-Encoder firstly sums the token embedding,

segment embedding, positional embedding for each
token to compute its input embedding, and then
computes deep features w1, ...,wn as w1, ...,wn =
T-Encoder(w1, ..., wn).

Then, the i-th aggregator integrates token and
geographic sequence through a fusion layer, and
computes the output embedding for each token and
geographic entity. The information fusion process
is as follows,

hj = σ(W̃
(i)
t w̃(i)

t + W̃
(i)
p p̃(i)

k + b̃(i))

w(i)
j = σ(W(i)

t hj + b
(i)
t )

p(i)
k = σ(W(i)

p hj + b(i)p )

(1)

where hj is the inner hidden state integrating the
information of both tokens and geographic entities.
σ(·) is a non-linear activation function, which is
set as GELU (Hendrycks and Gimpel, 2016) in the
experiments.

For simplicity, the i-th aggregator operation is
denoted as follows,

w(i)
1 , ...,w(i)

n ,p(i)
1 , ...,p(i)

n = Aggregator(

w(i−1)
1 , ...,w(i−1)

n ,p(i−1)
1 , ...,p(i−1)

n ).
(2)

The output embeddings of both tokens and POI
geographic entities computed by the top aggregator
will be used as the final output embeddings of the
geographic encoder G-Encoder.

Figure 3: The example of pre-training dataset. The geo-
graphic labels “C”, “D”, “R” and “P” respectively de-
note the graph embeddings of “City”, “District”, “Road”
and “POI coordinate”. “M” denotes the masked label
used for the masked language model and the masked
geographic information model.

3.3 Fusion in Sequence-to-sequence Model

An illustration of the overall QR framework is
shown in Figure 1. Any input x ∈ X is pro-
gressively processed by the Geo-BERT, encoder
and decoder. The entire procedure of our algo-
rithm is as follows, Step-1: Given any token in-
put x = w1, ..., wn, Geo-BERT first encodes it
into representation HB = Geo-BERT(x). Step-2:
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Then HB is fused into Transformer-based Seq2Seq
Model as the same method in (Zhu et al., 2020).

4 Experiments

4.1 Dataset

The QR data in the paper is from the internal real-
world dataset1. Each sample is a pair of source-
query and target-query, and the source-query is
the real search text and the target-query is the one
with click behavior in session. The dataset is di-
vided into a training with 7.5M examples and a
test set with 8.1K examples. Especially, we con-
struct a geographic-related test set named Geo-test
whose examples are subjectively chosen according
to whether their rewritting relies on geographic in-
formation. The pre-training dataset contains over
10.7M POI samples. Each sample includes name,
address, longitude and latitude of POI.

4.2 Results and Analysis

4.2.1 QR Performance
Baseline: The baseline models are a vanilla
Transformer-based NMT model (Ashish Vaswani
and Polosukhin, 2017) and its version fused with
BERT (Zhu et al., 2020). When using BERT, we
respectively take two kinds of methods. One is
to directedly finetune it with the NMT model on
QR dataset and the other, called POI-BERT, is to
pre-train BERT on our own POI corpus.

Experimental settings: Most experimental set-
tings of Geo-BERT follow (Zhang et al., 2019).
Especially, the geographic graph embedding size is
set to 128. We pre-train Geo-BERT on POI dataset
for 3 epochs. Most experimental settings of the
NMT model follow (Zhu et al., 2020). The max-
imum training iteration is set to 300K. We keep
total number of tokens in each batch below 12K.

Regular test Geo-test
Top1 Top3 Top1 Top3

NMT(Transformer) 55.46 69.91 54.98 69.43
+BERT 57.61 70.68 58.33 69.82
+POI-BERT 58.10 71.58 57.82 69.45
+Geo-BERT-SG 62.82 74.32 65.14 75.40
+Geo-BERT-MG 65.51 77.78 66.78 79.24

Table 1: The top1/top3 accuracy comparison on test set.
“Geo-BERT-SG”denotes Geo-BERT with the single ge-
ographic granularity, that is POI longitude and latitude;
“Geo-BERT-MG” denotes Geo-BERT with multiple ge-
ographic granularities.

1The data are collected through Didichuxing in China.

Results: Table 1 shows that Geo-BERT has
overall improvement on both regular dataset and
Geo-test dataset. Compaired to baselines, a sim-
ple NMT model fused with Geo-BERT achieves
at least 4.59% and 6.93% top1 accuracy gains
as well as 2.68% and 5.62% top3 accuracy gains
on two datasets. Note that Geo-BERT helps QR
models more on Geo-test set, we believe that it
could learn useful geographic information while
retaining semantic information. An interesting fact
in Table 1 is that pre-training Geo-test data with
BERT (“NMT + POI-BERT”) leads to 0.45% top1
decrease and 0.36% top3 decrease compared to
“NMT + BERT” on Geo-test set. That means, in
geographic-correlated QR tasks, Geo-BERT is de-
finately neccessary because a vanilla BERT cannot
actually learn geographic representations.

Figure 4: The TSNE visualization of POIs’ geographic
distribution in two cities and their pre-trained represen-
tations. (a) POIs’ latitude and longitudes; (b) POIs’
BERT pre-trained representions; (c) POIs’ Geo-BERT
pre-trained representations.

Figure 4 shows the learned geographic informa-
tion of Geo-BERT, we respectively choose 300
POIs in Beijing and Shanghai to display their lati-
tude and longitudes as well as the pre-trained rep-
resentations of their address. Different from BERT,
in Geo-BERT, we find that the representations of
POIs in the same city tend to gather while those in
different cities tend to seperate. Obviously, the Geo-
BERT model benefits extracting the geographic
feature.

4.2.2 Ablation Study

Regular test Geo-test
Geo-BERT-NMT Top1 Top3 Top1 Top3
with all granularities 65.51 77.78 66.78 79.24
without road 63.15 75.80 64.77 76.66
without district 64.95 77.25 65.30 77.35
without city 65.23 77.58 66.58 79.13

Table 2: The top1/top3 accuracy of Geo-BERT-NMT
with various geographic granularities on test set.

According to POI address, we can extract
the corresponding city, district, town or road.
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Their proportion in POI dataset is respectively
46.37%, 46.85%, 15.13%, 42.81%. Except the
sparse town information, we improve Geo-BERT
through three frequent geographic granularities, in-
cluding city, district and road.

Table 2 shows the influence of each geographic
granularity on two test set. As can be seen, the
“city” granualrity has weakest impact on both
regualar test set and Geo-test set. On the other
hand, the “road” granularity is most effective.

5 Conclusion

In this paper, we proposed a pre-training model
called Geo-BERT, and applied it to the QR task in
POI search. Specially, we adopt a multiple geo-
graphic granularity graph and combine texual se-
mantics with geographic infomation of POIs. The
proposed pre-trained model adopts sepcial masked
strategy to learn meaningful geographic features.
Experimental results show that our model outper-
forms many strong baselines on a wide range of
real-world datasets of map services.
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