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Abstract

This paper investigates whether the power of
the models pre-trained on text data, such as
BERT, can be transferred to general token se-
quence classification applications. To verify
pre-trained models’ transferability, we test the
pre-trained models on text classification tasks
with meanings of tokens mismatches, and real-
world non-text token sequence classification
data, including amino acid, DNA, and music.
We find that even on non-text data, the mod-
els pre-trained on text converge faster, perform
better than the randomly initialized models,
and only slightly worse than the models us-
ing task-specific knowledge. We also find that
the representations of the text and non-text pre-
trained models share non-trivial similarities.

1 Introduction

In recent NLP research, pre-trained masked lan-
guage models (MLMs) such as BERT (Devlin et al.,
2019) are widely used by practitioners. After pre-
trained on large corpora such as Wikipedia, the
models can be fine-tuned quickly on NLP tasks
like text classification and question answering and
generalize well on small datasets such as RTE in
GLUE (Wang et al., 2018). To apply and improve
BERT in a more specialized domain such as sci-
entific articles or clinical data, several MLMs are
proposed by pre-training on the domain-specific
text data (Lee et al., 2020; Beltagy et al., 2019).
The concept of MLM can also be extended to other
disciplines (maybe non-linguistic) as long as the
input is discrete. For example, Min et al. (2019) pre-
train MLMs called PLUS on amino acid sequence
data and achieve state-of-the-art performance on
several protein classification tasks.

This paper examines whether the model pre-
trained on large text corpora, such as BERT, can
be efficiently adapted to data with numbers of to-
kens, token distribution, labels, and structure very
different from natural language (the target data

could even be non-text). We refer to this ability
as discipline adaptability1. Previous work (Etha-
yarajh and Jurafsky, 2020) only shows that lan-
guage models (LMs) pre-trained on non-text data
can be adapted to LMs of human languages. This
work is the first to examines if the pre-trained
MLMs can learn the relation between the label
and the data never seen during pre-training. Our
contributions are the following.

• We propose settings to examine the discipline
adaptability of the pre-trained models. We
find that BERT, BERT-Chinese, ALBERT, and
RoBERTa can reduce training loss much more
quickly, generalize better than the randomly
initialized models on the non-text data, and
are just slightly worse than the models using
prior knowledge within each discipline.

• Our analyses indicate that before fine-tuning,
the similarity between BERT and the MLM-
like model pre-trained on the non-text data is
much higher than the one between BERT and
the randomly-initialized model, which helps
to explain the success of BERT within the non-
text disciplines. Furthermore, our extensive
investigation of several hypotheses about at-
tention similarity, hierarchical structure in the
non-text data, and training stability indicates
that these hypotheses are not sufficient to ex-
plain the discipline adaptability of BERT.

We believe the findings of discipline adaptation
will intrigue the NLP community to ponder what is
learned in the pre-training procedure. The findings
can also be helpful to the disciplines that large-
scale datasets are not available, which are essential
for practitioners.

1We use the term discipline adaptation instead of domain
adaptation. In NLP, domain adaptation usually refers to the
setting like the transfer from general text to specialized text
data such as scientific articles. We use the term discipline to
emphasize data with very different distribution and structure.
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T(i) = mod (i+2, 3)

Input : "How are you" 

"you How are" 

Model

0 How 2 you
1 are 0 How
2 you 1 are

(a) permutation on text data

Amino Acid: 0 1 2 1 3

"you he she he we" 

Model

0 Ala you
1 Cys he
2 Gln she
3 Leu we

(b) Amino acid sequence

Figure 1: Examples of (a) token permutation (b) amino
acid sequence input for protein classification.

2 Method

To examine the discipline adaptability of the mod-
els pre-trained on text corpora, we fine-tune the pre-
trained models on two types of downstream data.
The first type (section 2.1) are synthetic datasets,
which are generated by permuting tokens in com-
mon NLP datasets. So the meaning of each token
is changed. The second type of data (section 2.2)
is a more challenging situation in which the down-
stream tasks are not relevant to human language.

2.1 Synthetic data

We first test the models on synthetic text sequence
classification data. The synthetic data is gener-
ated as below. Given a text sequence classification
dataset, we define a deterministic one-to-one map-
ping T that changes a subword token xi in a text se-
quence to another subword token T (xi), as shown
in figure 1a. To elaborate on the design of synthetic
text data, consider the tokens in the text corpora
as nodes in a graph and the relationship among to-
kens as edges. Then the graph of the synthetic data
is an isomorphism of the original graph. Hence,
the structure of the synthetic data (the structure of
the graph) is identical to the original one, and the
tasks of the synthetic datasets are as difficult as
the original tasks (if the pre-training procedure is
not considered). Suppose the pre-trained model
can still outperform the model trained from scratch
on this artificial data. This indicates that the pre-
trained models can transfer knowledge to the down-
stream tasks with meanings of tokens completely
different from pre-trained corpora. And therefore,
it is probable that we can further take advantage of
the pre-trained model when processing real-world
non-text data.

In our experiments, we first pre-train the model
on normal text corpora, and then we fine-tune and

test the model on the synthetic data. We choose
T (i) = (i + 1000) mod D, where D is the vo-
cabulary size of the model. We have also tried
generating the mappings randomly. The results are
similar and left in the appendix. For a real example,
the sentence "his healthy sense of satire is light and
fun..." in GLUE dataset will be changed to "cana-
dian franzme 1988pia leader watch sports czech at
at at"2.

2.2 Real-world non-text data

To further validate the discipline adaptability of
the pre-trained model, we fine-tune the pre-trained
model on real-world non-text data. In these down-
stream tasks, both the token distributions and the
number of tokens could be very different from the
text data for pre-training. So this is a more difficult
setting to evaluate the transferability of pre-trained
models.

To process non-text data by BERT, we map each
token of the non-text data to one subword token as
in figure 1b. In the following experiments, the (de-
terministic) mapping table is generated randomly
because we find that different mappings lead to sim-
ilar results as long as we do not map the non-text
tokens to the unused tokens of the pre-trained mod-
els. We add a randomly initialized linear classifier
on top of the pre-trained model in the fine-tuning
phase without randomly initializing any pre-trained
parameters, including the embedding layer. Then
we fine-tune the whole model.

3 Experiment

3.1 Setup

We use GLUE dataset to generate the synthetic
data. The validation sets are used to test the mod-
els. WNLI is excluded as in (Devlin et al., 2019);
For the real-world non-text data, we include the
following tasks with different numbers of tokens,
token distributions, and structures:

Protein classification (3 tasks): Localization
(Loc.) (Almagro Armenteros et al., 2017), Stabil-
ity (Stab.) (Rocklin et al., 2017), and Fluorescence
(Flu.) (Sarkisyan et al., 2016) used in Min et al.
(2019). The input is amino acid sequences consist-
ing of 20 different tokens.

DNA classification (4 tasks): H3, H4, H3K9ac
from Pokholok et al. (2005), and Splice from Asun-
cion and Newman (2007) used in Yin et al. (2018).

2The token "." maps to the token "at" in the examples, so
there are three consecutive "at" in the synthetic sentence.
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Figure 2: The average scores (y-axis) of the pre-trained
models and the ones trained from scratch within each
discipline. The higher the scores, the better the models.
The black error bars stand for standard deviation among
random seeds. The red lines are the performance of the
discipline-specific models. "-c": chinese.

The input is DNA sub-sequences consisting of 4
different tokens.

Music composer classification (1 task): We use
MAESTRO-v1 dataset (Hawthorne et al., 2019).
The input is pitch sequences consisting of 128 dif-
ferent tokens.

The pre-trained models used in the experiments
include BERT-base-uncased, BERT-base-Chinese,
ALBERT-base-v1, and RoBERTa-base. The ran-
domly initialized (trained from scratch) models
have the same architectures as BERT-base. The
experiments on BERT-large are left in the appendix
due to space limitations. The models are initialized
by the default distribution widely adopted for pre-
training the models (e.g.,N (0, 4×10−4) for BERT-
base). For detailed hyperparameters, please refer to
the appendix. For simplicity, we use "pre-trained
models" to refer to the above models pre-trained
on the natural language if not specified.

3.2 Results

Figure 2 shows the average scores of the pre-trained
models (blue bars) and the models trained from
scratch (orange bars) within each discipline. The
means (bars) and standard deviations (black error
bars) of figure 2a are calculated over three random

seeds, and the ones in figure 2b, 2c, and 2d are
calculated over six independent runs (with differ-
ent token mappings). The GLUE score of BERT
fine-tuned on normal GLUE acts as the discipline-
specific top-line (red lines); For protein classi-
fication, the discipline-specific model is PLUS-
TFM (Min et al., 2019), which is a 12-layer trans-
former MLM pre-trained on protein sequence; For
DNA classification, the discipline-specific model
is Hilbert-CNN (Yin et al., 2018); For music com-
poser classification, we use all the classes in the
dataset to classify. But previous works (Kim et al.,
2020; Spijker, 2020) use only part of the classes,
so no discipline-specific models are available. De-
tailed scores of each task within each discipline are
left in the appendix.

The pre-trained models outperform the trained
from scratch models in all disciplines. The phe-
nomenon is general over pre-trained models with
different model structures (ALBERT), pre-training
objectives, amount of pre-training data (RoBERTa),
and different natural languages (BERT-Chinese).
Furthermore, the pre-trained models perform just
slightly worse than PLUS-TFM and Hilbert-CNN
without using any discipline-specific knowledge.
The standard deviations of most models and disci-
plines are small, which implies that the effect of
different token mappings is marginal.

At first sight, fine-tuning the pre-trained models
on synthetic GLUE seems equivalent to randomly
initializing the word embedding layer and then fine-
tuning the pre-trained models on normal GLUE,
which we called re-embedding (re-emb). If the
equivalence is true, an explanation for the perfor-
mance gain of the pre-trained models is just that
the intermediate layers are already trained. Never-
theless, figure 2a shows the equivalence does not
hold. re-emb (green bar) degrades the performance.
For the non-text data, the performance of re-emb is
also worse than the models with all pre-trained pa-
rameters in figure 2b, 2c, and 2d. Accordingly, the
pre-trained word embedding layer benefits the non-
text downstream tasks even though the meanings
of the tokens are different from pre-training. We
also find that using unused tokens of the pre-trained
models even makes the performance degenerate to
the trained from scratch baseline.

4 Discussion

The results in section 3.2 validate the potential of
the pre-trained models as strong cross-disciplinary
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Figure 3: Training loss of BERT (blue lines) and the
models trained from scratch (orange lines).
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Figure 4: The training curve (the solid lines) and the
validation results at the end of training (the dashed
lines) of pre-trained BERT (blue) and the model trained
from scratch (orange). The solid lines stand for mean
and the shaded areas stand for standard deviation over
six independent runs.

knowledge learners. The success of the pre-trained
models could stem from better generalization abil-
ity or better training loss dynamics. In this section,
we analyze the contribution of the pre-training in
terms of optimization and generalization. In ad-
dition, we try to explain the success of the pre-
trained models by comparing the representations
from BERT and PLUS on the protein data.

4.1 Training speed

Figure 3 shows that BERT always reduces the train-
ing loss faster than the models trained from scratch.
For fluorescence task in figure 3b, the model trained
from scratch seems stuck at local minimum rapidly,
while BERT gets out of local minimum as fine-
tuning proceeds. For a small dataset like STS-B in
figure 3a, BERT can reduce the training loss in only
hundreds of steps, but the training loss of the model
trained from scratch is still high. The results of the
other tasks are similar and left in the appendix.

Flu. Stab. Loc.

BERT - PLUS 0.729 0.634 0.504
BERT - random 0.598 0.545 0.362
PLUS - random 0.461 0.405 0.322
random - random 0.434 0.388 0.387

Table 1: PWCCA similarity (a value in [−1, 1]) be-
tween the representations of the last layer of the models
on protein data. All the models are not fine-tuned. "ran-
dom" means the randomly initialized models with the
same architecture of BERT.

4.2 Generalization ability

Then we further examine the generalization ability
of pre-trained models. We train all the models on
only 1% of the non-text data. In this way, both pre-
training models and models training from scratch
can converge to almost zero loss. And we com-
pare their validation performance to know their
generalization ability. Figure 4 show the results
of one DNA dataset and one protein dataset. The
results of the other tasks are similar and left in the
appendix. Under the setting of 1 % training data,
the training losses of the pre-trained models and
the models trained from scratch both converge to
zero. And the pre-trained models still surpass the
trained from scratch ones on the validation sets.
Therefore, model pre-training improves the model
generalization ability in discipline adaptation.

4.3 Representation similarity

To explain the success of the text pre-trained
models on the non-text data, we apply Projec-
tion Weighted Canonical Correlation Analysis
(PWCCA) (Morcos et al., 2018) on the represen-
tations of BERT and PLUS-TFM. The results in
table 1 show that before fine-tuning, the similar-
ity between BERT and PLUS is much higher than
the similarity between BERT and the randomly
initialized model. The behavior of BERT is dif-
ferent from the randomly initialized models when
processing the non-text data, even though BERT
is pre-trained only on natural language, and this
could be one of the reasons behind BERT’s disci-
pline adaptability.

4.4 Hypotheses

To elaborate on the reason behind the discipline
adaptability of the pre-trained MLM, we have tried
to explore several possibilities. However, they are
not sufficient to explain the phenomenon. In the
next sub-sections, we summary these experiments.
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Figure 5: Average L1 distance of the attention maps
from different models after applying matching algo-
rithm.

Some detailed results are left in the appendix.

4.4.1 Attention similarity
We have examined the similarity of the attention
map between BERT, PLUS, and the randomly ini-
tialized model. For one input data, we first extract
their attention maps in each layer. For the atten-
tion maps in the same layer, we use the Hungarian
algorithm to find the minimum L1 distance match-
ing between the maps from the different models.
The average distance of the matching represents the
similarity of attention patterns in each layer. The
results on the protein data are shown in fig 5. In
almost all layers, the distance between BERT and
PLUS is larger than the one between BERT and
random, no matter whether they are fine-tuned or
not. From this viewpoint, we may not consider that
PLUS and BERT share common attention patterns.

4.4.2 Properties of the pre-training data
We would like to investigate which properties of the
pre-training data result in discipline adaptability.
We used the following data used in (Chiang and
Lee, 2020) to pre-train MLMs:

• uniform: Tokens in a sentence are sampled
i.i.d from uniform distribution over all tokens.

• flat or nesting parentheses: Tokens in a sen-
tence are generated randomly, recursively,
while hierarchically matched.

• Kannada (Ortiz Suárez et al., 2020): Kannada
is a language spoken by people in southwest-
ern India.

However, as shown in table 2, the models pre-
trained on the artificial data perform worse on the
protein classification than the one pre-trained on
natural languages. So natural language may indeed

Flu. Stab. Loc. Avg.

scratch 29.4 59.6 56.6 48.5
uniform 36.6 53.7 57.7 49.3
flat 36.8 56.3 57.8 50.3
nesting 47.9 62.7 60.5 57.0
Kannada 47 71.3 62.8 60.4

Table 2: Protein classification results of the models pre-
trained on the artifical datasets and human language.

share similarities with protein, while the hierarchi-
cal structure only may not be enough to explain the
discipline adaptability.

4.4.3 Gradient stability
We also examine whether BERT satisfies the fol-
lowing criteria about training stability or not:

• Saxe et al. (2014) claim that if the singular
values of the output-input Jacobian matrix
of the model initialization are all equal to 1
(called dynamical isometry), then the model
can avoid gradient vanish or gradient explode
and be trained better.

• Sankararaman et al. (2020) show that nega-
tively correlated gradients produced by differ-
ent data would slow down the convergence.

• Liu et al. (2020) observe that a large variance
of the output of transformer under parameter
perturbation would make the training proce-
dure unstable.

On the synthetic GLUE, BERT does not fit these
criteria better, or even worse than the gaussian ini-
tialization. Although BERT is optimized better
even on the non-text data, the above theories fail
to elaborate the optimization properties of BERT.
The detailed results are left in the appendix.

5 Conclusion

In this paper, we investigate the potential of BERT
as a cross-disciplinary knowledge learner. By fine-
tuning BERT on the synthetic text data with mean-
ings of tokens changed and the non-text data, we
verify that BERT can be adapted to data of dif-
ferent disciplines efficiently and generalizes well.
Besides, we discover the non-trivial similarity be-
tween the models pre-trained on text and protein
before fine-tuning by PWCCA, which helps to ex-
plain the reasons behind BERT’s discipline adapt-
ability. We hope that the proposed settings can act
as new analysis tools for researchers and provide
new insight into the power of pre-trained models.



2200

Broader impact

The results of this paper are helpful for practitioners
of other disciplines when large-scale pre-training
datasets are unavailable. The discipline adaptabil-
ity of the pre-trained models also helps to reduce
computational costs since we may not need to pre-
train one model for each discipline. We think that
the results in this paper will not cause any ethical
issues.
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A Hyperparameters for experiments

The transformer models used in the experiments
are 12-layer, 768-hidden, 12-attention heads mod-
els if not specified. The total number of parameters
is 110M, which is the same size as BERT-base. For
BERT-large-uncased (bert-l) and the large model
trained from scratch (scratch-l) in the appendix,
the total number of parameters is 340M. PLUS-
TFM has the same structure as BERT-base and
the total number of parameters is 110M. For the
Hilbert-CNN model, the total number of parame-
ters is 961K according to the original paper.

We use Adam optimizer for all experiments in
the paper, and the learning rate is set to 10−5. The
optimizer is chosen by applying grid search on
MRPC from GLUE dataset, and the learning rate is
chosen by applying grid search on MRPC and the
validation set of fluorescence protein classification
task. We search learning rate from 10−4 to 10−7.
We uniformly sample 5 points in this range, and
further sample 5 points between 10−5 and 10−6.
We search optimizers including Adagrad, Adam,
Adamax, RAdam, and NovoGrad for three indepen-
dent runs. The parameters that make the randomly
initialized 12-layer transformer models achieve the
highest F1 score on the MRPC training set and the
highest Spearman correlation on the fluorescence
validation set are chosen (which are also the best
for the re-emb setting). We do not use gradient
clipping and warm-up, so the learning rate sched-
ule is the same as linear learning rate decay. All
models are trained with batch size 32 on two RTX
2080-Ti (GLUE dataset) or one Tesla V100 GPU

(protein classification, DNA classification, and mu-
sic classification). For GLUE dataset, we use the
validation set of GLUE as testing set and evaluate
the final checkpoint. For all the non-text datasets,
we select the best checkpoints on the validation set
and evaluate on the testing set.

B Full results on synthetic GLUE

The full results on synthetic GLUE dataset are
shown in table 3. The pre-trained models (includ-
ing the large model) outperform the models trained
from scratch except for SST-2 and CoLA. For SST-
2, pre-trained models generalize worse than the
models trained from scratch. For CoLA, all models
fail to be trained. But for the other six tasks, pre-
trained models outperform the models trained from
scratch. The standard deviations of most of the
models are small than 2 except for the RTE dataset
and the large models. For RTE, the maximum stan-
dard deviation is 5.24 (ALBERT). For the large
models, the standard deviations are much larger
and listed in table 4. When we generate the token
mappings randomly, the results are similar. This
indicates that the effect of different token mappings
is marginal.

For BERT with word embedding layer randomly
initialized and then fine-tuned (re-emb), the per-
formance is worse than the one using the whole
pre-trained weights, which indicates that even pre-
trained word embedding is necessary.

C Testing and validation performance on
non-text data

Table 5 and 7 show the full testing and validation
results on each non-text classification task. Table 6
and 8 show the average scores of each discipline.
For most of the tasks, the text pre-trained models
outperform the models trained from scratch and the
re-emb models on both the testing and validation
set.

D Training loss for the other tasks

Figure 6 and 7 show the training loss of BERT and
the models trained from scratch on the other GLUE
tasks and the other non-text datasets, respectively.
BERT can reduce the training loss more quickly
than the models trained from scratch except for the
SST-2 task, on which BERT performs worse. The
results are consistent over disciplines.

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
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MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE avg
m/mm-acc F1 acc acc mcc spr F1 acc

Normal data

BERT 84.0/84.3 87.4 91.2 92.2 55.0 86.7 85.5 62.1 80.9
re-emb 66.1/66.8 78.7 64.5 80.0 0.0 19.0 78.6 49.0 55.9

permutation

bert 68.6/69.9 81.2 80.0 79.6 0.0 77.8 82.9 60.2 66.6
roberta 66.4/67.5 77.8 79.2 76.2 0.0 73.9 83.0 56.0 64.4
albert 65.9/67.5 79.5 67.5 71.3 0.0 71.6 81.4 53.2 63.2
bert-c 68.9/70.0 81.7 80.2 77.5 0.0 76.1 85.3 58.5 66.4
scratch 61.4/62.1 69.3 61.1 81.0 0.0 8.3 81.3 54.2 53.2

bert-l 44.5/44.7 26.8 60.4 60.7 0.0 73.5 82.3 54.3 49.7
scratch-l 40.6/40.9 21.7 50.2 80.9 0.0 9.2 81.2 50.5 41.7

random mapping

BERT 68.2/68.6 80.6 79.7 78.7 0.0 75.6 83.4 58.5 65.9
scratch 61.5/62.0 69.0 61.5 79.6 0.0 8.3 81.3 51.0 52.7

Table 3: Full results on GLUE validation set (averaged over three random seeds). The evaluation metrics are listed
below the task names. Normal data means the models are fine-tuned on the normal GLUE. Permutation means the
models are fine-tuned on the synthetic GLUE. Random mapping means the token mapping is generated randomly.
"avg": The average score (GLUE score). "m/mm": MNLI matched/mismatched set. "spr": Spearman correlation.
"mcc": Matthews correlation coefficients. "re-emb": Randomly initializing the word embedding layer of BERT
and fine-tuning the BERT.

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE
acc F1 acc acc mcc spr F1 acc

permutation

BERT-l 21.2/21.3 46.5 17.0 16.9 0.0 3.8 0.9 6.7
scratch-l 14.4/14.7 37.6 0.6 0.7 0.0 0.4 0.0 3.1

Table 4: The standard deviations of the large models on GLUE validation set.

E generalization experiments for other
tasks

Figure 8 and 9 shows the results of BERT and the
model trained from scratch with only 1% training
data of the GLUE dataset and the non-text datasets.
We do not conduct the experiment on splice and
maestro-v1 datasets due to the limitation of the size
of the training sets. For most of the tasks, BERT
generalizes better than the models trained from
scratch.

F Detailed results of section 4.4

F.1 Dynamical isometry
Figure 10 shows the distribution of the singular
values of the output-input jacobian matrices of

BERT-base, BERT-large, and ALBERT-base. The
jacobian matrices are computed by calculating the
derivative of the representation from the last layer
with respect to the input word embeddings. And
the input data is from normal GLUE dataset. Com-
pared to the random initialization (scratch in fig
10), the singular values of BERT and ALBERT
concentrate at zero but not one, which is opposite
to the hypothesis of dynamical isometry. There-
fore, it is hard to claim that the power of BERT and
ALBERT originates from dynamical isometry.

F.2 Gradient confusion

Figure 11 shows the cosine similarity of gradi-
ents produced by different data points in synthetic
GLUE dataset. Although the cosine similarity of
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Protein DNA

localization stability fluorescence H3 H4 H3K9ac Splice

specific 69.0 76.0 63.0 87.3 87.3 79.1 94.1

bert 64.1 (0.4) 70.6 (3.9) 58.4 (3.2) 83.6 (1.3) 85.9 (0.9) 77.2 (0.9) 96.4 (0.8)

roberta 65.4 (1.0) 73.6 (1.7) 59.8 (1.6) 84.2 (0.7) 86.5 (0.4) 78.9 (0.6) 94.7 (0.3)

albert 65.1 (0.6) 70.3 (2.8) 55.0 (2.4) 83.5 (0.3) 86.4 (0.5) 78.2 (0.6) 84.0 (3.6)

bert-c 63.1 (0.8) 69.7 (3.0) 53.4 (8.4) 84.0 (1.3) 86.2 (0.9) 77.9 (0.4) 96.8 (0.8)

re-emb 62.8 (0.5) 71.0 (2.3) 37.4 (4.4) 83.0 (1.2) 83.9 (0.8) 77.5 (0.4) 95.6 (0.4)

scratch 57.8 (0.6) 62.2 (5.3) 28.4 (1.6) 76.1 (0.7) 66.6 (1.3) 72.6 (0.3) 95.3 (1.2)

bert-l 63.0 (0.4) 23.2 (41.8) 44.6 (18.6) 70.5 (14.8) 63.5 (7.3) 65.0 (9.4) 82.6 (18.7)

scratch-l 58.3 (0.5) 59.7 (4.3) 11.6 (3.5) 76.7 (0.5) 58.7 (2.5) 67.1 (7.9) 95.6 (0.8)

Table 5: Testing results of protein classification and DNA classification. The metric is Spearman correlation for
fluorescence and stability. And the metric is accuracy for all the other tasks. The number in the parenthesis is the
standard deviation (calculated over six independent runs with different token mappings). "specific": the discipline-
specific models.

Protein DNA Music

bert 64.4 (1.2) 85.8 (0.4) 35.7 (2.3)

roberta 66.3 (0.8) 86.1 (0.2) 35.2 (2.6)

albert 63.5 (1.2) 83.0 (0.9) 30.5 (3.2)

bert-c 62.1 (2.9) 86.2 (0.5) 32.1 (3.9)

re-emb 57.1 (1.3) 85.0 (0.3) 30.1 (2.9)

scratch 49.5 (2.2) 77.7 (0.7) 22.8 (4.1)

bert-l 43.6 (14.7) 70.4 (6.7) 30.8 (4.0)

scratch-l 43.2 (2.6) 74.5 (1.8) 26.0 (5.0)

Table 6: The testing results of music composer classi-
fication, the average score of DNA classification, and
the average score of protein classification. The num-
bers in the parenthesis are the standard deviations cal-
culated over six independent runs with different token
mappings.

BERT is larger than the random initialized (scratch)
counterpart, ALBERT shows adverse trends. The
cosine similarity of pre-trained ALBERT is smaller
than the scratch counterpart. But pre-trained AL-
BERT still outperforms the random initialization,
which indicates that avoiding gradient confusion
may not be the key to pre-trained MLMs’ discipline
adaptability.

F.3 Output variance under perturbation

We inject zero mean gaussian noise to the model
parameters to calculate the variation of the model’s
outputs under the noise. The variation is rep-
resented by the L2 distance of the model’s out-
puts before and after adding the noise. We

choose the magnitude of standard deviation to be
10−2, 10−4, 10−6, and 10−8. Figure 12 and 13
show the results of BERT-base and ALBERT-base
on the three synthetic GLUE tasks, respectively.
We find that BERT and ALBERT show contrary
trends: The variation of BERT is smaller than the
randomly initialized counterpart, while the one of
ALBERT is larger than the counterpart. So this
hypothesis is not sufficient to explain the discipline
adaptability of the pre-trained models.

G Statistics of datasets

G.1 GLUE

GLUE is an English dataset that consists of several
tasks. Table 9 shows the statistics of GLUE. We
use the validation set as the test set in our experi-
ments. The train/validation split can be found in
the downloaded data.

G.2 Protein classification

Table 10 shows the statistics of protein classifica-
tion datasets. For pre-processing, we truncate the
length of input sequences to 512.

G.3 DNA classification

Table 11 shows the statistics of DNA classification
datasets. For the train/validation/test splits, we use
randomly chosen 90% samples as training data,
5% samples as validation data, and 5% samples as
testing data as Hilbert-CNN does. We do not apply
any additional pre-processing for these datasets.
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Protein DNA

localization stability fluorescence H3 H4 H3K9ac Splice

bert 69.6 (0.9) 70.6 (0.8) 57.0 (4.3) 83.5 (0.7) 87.0 (0.6) 78.4 (0.7) 95.9 (0.7)

roberta 71.1 (1.1) 68.8 (0.9) 59.2 (2.7) 86.7 (0.6) 87.6 (0.2) 79.5 (0.6) 95.2 (0.5)

albert 69.0 (0.8) 66.3 (1.9) 50.9 (5.3) 85.6 (0.9) 87.0 (0.3) 79.3 (0.6) 82.5 (3.1)

bert-c 69.0 (0.7) 75.4 (0.5) 50.8 (9.3) 83.6 (1.3) 87.5 (0.7) 79.2 (0.8) 96.5 (0.5)

re-emb 67.9 (0.4) 67.3 (1.7) 36.9 (3.2) 82.8 (0.5) 85.3 (0.7) 78.4 (0.8) 95.4 (0.9)

scratch 59.9 (0.8) 63.6 (0.6) 29.4 (1.3) 75.4 (0.2) 66.5 (0.8) 71.9 (0.2) 96.0 (0.3)

bert-l 69.3 (1.0) 37.5 (27.5) 42.5 (18.4) 70.1 (14.6) 64.0 (8.1) 64.1 (9.4) 82.2 (19.6)

scratch-l 60.9 (0.7) 61.6 (2.1) 13.0 (2.9) 75.7 (0.3) 58.6 (2.1) 66.5 (7.9) 96.0 (0.6)

Table 7: Validation results of protein classification and DNA classification. The metric is Spearman correlation for
fluorescence and stability. And the metric is accuracy for all the other tasks. The numbers in the parenthesis are
the standard deviations calculated over six independent runs with different token mappings.

Protein DNA Music

bert 65.7 (1.6) 86.2 (0.4) 43.2 (4.2)

roberta 66.4 (0.8) 87.2 (0.2) 41.1 (3.6)

albert 62.1 (1.9) 83.6 (0.8) 36.3 (3.3)

bert-c 65.1 (3.3) 86.7 (0.6) 42.2 (3.4)

re-emb 57.4 (1.4) 85.5 (0.4) 39.5 (2.8)

scratch 51.0 (0.6) 77.5 (0.2) 31.0 (2.3)

bert-l 49.8 (9.0) 70.1 (7.1) 43.3 (3.5)

scratch-l 45.2 (0.9) 74.2 (1.7) 34.3 (2.6)

Table 8: Validation results of music composer classifi-
cation, average score of DNA classification, and aver-
age score of protein classification. The numbers in the
parenthesis are the standard deviations calculated over
six independent runs with different token mappings.

G.4 Music composer classification
Table 12 shows the statistics of MAESTRO-v1
dataset. The train/validation/test splits can be found
in the downloaded files. We read the midi data and
convert it to pitch sequence. For sequences longer
than 128, we divide them into several segments of
length 128. For training data, each segment is one
training example. For validation and testing, we
inference on all the segments and decide the final
output by voting.

dataset train validation

CoLA 8551 1043
SST-2 67349 872
MRPC 3668 408
QQP 363849 40430
STS-B 5749 1500
MNLI 392702 9815/9832
QNLI 104743 5463
RTE 2490 277

Table 9: train/validation examples of GLUE dataset.
The numbers of MNLI validation set are the matched
subset and the mismatched subset respectively. Data
can be downloaded at https://gluebenchmark.
com

dataset train validation test

fluorescence 21446 5362 27217
stability 53614 2512 12851
localization 9977 1108 2773

Table 10: train/validation/test examples of protein
classification datasets. Data can be downloaded
at http://ailab.snu.ac.kr/PLUS/. The
train/validation/test can be found in the downloaded
files.

https://gluebenchmark.com
https://gluebenchmark.com
http://ailab.snu.ac.kr/PLUS/
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Figure 6: Training loss of BERT (blue line) and the models trained from scratch (orange line) on the other GLUE
tasks.

dataset #samples

H3 14965
H4 14601
H3K9ac 27782
Splice 3190

Table 11: Numbers of samples of DNA classifica-
tion datasets. Data can be downloaded at https:
//github.com/Doulrs/Hilbert-CNN

dataset train validation test

MAESTRO-v1 954 105 125

Table 12: train/validation examples of MAESTRO-
v1 dataset. Data can be downloaded at
https://magenta.tensorflow.org/
datasets/maestro

https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://magenta.tensorflow.org/datasets/maestro
https://magenta.tensorflow.org/datasets/maestro
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Figure 7: Training loss of BERT (blue line) and the models trained from scratch (orange line) on the other non-text
datasets.

0 20000
step

0.0

0.2

0.4

0.6

0.8

1.0

tr
ai

n 
lo

ss

pretrain
scratch

0.0

0.2

0.4

0.6

0.8

1.0

de
v 

ac
c

(a) MNLI

0 10000 20000 30000
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tr
ai

n 
lo

ss

pretrain
scratch

0.0

0.2

0.4

0.6

0.8

1.0

de
v 

f1

(b) QQP

0 5000 10000
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tr
ai

n 
lo

ss

pretrain
scratch

0.0

0.2

0.4

0.6

0.8

1.0

de
v 

ac
c

(c) QNLI

0 2000 4000 6000
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tr
ai

n 
lo

ss

pretrain
scratch

0.0

0.2

0.4

0.6

0.8

1.0

de
v 

ac
c

(d) SST-2

250 500 750
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tr
ai

n 
lo

ss

pretrain
scratch

0.0

0.2

0.4

0.6

0.8

1.0

de
v 

m
cc

(e) CoLA

200 400 600
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tr
ai

n 
lo

ss

pretrain
scratch

0.0

0.2

0.4

0.6

0.8

1.0

de
v 

f1

(f) MRPC

100 200 300
step

0.0

0.1

0.2

0.3

0.4

tr
ai

n 
lo

ss

pretrain
scratch

0.0

0.2

0.4

0.6

0.8

1.0

de
v 

ac
c

(g) RTE

Figure 8: Training loss (the solid lines) and validation performance (the dashed lines) of BERT (blue line) and
the models trained from scratch (orange line) on the other GLUE tasks using only 1% training data. The last
checkpoints are used to perform validation.
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Figure 9: Training loss (the solid lines) and validation performance (the dashed lines) of BERT (blue line) and the
models trained from scratch (orange line) on the other non-text datasets using only 1% training data. We do not
conduct the experiments on splice and maestro-v1 since the 1% training sets are too small.
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Figure 10: Distributions of the singular values of the output-input jacobian matrices of BERT and ALBERT. The
singular values are calculated on GLUE dataset. The bars stand for mean and the error bars stand for standard
deviation.
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Figure 11: gradient cosine similarity of (a) BERT and (b) ALBERT on the synthetic GLUE dataset. The notches
stand for median, and the dashed lines without notches stand for mean.
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Figure 12: The mean (bar) and std (error bar) of the L2 distance between BERT’s outputs with and without adding
noise to the model parameters. "scratch" stands for the randomly initialized parameters.
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Figure 13: The mean (bar) and std (error bar) of the L2 distance between ALBERT’s outputs with and without
adding noise to the model parameters. "scratch" stands for the randomly initialized parameters.


