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Abstract
Unsupervised cross-domain dependency pars-
ing is to accomplish domain adaptation for de-
pendency parsing without using labeled data
in target domain. Existing methods are of-
ten of the pseudo-annotation type, which
generates data through self-annotation of the
base model and performing iterative training.
However, these methods fail to consider the
change of model structure for domain adap-
tation. In addition, the structural informa-
tion contained in the text cannot be fully ex-
ploited. To remedy these drawbacks, we pro-
pose a Semantics-Structure Adaptative Depen-
dency Parser (SSADP), which accomplishes
unsupervised cross-domain dependency pars-
ing without relying on pseudo-annotation or
data selection. In particular, we design two
feature extractors to extract semantic and struc-
tural features respectively. For each type of
features, a corresponding feature adaptation
method is utilized to achieve domain adapta-
tion to align the domain distribution, which
effectively enhances the unsupervised cross-
domain transfer capability of the model. We
validate the effectiveness of our model by con-
ducting experiments on the CODT1 and CTB9
respectively, and the results demonstrate that
our model can achieve consistent performance
improvement. Besides, we verify the structure
transfer ability of the proposed model by intro-
ducing Weisfeiler-Lehman Test.

1 Introduction

Dependency parsing is to extract the dependency
structure of a sentence that shows its grammati-
cal structure and the relationships between “head”
words and associated “dependent” words. Depen-
dency parsing can provide the syntactic structure
information for sentence, which can be used to
enhance other Natural Language Processing task
such as Named Entity Recognition (Vakare et al.,
2019) and sentence Semantic Similarity (Jie et al.,
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Figure 1: Difference between previous methods and
proposed method. The proposed SSADP method is
more advantageous in that knowledge transfer and pars-
ing are conducted in a joint manner.

2017). Existing in-domain dependency parsing
model has achieved promising performance in the
domains that have abundant labeled data such as
news and magazines (Ma et al., 2018). But in some
other domains such as web blogs and novels, the
performance of the dependency parser is often un-
satisfactory due to the label deficiency issue. Since
the cost of dependency labeling is extremely high,
some cross-domain dependency parsing (CDP) ap-
proaches have been developed in recent years.

CDP is to use the abundant label information of
source domain to train a dependency parsing model
that can be used in the target domain. According to
the different labeling settings of target domain data,
CDP can be divided into semi-supervised and unsu-
pervised (Peng et al., 2019). In the semi-supervised
setting, the target domain is assumed to have a few
labeled data, while in the unsupervised scenario,
the target domain only has some unlabeled data.
We focus on the latter in this paper.

There are mainly two ways to achieve unsuper-
vised CDP: (1) pseudo-annotation iterative meth-
ods, such as self-training (Yu et al., 2015), co-
training (Nivre et al., 2007) and tri-training (Dredze
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et al., 2007), which mainly rely on a model trained
on the source domain to generate credible pseudo-
labeled data in the target domain; (2) data selection
methods, which mainly focus on selecting a sub-
dataset in the source domain that is similar to the
target domain for training (Plank and Van Noord,
2011; Khan et al., 2013). These approaches focus
on designing training or data filtering strategies.

However, feature-based transfer is not consid-
ered being taken into the previous two ways, which
means the transfer is separated with the parsing and
the hidden feature produced by parser is not used
for domain adaptation. Besides, previous methods
only use the unlabeled data for filtering, and more
information (such as feature statistics) contained in
such data can not be fully exploited.

To remedy this drawback, we propose a
Semantic-Structural Adaptative Dependency Parser
(SSADP) to accomplish transfer and parsing si-
multaneously for unsupervised CDP without us-
ing pseudo-annotation and data-selection strategy.
The proposed method is graph-based, which means
that the words are treated as nodes and sentence
as a graph. The cross-domain transfer is mainly
achieved by: 1) using Biaffine (Dozat and Manning,
2017) to extract semantic feature and query-key
CNN (QKCNN) to extract structural features from
the domain data respectively to enhance the ability
in describing the domain of model; 2) integrating
metric-learning method Local Maximum Measure
Discrepancy (LMMD) (Zhu et al., 2020) and Graph
Attention Network (GAT) (Velicković et al., 2017)
to align the domains according to characteristics of
the extracted semantic and structural features.

Effectiveness of the proposed SSADP is demon-
strated by the extensive experiments on the quite
new Chinese Open Dependency Treebank 1.0
(CODT1) (Li et al., 2019) and Chinese Tree Bank
9.0 (CTB9) (Xue et al., 2016) datasets, where we
propose a data division standard for CTB9. We
introduce the Weisfeiler-Lehman Test to verify that
the proposed SSADP has the ability of transfer
structural information.

Our main contributions of this paper are summa-
rized as follows:

1) We propose a model termed SSADP for unsu-
pervised CDP by performing transfer and parsing
simultaneously, and our model does not rely on
pseudo-annotation and data selection.

2) To the best of our knowledge, this is the first
work that applies metric-based domain adaptation

to parsing and especially the idea of graph structure
alignment is novel in domain adaptation.

3) The experiments on CODT1 and CTB9
demonstrate the proposed SSADP is effective and
we improve Weisfeiler-Lehman Test by the Jaccard
Distance to verify the structure transfer ability of
SSADP.

2 Related Work

2.1 Semi-supervised Cross-Domain
Dependency Parsing

The main idea of semi-supervised cross-domain
dependency parsing is to make full use of the do-
main information of the data while using a small
amount of labeled data in target domain for super-
vised parsing. Sato et al. (2017) proposed a parser
within adversarial domain adaptation to utilize the
labeled data in target domain. Li et al. (2019) pro-
pose adding domain embedding to achieve semi-
supervised cross-domain dependency parsing.

2.2 Unsupervised Cross-Domain Dependency
Parsing

The previous works on unsupervised cross-domain
dependency parsing can be divided into two main
categories: pseudo-annotation self-iterative method
and data-selection method. Yu et al. (2015) firstly
proposed to present cross-domain dependency pars-
ing via self-training. Lien et al. (2015) proposed
another self-training method within K-means clus-
ter for cross-domain dependency parsing. Cohen
et al. (2012) adopted co-training within using La-
tent Dirichlet Allocations (LDA) to learn a domain-
specific selectional preferences.

2.3 Metric-based Domain Adaptation
Metric domain adaptation is a commonly used un-
supervised domain adaptation method. There is a
usual way to achieve unsupervised domain adap-
tation by using the Maximum Mean Discrepancy
(MMD) distance. MMD is used with kernel method
to compare the difference between different sample
distribution in Reproducting Kernel Hilbert Space
(RHKS) (Borgwardt et al., 2006). It also can be
used in neural network to measure the discrepancy
between the hidden representations of source do-
main and target domain (Ghifary et al., 2014) .
Beyond the original MMD, there are many other
variant of MMD used in unsupervised domain adap-
tation (Tzeng et al., 2014; Yan et al., 2017; Zhu
et al., 2020).
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Figure 2: The framework of Semantic-Structural Adaptative Dependency Parsing (SSADP).

3 Methods

The proposed model is mainly composed of four
parts: semantic feature extractor, structural fea-
ture extractor, semantic feature transfer module
and structural feature transfer module. Semantic
feature extractor and structural feature extractor are
designed to extract domain features. Semantic fea-
ture transfer module and structural transfer module
are used to align domain feature. The architecture
of the proposed SSADP is shown in the Figure 2,
and each of the four modules is depicted as follows.

3.1 Semantic Extractor
The semantic feature extractor is the cornerstone
of the entire model, which is mainly utilized to
achieve dependency parsing task. To keep the con-
ciseness and effectiveness of the semantic feature
extractor, a classic graph-based dependency parser
Biaffine (Dozat and Manning, 2017) is adopted.

In this module, the word embedding ew
i

and the
part-of-speech tagging embedding ep

i
are concate-

nated as ei to represent the i-th word in a sen-
tence. A bi-directional LSTM (Huang et al., 2015)
is employed to extract hidden semantic feature
hi = BiLSTM(e). Then two Multilayer Percep-
trons (MLPs) are used to extract role-specific lower
information r(head)

i
and r(dep)

i
.

Finally, a biaffine transformation is used to pro-
duce the final affinity score between each pair of
words in a sentence:

v(se) = [r(dep); 1]U[r(head); 1]> (1)

where U is the parameter matrix. V(se) as the se-
mantic affinity logit matrix, will be leveraged to

compute final affinity logit matrix V.

3.2 Structural Extractor

The syntactic dependency tree is highly structured,
which inspires us to capture more structural infor-
mation from parser model. Convolutional Neu-
ral Network (CNN) (LeCun et al., 1998) has been
proven that retains the capacity of capturing local
structure (Niu et al., 2019). Therefore, we adopt a
parallel CNN structure query-key CNN (QKCNN)
as the structural information extractor (Yang et al.,
2018), where QKCNN is composed of query CNN
and key CNN. For a sentence, each word embed-
ding ei is fed into both query and key CNN. Thus,
two outputs of query and key CNN are represented
as q

i
and ki for the i-th word. Then, the structural

affinity score matrix is given as:

v(st)
ij

=
(ReLU(k>i q

j
+ b))2

P
i0(ReLU(k>

i0 q
j
+ b))2

(2)

where the bias b is a scalar parameter.

3.3 Semantic Transfer Module

We consider using the method of metric transfer to
align the domain features in different spaces. The
proposed SSADP uses a method based on max-
imum mean discrepancy (MMD) to achieve the
alignment of domain semantic features. Domain
features from different space are mapped into the
same Reproducing Kernel Hilbert Space (RKHS)
(Schneider et al., 1988) via kernel function.

We define the source domain as Ds =
(xs

i
, ys

i
)ns
i=1 and target domain as Dt = (xt

i
)nt
i=1,

where ns is the number of samples in the source
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domain and nt is the number of samples in the tar-
get domain. Assume that Ds and Dt are subject to
distribution ep and distribution eq. A measurement
item d̂(ep, eq) is defined to express the distance be-
tween ep and eq in the RKHS. For the original MMD
measurement, the d̂ is represented by the expecta-
tion of difference in results of distributions mapped
by the kernel function between source and target
domain, which is given as:

dH(ep, eq) , ||Eep[�(x
s)]� Eeq[�(x

t)]||2H (3)

where H is a RKHS with kernel functions. �(·)
is a mapping function which maps the samples
from the original space to the RKHS. However, it
is hard to explicitly express the mapping function
�(·) in practice. Instead, some kernel tricks are
applied to expand the original MMD to the function
calculation formula (Schneider et al., 1988) and
thus the computation can be processed easily.

Directly applying the MMD to the dependency
parsing task is not such appropriate since rich types
of dependencies cannot be fully utilized. Instead of
directly using MMD for semantic transfer, we add
the inner class iteration to better catch rich types
of dependencies information. This variant MMD
is called Local-MMD (LMMD) (Zhu et al., 2020),
and is formulated as:

d̂H(p, q) =
1

C

CX

c=1

k

X

vsi2Ds

!sc

i �(vi)�
X

vtj2Dt

!tc

j �(vj) k2H

(4)
where kernel function k(xs, xt) =

⌦
�(xs),�(xt)

↵
,

h·, ·i means inner dot of vectors. C is the number of
types of dependency relations and !c is the weight
of x with the relation c. The wc

i
is calculated as:

wc

i =
ricP

(xj ,rj)2D
rjc

(5)

where ric is the c-th entry of one-hot dependency
relation vector ri. Considering no labeled data
in target domain, the predicted result of parser is
used as pseudo label in the unsupervised domain
adaptation.

3.4 Structure Transfer Module
For graph-based parsing model, the affinity score
matrix can be seen as the adjacency matrix of a
special directed weighted graph. Different from

aligning the distribution of semantic features in
MMD metric, structure transfer module aims to
force the structural features to be close via cosine
similarity metric to achieve adaptation.

A general metric of measuring the similarity of
graph structure is the graph kernel. But the tradi-
tional graph kernel methods meet the hard-encode
problem. In addition, graph kernel cannot flexi-
bly utilize the node features produced by structural
extractor. Thus we cannot adopt the graph kernel
metric for structural transfer directly. Instead, we
consider employing a graph neural network (GNN)
which can be seen as an approximate solution of
graph kernel (Kipf and Welling, 2017; Hamilton
et al., 2017). Meantime, hard-encode problem can
be avoided and node features can be flexibly ma-
nipulated by message passing in GNN.

In this paper, we adopt GNN to further encode
internal structural information of the dependency
graph based on the output of the structural extractor.
As mentioned in section 3.2, v(st) contains struc-
tural features generated by the QKCNN module.
To incorporate this structural features into the word
embedding information, we regard the v(st) as the
attention coefficient to weight the word embedding
as:

h0
i =

X

j

v(st)
ij

ei (6)

Then, considering the dependency graph gener-
ated in the calculation process is a non-pairwise
directed graph, and the Laplacian matrix of directed
graphs does not form a unified theory, we introduce
Graph Attention Network (GAT) (Velicković et al.,
2017) as our GNN encoder in this paper. GAT uses
the local neighborhood aggregator to describe the
local structure of the dependency graph, and uses
the pooling operator to encode the whole picture
information. The detailed GAT used for structural
transfer is described next.

In GAT, a self-attention mechanism with param-
eterized weight matrix w is applied to calculate the
coefficients:

↵ij = softmax(a(Whi,Whj)) (7)

where a is the attention mechanism (Vaswani
et al., 2017) and initialized node feature h0

i is the
weighted outputs of structural extractor. The nor-
malized coefficients are used to aggregate the node
features by their neighbor nodes as:

h0
i = �(

X

j2Ni

↵ijWhj) (8)
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Algorithm 1: Model Training
Require :samples Ds = (xs

i , y
s
i )

ns
i=1, Dt = (xt

i)
nt
i=1

learning rate `
logit coefficient ↵
loss coefficient �
Maximum Iterations MaxIter

Output :Syntactic Dependency Tree Tt

Forward:
for iter  1 to MaxIter do

Extract semantic feature r(se)s , r(se)t

Extract structural feature r(st)s , r(st)t

Extractor produce V(se)
s ,V(st)

s

Extractor produce V(se)
t ,V(st)

t

Vs = ↵V(se)
s + (1� ↵)V(st)

s

Vt = ↵V(se)
t + (1� ↵)V(st)

t

d̂(S, T ) = d̂h(v(se)s , v(se)t ) + d̂g(r(st)s , r(st)t )

Update:
✓  ✓ � `(J(xs, ys) + �d̂(S, T ))

Decode:
Tt = MST (Vt)

where � is the readout function. After the aggrega-
tion in GAT, a mean pooling is implemented to pool
word (node) representations to the sentence (graph)
representation. Then we can use cosine similarity
to describe the structural similarity between two
sentences:

sim(S, T ) = hg
s
, g

t
i (9)

where g
s

and g
t

are the pooled sentence-level fea-
tures in source and target domain.

3.5 Overall optimization goal
The task aims to train a model with parameters set
✓ just using the labeled data of Ds and unlabeled
data of Dt for dependency parsing. So the overall
objective function can be formulated as:

min
f

1

ns

nsX

i=1

J(f(xsi , y
s

i )) + �d̂(ep, eq) (10)

where J is Cross-Entropy loss function for depen-
dency parsing task. The d̂ is a measurement func-
tion that measures the difference between two do-
mains, that can be split as d̂ = d̂h+ d̂g, where d̂h is
the LMMD measurement and d̂g is the graph mea-
surement. We directly use LMMD measurement as
loss item d̂h. Particularly, for d̂h, the square value
of the difference between the two structure features
is used as the loss item given as:

d̂g(ep, eq) = ||g
s
� g

t
||
2 (11)

Table 1: Data statistics in sentence number of CODT1

Domain Train Set Dev Set Test Set Unlabeled Set

BC 16.3K 1K 2K –
PB 5.1K 1.3K 2.6K 291K
PC 6.6K 1.3K 2.6K 349K
ZX 1.6K 0.5K 1.1K 33K

Table 2: Data statistics in sentence number of CTB9

Domain Train Set Dev Set Test Set Unlabeled Set

BS 16K 0.8K 1.9K –
BN – 0.6K 0.9K 8.5K
BC – 0.6K 0.7K 10.7K
WB – 0.5K 0.6K 9K
DF – 0.8K 1.8K 17.3K
SC – 1.5K 3.7K 38.7K
CS – 0.8K 1.9K 16K

Following the Biaffine (Dozat and Manning,
2017), the classical Maximum Spanning Tree Al-
gorithm (MST) (McDonald et al., 2005) algorithm
is adapted to decode a syntactic dependency tree
from dependency graph corresponding the affinity
logit matrix V = ↵V(se) + (1� ↵)Vst. The whole
optimization algorithm is shown in Algorithm 1.
And the final loss of SSADP is given as:

L =
1

ns

nsX

i=1

J(f(xsi , y
s

i ))+�(d̂h(ep, eq)+ d̂g(ep, eq))

(12)

4 Experiments

4.1 Datasets
We conduct experiments on Chinese Open Depen-
dency Treebank 1.0 (CODT1) (Li et al., 2019) and
Chinese Tree Bank 9.0 (CTB9) (Xue et al., 2016)
datasets.

CODT1 has one source domain: Standard Bal-
anced Corpus (BC) and three target domains
with unlabeled data: Taobao Product Blog (PB),
Taobao Product Comments (PC) and Network
Novel “ZhuXian” (ZX). The statistic of CODT1
is shown in Table 1.

CTB9 (Xue et al., 2016) is a dependency tree-
bank with 8 genres: Newswire (NW), Magazine
Articles (MZ), Broadcast News (BN), Broadcast
Conversations (BC), Webblogs (WB), Discussion
Forums (DF), SMS/Chat Messages (SC) and Con-
versational Speech (CS). We notice that genres of
some classical in-domain treebanks such as CTB5
(Zhang and Clark, 2008) and HIT-CDT (Li et al.,
2012) is mostly news and magazines. So we use the
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Figure 3: Dependency Syntactic Tree Example Diagram. The original sentence is "÷/_/ /�/W/ ∫/Ñ/Ï
Ë/ÿM⇥(He also has a set of unique cheats for choosing people.)" which is in WB domain of CTB9.

Table 3: Train, Dev and Test data from CTB9

Domain Train Set Dev Set Test Set Unlabeled Set

BS [001–815; [900-931; [816-885; –1001-1136] 1148-1151] 1137-1147]
BN – [4051-4111] [3041-3145] [2000-3040]
BC – [4193-4194] [4195-4197] [4112-4192]
WB – [4337-4345] [4346-4411] [4198-4336]
DF – [5481-5500] [5501-5558] [5000-5480]
SC – [6606-6638] [6639-6700] [6000-6605]
CS – [7015-7015] [7016-7017] [7000-7014]

data in the NW and MZ domains as the source do-
main called Basic Source (BS). Follow the data seg-
mentation rules of CTB5 (Zhang and Clark, 2008),
we split the original data of source domain and tar-
get domain. Specific segmentation details of the
data are shown in Table 2 and Table 3. For the un-
labeled set of target domain, we discard its original
annotation label to simulate the situation encoun-
tered in actual applications where only unlabeled
data is available on the target domain.

4.2 Experimental Settings

Considering that there exists few work on improv-
ing the model structure of unsupervised CDP, we
set two feature-based models as baselines in our
experiments: 1) Follow the baseline setting of Li
et al. (2019), we reproduce Biaffine (Dozat and
Manning, 2017) as a baseline. 2) Follow the idea
of adversarial domain adaptation, we proposed Bi-
affineAdv within the Biaffine as the generator and
the TextCNN (Kim, 2014) as the domain discrimi-
nator (Sato et al., 2017).

Hyperparameters We use a 300-dimensional
embedding layer, and other settings of semantic ex-
tractor are consistent with original Biaffine (Dozat
and Manning, 2017). During training, we utilized
Adam optimizer (Kingma and Ba, 2015) with a
0.001 learning rate. The coefficient � and ↵ are
both 0.6. Other important hyperparameters are
shown in the Table 4.

Table 4: Hyperparameters

Module Parameter Value

QKCNN

hidden layers 3
in channels 300
out channels 128

dropout 0.3

GAT

hidden layer 2
hidden dim 128

attention heads 4
dropout 0.6

4.3 Evaluation Metrics
We use Unlabeled Accuracy Score (UAS) and La-
beled Accuracy Score (LAS) as evaluation metrics.

Moreover, to explore whether our model can im-
prove the transfer ability of structural information,
we introduce Weisfeiler-Lehman Test (WL-Test), a
test used to judge whether two graphs are isomor-
phic in graph theory. WL-Test produces a unique
feature label set �G for input graph G and gives
a boolean result of the isomorphism finally. In or-
der to quantitatively compare the transfer ability
of structural information with different models, we
improve the Isomorphic Score S of graph G and
graph H to a real value between [0, 1] via Jaccard
Distance:

S(G,H) = Jaccard(G,H)

=
|�G \ �H|

|�G [ �H|

(13)

where the S(G,H) 2 [0, 1]. The higher as
S(G,H), the higher the isomorphism similarity of
the two graphs G and H. When the S(G,H) = 1,
the two graphs are completely isomorphic.

Different from UAS, Isomorphic Score can re-
flect the deep structural information of the syntactic
tree as shown in Figure 3: UAS of Figure 3(b) and
Figure 3(c) are both 90, the Isomorphic Score S of
Figure 3(c) is higher than Figure 3(b). We can also
intuitively see that, taking Figure 3(a) as a bench-
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Table 5: Results on test data of CODT1

Model BC! PB BC! ZX BC! PC Average Gain
UAS LAS UAS LAS UAS LAS UAS LAS

Biaffine (Li et al., 2019) 67.55 61.01 68.44 59.55 – – – –
Biaffine (Ours) 67.75 60.95 69.41 61.55 39.95 26.96 – –
BiaffineAdv 67.74 60.91 69.49 61.73 41.01 27.30 0.38 0.16
SSADP 68.55 61.59 70.82 63.61 41.10 27.67 1.12 1.14

Table 6: Results on test data of CTB9

Model BS! BC BS! BN BS! DF BS! WB BS! SC BS! CS Average Gain
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Biaffine (Ours) 79.06 74.15 91.91 89.38 88.18 85.21 87.85 84.31 84.88 80.86 71.03 63.48 – –
BiaffineAdv 78.81 73.54 91.57 88.96 88.14 85.31 87.32 83.67 84.85 81.20 71.52 63.75 -0.12 -0.16
SSADP 79.60 74.68 92.19 89.70 88.58 85.82 88.16 84.57 85.46 81.65 71.57 64.45 0.44 0.59

mark, Figure 3(b) has more changes in structure
than Figure 3(c).

4.4 Results

We compare the performance of the proposed
SSADP with mentioned baselines on CODT1
shown in Table 5 and CTB9 shown in Table 6.
We have three observations described as follows:
1) Compared with Biaffine (Li et al., 2019), Bi-
affine (Ours) outperforms the former on three do-
mains of CODT1. And on this basis, compared
with the Biaffine (Ours), the proposed SSADP ob-
tains significant performance gain on both CODT1
and CTB9 as shown in the last column of each ta-
bale. These significant improvements demonstrate
the effectiveness of SSADP; 2) The performance
gain in CTB9 is lower than the performance gain
obtained in CODT1, but still significant. It is note-
worthy that, despite the amount of unlabeled data
in CTB9 being far less than CODT1, where CODT:
CTB9 is about 14:1, SSADP still obtains improve-
ments on all domains in CTB9. This shows that
our model has good adaptation ability for CDP;
3) Our SSADP is very stable even in the case of
lack of unlabeled data. BiaffineAdv can achieve
some performance improvement in CODT1, but
BiaffineAdv produces negative transfer in almost
all domains on CTB9. The magnitude of unlabeled
data on BN, BC and WB is less than BS shown
in Table 2. And we can observe obvious negative
transfer in these domains between BiaffineAdv and
Biaffine (Ours) baseline, which further indicates
that unlabeled data is critical to other unsupervised
domain adaptation approaches, where the proposed
SSADP retains the effective transfer ability even in
scenarios where unlabeled data is scarce.

4.5 Weisfeiler-Lehman Test
In our WL-Test, we treat each predicted syntactic
dependency tree as a predicted graph and each gold
syntactic dependency tree as a gold graph.

As shown in Figure 4, the proposed SSADP
achieves the highest Isomorphic Score S on both
PB and ZX domains, while on PC domain, there is
a trivial difference between SSADP and Biaffine
(Ours). Comparing the Isomorphic Score S un-
der two ablation settings, we can also see that al-
though the UAS and LAS of SSADP w/o LMMD
and SSADP w/o GAT are similar, the Isomorphic
Scores S of SSADP w/o LMMD are all higher
than SSADP w/o GAT, which further proves that
structural transfer indeed transfer more structural
information than semantic transfer. Structure trans-
fer can better transfer text structural information
in the domain. We can see the Isomorphic Score
S of BiaffineAdv is similar with Biaffine (Ours)
in three domains. In conclusion, we can infer that
the adversarial domain adaptation can hardly learn
common structural information between domains.

4.6 Ablation Study
In this section, the impact of the two transfer mod-
ules is revealed. We remove the structural transfer
and semantic transfer modules from the proposed
SSADP respectively, and then perform training and
test on the three domains on CODT1.

The results of ablation study are shown in Ta-
ble 7. Two independent modules, SSADP w/o GAT
(retains semantic transfer) and SSADP w/o LMMD
(retains structural transfer), are tested. The results
show that both modules take effect on three do-
mains compared with the Biaffine (Ours). The de-
tail performance improvement is shown in the last
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Table 7: Ablation result of test data on CODT1

Model BC! PB BC! ZX BC! PC Average Gain
UAS LAS UAS LAS UAS LAS UAS LAS

Biaffine (Li et al., 2019) 67.55 61.01 68.44 59.55 – – – –
Biaffine (Ours) 67.75 60.95 69.41 61.55 39.95 26.96 – –
SSADP w/o GAT 68.40 61.32 70.20 62.39 40.12 26.49 0.54 0.25
SSADP w/o LMMD 68.30 61.30 70.28 62.90 40.34 26.84 0.60 0.53
SSADP 68.55 61.59 70.82 63.61 41.10 27.67 1.12 1.14

Table 8: Result of SSADP with pseudo annotation

Model BC! PB BC! ZX Avg Gain
UAS LAS UAS LAS

Biaffine (Li et al., 2019) 67.55 61.01 68.44 59.55 – –
Biaffine (Ours) 67.75 60.95 69.41 61.55 – –
SyntaxError (2019) 71.48 65.43 73.90 66.54 4.11 4.74
SSADP 68.55 61.59 70.82 63.61 1.11 1.35
SSADP with annotation 71.68 65.85 74.93 67.64 4.73 5.50

column of Table 7. The performance improvement
of each transfer method is still signigicant, which
demonstrates each transfer module of SSADP is
effective. The proposed SSADP achieves higher
performance of 0.28 and 0.55 on UAS and LAS
compared with semantic transfer and 0.52 and 0.61
compared with structure transfer. It indicates that
the proposed SSADP enhances the transfer abil-
ity via complementarily achieving the alignment
of semantic and structural information simultane-
ously. More exploration results can be found in the
Appendix.

4.7 SSADP with Pseudo-label Annotation
The proposed SSADP focuses on the design of
model structure, which is complementary with
pseudo-label annotation method in theory. Thus we
extend the proposed SSADP with pseudo-label an-
notation strategy to get a better performance gain.

The SSADP with pseudo-label annotation strat-
egy is conducted as follows:

1) Using the trained baseline and SSADP to label
the unlabeled data of target domain.

2) Filtering the predicted sentence which get the
same predictions of two models.

3) Combining the remaining sentences of the
target domain into the original training set, and
retrain the model.

4) Repeat the step 1-3 until the performance of
retrained model is stable.

We conduct experiment on the PB and ZX do-
main of CODT1 and the results are shown in Table
8. The proposed SSADP outperforms the Syntax-
Error. SyntaxError is the winner of NLPCC2019

Figure 4: Weisferiler-Lehman Test Curve of CODT1.

Shared Task1-subtask1, which use character-level
feature to enhance the ability of model and in-
tegrate adversarial training, self-training and tri-
training to achieve CDP, the multi-model vote strat-
egy is also be used for final predict (Peng et al.,
2019). This result indicates that SSADP can com-
bine with pseudo-annotation methods.

5 Conclusion

We propose a novel parsing model termed SSADP
that can achieve unsupervised cross-domain depen-
dency parsing by extracting semantic and struc-
tural features and performing domain alignment
without using pseudo annotation and data selection.
The experimental results on the CODT1 and CTB9
datasets demonstrate the effectiveness of our model.
Moreover, we adopted Weisferiler-Lehman Test to
verify the structural transfer ability of the proposed
SSADP and other baselines. Finally, by extending
SSADP with pseudo-annotation method, we show
that proposed SSADP can be combined with the
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previous pseudo-annotation cross-domain methods
and achieve better performance.
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Appendix

Table 9: Result of MMD Test on CODT1

Model BC! PB BC! ZX BC! PC
UAS LAS UAS LAS UAS LAS

Biaffine (2019) 67.55 61.01 68.44 59.55 – –
Biaffine (Ours) 67.75 60.95 69.41 61.55 39.95 26.96
Biaffine-QKCNN-MMD 68.20 61.34 69.34 61.96 39.79 26.43
SSADP (w/o GAT) 68.40 61.32 70.20 62.39 40.12 26.49

As mentioned in Section 3.3 of the text, Maxi-
mum Mean Discrepancy (MMD) is an efficient but
rough domain adaptation method. We use Local
Maximum Measure Discrepancy (LMMD) (Zhu
et al., 2020) in the proposed Semantic-Structural
Adaptative Dependency Parser (SSADP) instead of
MMD. In order to verify that LMMD can make bet-
ter use of dependency labels mentioned above, we
try to conduct replacement experiments on CODT1
(Li et al., 2019) to compare the effects of MMD
and LMMD. In order to eliminate the influence of
structural transfer module, we just use three mod-
ules of the proposed SSADP: semantic extractor
(Biafine (Dozat and Manning, 2017)) + structural
extractor (QKCNN (Yang et al., 2018)) + semantic
transfer module (MMD or LMMD).

From the results shown in Table 9, we can see
MMD method is effective in PB domain and ZX
domain, but it shows negative transfer in PC do-
main. The results demonstrate LMMD outperforms
MMD in unsupervised cross-domain dependency
parsing, which is consistent with the previous theo-
retical analysis.


