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Abstract
Recent neural data-to-text generation models
employ Pointer Networks to explicitly learn
content-plan given a set of attributes as in-
put. They use LSTM to encode the input,
which assumes a sequential relationship in the
input. This may be sub-optimal to encode
a set of attributes, where the attributes have
a composite structure: the attributes are dis-
ordered while each attribute value is an or-
dered list of tokens. We handle this prob-
lem by proposing a neural content-planner
that can capture both local and global con-
texts of such a structure. Specifically, we
propose a novel attention mechanism called
GSC-attention. A key component of the GSC-
attention is grouped-attention, which is token-
level attention constrained within each input
attribute that enables our proposed model cap-
tures both local and global context. Moreover,
our content-planner explicitly learns content-
selection, which is integrated into the content-
planner to select the most important data to
be included in the generated text via an atten-
tion masking procedure. Experimental results
show that our model outperforms the competi-
tors by 4.92%, 4.70%, and 16.56% in terms
of Damerau-Levenshtein Distance scores on
the WIKIALL, WIKIBIO, and ROTOWIRE
datasets, respectively.

1 Introduction
Data-to-text generation (Reiter and Dale, 2000) is
an important and challenging task in natural lan-
guage processing. It aims to produce sentences
given structured data. There are many downstream
applications of data-to-text-generation, such as bi-
ography summarization (Lebret et al., 2016), auto-
matic weather forecasting (Mei et al., 2016), etc.

Traditional approaches follow a pipeline frame-
work consisting of three stages: content-selection,
content-planning, and surface-realization. Content-
selection selects the data to be expressed; content-
planning determines the structure of the sentences
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Input
(a set of
attributes)

〈name; Barack Hussein Obama〉
〈birth_place; Honolulu, Hawaii〉
〈occupation; senator〉
〈occupation; politician〉
〈birth_date; August 4, 1961〉
〈residence; Washington, D.C.〉
〈citizenship; United States〉

Example
description

Barack Obama (born August 4,
1961, in Honolulu, Hawaii)
is an American politician who
lives in Washington, D.C., U.S.

Output
(content-plan)

〈Barack, Obama, August, 4, 1961,
Honolulu, Hawaii, politician,
Washington, D.C.〉

Table 1: Input and output of content-plan generation.

to be generated; and surface-realization generates
the output based on the content-planning. Recent
neural data-to-text generation approaches integrate
these stages into an end-to-end model, i.e., tasks
of the stages are learned implicitly, as end-to-end
training is becoming popular (Wang et al., 2018a).
Despite their success, end-to-end models without
proper content-planning may generate repetitive,
incomplete, and incoherent sentences. Moreover,
end-to-end models are less interpretable, making
it difficult to perform error analysis for further im-
provement.

It has been shown that explicitly learning
content-planning improves the performance (e.g.,
reduce repetition or generate a coherent sentence)
and the interpretability of neural data-to-text
generation models (Trisedya et al., 2018). In this
paper, we study the problem of neural content-plan
generation. Given a set of attributes of an entity,
we aim to select the salient attributes (i.e., the
attributes mentioned) and reorder the selected
attributes such that they follow the common
attribute mentioning order in natural sentences. For
example, in Table 1, the input is a set of attributes
for the entity Barack Obama (in the form of
key-value pairs): 〈name; Barack Hussein
Obama〉, 〈birth_place; Honolulu,
Hawaii〉, etc. Suppose that the target descrip-
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tion is Barack Obama (born August 4,
1961, in Honolulu, Hawaii) is an
American politician who lives in
Washington, D.C., U.S. Our goal is to
generate the content-plan of the target description,
which is the attribute value mentioning order in
the description. In this example, the content-plan
is 〈Barack, Obama, August, 4, 1961,
Honolulu, Hawaii, politician,
Washington, D.C.〉.

Existing neural data-to-text generation models
(Puduppully et al., 2019; Trisedya et al., 2020) em-
ploy Pointer Networks (Vinyals et al., 2015) as the
content-planner. There are two limitations of such
models. First, the oracle Pointer Networks used in
Puduppully et al. (2019) and Trisedya et al. (2020)
do not explicitly learn the content-selection. More-
over, the input to a data-to-text generation model is
a set of attributes, which may be given in any order
and do not have a sequential relationship. Using
LSTM to encode and capture the ordering relation-
ships in the input set may be sub-optimal. Second,
Pointer Networks do not handle content-selection
properly. Typically, a content-planner is applied
at the token-level, which selects salient tokens for
generating the description. For the example in Ta-
ble 1, the tokens that are supposed to be selected for
the attribute name are Barack and Obama, while
the token Hussein is supposed to be filtered. In
summary, the input of the task is attributes of an
entity that have a composite structure (instead of a
sequence): the attributes are disordered while each
attribute value is an ordered list of tokens. To en-
code such a structure properly, the encoder should
learn both the representation for each token of an
attribute (i.e., local context) and the attribute as a
whole (i.e., global context).

To address the limitations above, we propose a
novel neural content-planner. Specifically, we pro-
pose a novel GSC-attention to capture the local
and global contexts of the input set. The GSC-
attention consists of three attention mechanisms.
The first is grouped-attention, a token-level atten-
tion mechanism restricted within each attribute.
The grouped-attention lets an attribute represen-
tation captures the relationship between tokens in
an attribute (i.e., local context). The second is
self-attention among attribute level representations.
This attention updates the attributes’ representa-
tions based on the overall attribute information (i.e.,
global context). The third is cross-attention, which

updates token representations based on attribute
representations to capture the attributes’ composite
relationships. We stack multiple layers of GSC-
attention, and the updated token representations of
a layer are used as input for the next layer. This
way, GSC-attention ensures capturing the interac-
tion between the local and global contexts.

We further propose a content-selection mask-
ing procedure to integrate content-selection into
our content-planner. Content-selection aims to fil-
ter non-salient attribute tokens, which helps the
content-planner arrange the selected attribute to-
kens properly. We integrate content-selection with
our content-planner as follows. First, the content-
selection module generates a pseudo-content-
selection, which is a binary value that indicates
whether an attribute token should be selected. Then,
the pseudo-content-selection is used as a mask
in the content-planning module to let content-
planning focus on arranging the selected attribute
tokens. The advantages of our masking proce-
dure are twofold. First, it allows end-to-end joint
training between content-selection and content-
planning. Second, it explicitly learns content-
selection from the content-planner, which improves
the interpretability of the model, specifically in an-
alyzing the error of the model.

The contributions of the paper are as follows.
• We propose a neural model for content-plan

generation from a set of attributes that explicitly
learns content-selection and content-planning.
• To properly encode a set of attributes, we

propose a novel attention mechanism, GSC-
attention, that effectively captures the local and
the global contexts in an input set and their
composite relationships.
• To integrate the content-selection and content-

planning procedures, we propose a content-
selection masking procedure.

2 Related Work
Content-planning is an essential part of data-to-text
generation to determine the order of data mentioned
in generated sentences. In early data-to-text gen-
eration approaches, content-planning is done by
creating hand-crafted rules (Scott and de Souza,
1990; Hovy, 1993), using template-based models
(McKeown, 1992; Reiter et al., 2000), or exploit-
ing machine learning models (Duboue and McK-
eown, 2003; Barzilay and Lapata, 2005; Liang
et al., 2009). Content-planning is coupled with
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content-selection and surface-realization. Content-
selection mainly relies on hand-built heuristics (Ku-
kich, 1983; Ehud Reiter, 1997) and shallow statisti-
cal machine learning models (Duboue and McKe-
own, 2001, 2002; Kim and Mooney, 2010; Konstas
and Lapata, 2012). For surface-realization, earlier
studies exploit template-based models (McKeown
et al., 1997; Deemter et al., 2005) and language
models (Angeli et al., 2010).

As end-to-end training is becoming preva-
lent (Wang et al., 2019, 2021b), recent data-to-
text generation approaches employ neural networks
which can be trained end-to-end (Shen et al., 2020).
These approaches use encoder-decoder frameworks
(Cho et al., 2014; Bahdanau et al., 2015; Vaswani
et al., 2017). The encoder is used to transform the
input into some vector representation. The decoder
takes the vector representation as context to gen-
erate the target sentence. In both the encoder and
the decoder, sequence neural network models, such
as LSTM (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017), are used to
process the data. Studies in this line of work in-
clude biography summarization (Lebret et al., 2016;
Liu et al., 2018), weather forecasting (Mei et al.,
2016), and game summarization (Wiseman et al.,
2017). Despite their success, these models may
generate incoherent sentences since they do not
have a proper content-plan.

To improve the coherence of the generated text,
recent studies re-introduce content-planning mech-
anism in neural approaches of data-to-text genera-
tion. Sha et al. (2018) propose a content-planning
mechanism via link-based attention to model re-
lationships among input data. It learns a matrix
where each element indicates transition probability
of two attributes. Goldfarb-Tarrant et al. (2020) em-
ploy the Aristotelian framework and a re-scoring
model to find the best story plot in story genera-
tion. Other studies along this line propose two-
stage models, i.e., learning the content-planning
and the surface-realization consecutively. For ex-
ample, Hua and Wang (2019) use LSTM-based
content-plan, while Puduppully et al. (2019) ex-
ploit Pointer Networks (Vinyals et al., 2015) for
content-planning. Both works use LSTM-based
surface-realization. Trisedya et al. (2020) propose
a content-planning-based attention model, where
the content-plan is learned using Pointer Networks.

The aforementioned models use content-
planning mechanisms with LSTM or shallow trans-

formation networks as the input encoder. However,
LSTM is sub-optimal to capture the relationships
in the input. This is because the input is a set (e.g.,
a set of attributes), and each attributes may consist
of multiple tokens, which form a hierarchical struc-
ture among the attributes instead of a sequence.
Thus, applying LSTM on the input data may lead
to improper representations of the input. In this pa-
per, we propose a novel content-planner to capture
the hierarchical structure of the input.

3 Preliminary
Let A = {a1, a2, ..., an} be a set of n attributes
of an entity. Each attribute ai = 〈ki; vi〉 is a
pair of a key ki and a value vi (i = 1, 2, ..., n).
Key ki denotes the type of an attribute. Value
vi = [vi,1, vi,2, ..., vi,mi ] is a sequence of mi to-
kens. The content-plan of a sentence specifies
which attributes are selected to be included in the
generated sentence and their order in the sentence.
It consists of a sequence of tokens, where each
token belongs to one of attributes. The content-
plan can be represented by a sequence of index
pairs P = [〈i1, j1〉, 〈i2, j2〉, ..., 〈ic, jc〉]. Here, ik
indicates the index of an attribute, and jk indi-
cates the index of a token within the attribute
(k = 1, 2, ..., c).

Given a set of attributes A, we aim to generate
the content-plan P . Note that our goal is not to
generate a sentence given a set of attributes. Our
work aims to organize the attributes in a way that
enables generating better (i.e., non-repetitive and
coherent) sentences for downstream textual genera-
tion models.

4 Proposed Model

Solution overview. We propose a novel end-to-
end model for content-plan generation. The model
consists of four modules: an embedding and lin-
ear transformation module, an attribute-encoding
module, a content-selection module, and a content-
planning module.

The embedding and linear transformation mod-
ule (cf. Section 4.1) aims to obtain initial vector
representations of attributes and tokens. The rep-
resentations should maintain the order of tokens
within an attribute and should not impose any order
on the set of attributes.

The attribute-encoding module (cf. Section 4.2)
aims to encode the attributes of an entity into fixed-
length embeddings, which will be used by the
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content-selection and the content-planning mod-
ules as inputs. The attributes of an entity have a
composite structure: the attributes are disordered
while each attribute value is an ordered list of to-
kens. To encode such a structure, we propose a
novel attention mechanism capable of learning a
representation for each token of an attribute and
the attribute as a whole.

The content-selection module (cf. Section 4.3)
aims to accurately predict both content-selection
labels and attribute-selection labels. The content-
selection labels help highlight the selected at-
tributes, whereas the attribute-selection labels pro-
vide more supervision signals to train parameters
of the content-selection module.

The content-planning module (cf. Section 4.4)
integrates the content-selection into the Pointer Net-
works to generate a content-plan.

4.1 Embedding and Linear Transformation
We obtain representations of tokens and attributes
by applying a linear transformation to their em-
beddings. To distinguish the same token in dif-
ferent attributes and maintain the internal order of
tokens within an attribute, we represent a token of
an attribute by a quadruple ti,j = [ki, vi,j , fi,j , ri,j ]
where ki is the key of the attribute, vi,j is the token,
fi,j and ri,j are the forward and backward posi-
tions of the token within the attribute, respectively.
The representation of the token ti,j is computed by
applying a linear transformation on an embedding
of the key eki,j , an embedding of the token evi,j ,
embeddings of the forward and backward positions
efi,j , eri,j as follows:

ki,j = tanh(Wk[eki,j , efi,j , eri,j ] + bk), (1)

vi,j = tanh(Wv[evi,j , efi,j , eri,j ] + bv), (2)

ti,j = tanh(ki,j + vi,j). (3)

The representation of an attribute is computed by:

ai = tanh(Waeai + ba), (4)

where eai is an embedding of attribute ai.

4.2 Attribute Encoding Module
We propose a novel attribute encoder to learn two
types of embeddings: embeddings of tokens and
embeddings of attributes. The attribute encoder
consists of a stack of N identical layers (N is a
system parameter). Each layer is composed of
two sub-layers. The first is a Grouped-Self-Cross
attention (GSC-attention) layer, a novel attention
mechanism, and the second is a feed-forward layer.

Grouped-attention

Updated token-level vector (for next layer input)

…

……

……

Self-attention

……

Cross-attention

Updated attribute-level vector (for next layer input)

Input attribute-level vector

Input token-level vector

KQ V&

Q Query vector K Key vector V Value vector

Q K V

Q K V

Figure 1: GSC-attention

We employ each of the two sub-layers to learn a
residual function and then apply a batch normaliza-
tion layer. Formally, the output from each sub-layer
is BatchNorm(x + SubLayer(x)), where x is an
input to the sub-layer, SubLayer(·) is the residual
function learned, and BatchNorm(·) denotes the
batch normalization. We use a fixed dimensionality
d for all layers throughout this paper to facilitate
the residual connection.

As a key building block of the attribute encoder,
the GSC-attention has three attention mechanisms:
a grouped-attention, a self-attention, and a cross-
attention. We illustrate them in Fig. 1 and describe
the layers next.

Grouped-attention. The Grouped-attention aims
to learn a representation for each attribute based on
interactions among the tokens within the attribute.
For simplicity, we use a one-dimensional index
to represent a sequence of all tokens of all input
attributes: [t1, t2, ..., tm] , which is a simplified
form of [t1,1, t1,2, ..., tn,mn ]. In Grouped-attention,
we require the tokens of the same attribute to appear
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together in the sequence. The different attributes
can be randomly ordered in the sequence. Let G ∈
Rn×m be a group mask matrix where each entry
gi,j = 1 if the value of an attribute ai contains a
token tj , and gi,j = 0 otherwise. We compute the
Grouped-attention as follows.

Qg = [a1,a2, ...,an]
TWQg (5)

Kg = [t1, t2, ..., tm]TWKg (6)

Vg = [t1, t2, ..., tm]TWVg (7)

GroupAtt = softmax

(
(QgK

T
g )�G
√
d

)
Vg (8)

where Qg,Kg, and Kg are the query, key, and
value matrices, respectively. Here, Qg ∈ Rn×d,
while Kg,Vg ∈ Rm×d. � denotes element-wise
multiplication of two matrices, and W denotes a
learned parameter. The use of the group mask G
makes the attention weights focus on inter-attribute
interactions, i.e., interactions among tokens within
the same attribute.
Self-attention. The grouped-attention layer only
considers intra-attribute interactions but not inter-
attribute interactions, i.e., interactions among to-
kens from different attributes. To capture inter-
attribute interactions, we employ a self-attention
layer over the attribute embeddings

SelfAtt = softmax

(
QsK

T
s√

d

)
Vs (9)

where Qs,Ks, and Ks are the query, key, and
value matrices that are computed from the updated
attribute representation computed by Eq. 8.
Cross-attention After obtaining the attribute em-
beddings that capture both intra-attribute and inter-
attribute interactions, we update the token embed-
dings by a cross-attention layer

CrossAtt = softmax

(
QcK

T
c√

d

)
Vc (10)

where Qc is a query matrix computed from the
token embedding t, Kc and Vc are the key and
value matrices, respectively, which are computed
based on the attribute representation from the self-
attention (cf. Eq. 9). Unlike the grouped-attention,
we do not employ the group mask in the cross-
attention, such that the token embeddings consider
both intra-attribute and inter-attribute interactions
among attribute tokens.

4.3 Content-Selection Module
We define content-plan as a sequence of attribute-
token in the order that they are mentioned

in a sentence. For example, the content-plan
for the example in Table 1 is 〈Barack,
Obama, August, 4, 1961, Honolulu,
Hawaii, politician, Washington,
D.C.〉. The content-selection label is a set of bi-
nary variables F = {li,j |1 ≤ i ≤ n, 1 ≤ j ≤ mi}
where subscripts i and j indicate the attribute index
and the token index, i.e., li,j indicates whether
token ti,j in the value of attribute ai appears in the
content-plan (li,j = 1) or not (li,j = 0).

Given a sequence of token embeddings outputted
by the attribute encoding module [t1, t2, ..., tm],
we use a fully-connected layer on top of each to-
ken embedding to compute the probability that the
content-plan includes the token.

pj = sigmoid(Wttj + bt), (11)

where W is a trainable parameters of a fully-
connected layer, and bt is the bias. We refer to
such probabilities as content-selection probabili-
ties. Since the content-selection labels are binary,
we use a binary cross-entropy loss:

LCS =

m∑
j=1

lj log pj + (1− lj) log(1− pj). (12)

4.4 Content-Planning Module
Given the token embeddings tj = [t1, t2, ..., tm]
and the content-selection probabilities pj =
[p1, p2, ..., pm], we aim to generate a sequence of
pointers P = [j1, j2, ..., jc] where each pointer
jk is an index corresponding to the jk-th token.
We adapt Pointer Networks (Vinyals et al., 2015)
to incorporate content-selection probabilities into
generating the content-plan via content-selection
masking procedure as follows.

We first transform the content-selection probabil-
ities into pseudo content-selection, a binary value
(i.e., pj = 1 if the corresponding probability score
> 0.5, otherwise pj = 0) that indicates whether
an attribute token is selected or not. Then, we use
the Pointer Networks to produce a vector that mod-
ulates a content-based attention mechanism over
tokens at each step. Let [h1,h2, ...,hc] be a se-
quence of hidden states of the networks. At each
step k, we incorporate the pseudo content-selection
to compute pointer attention over all tokens:

c = v tanh(Wt[t1, t2, ..., tm] +Whhk), (13)
u = softmax(c� [p1, p2, ..., pm]). (14)

Here, u is a probability distribution over the to-
kens, where uj is the probability for token tj ,
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v,Wt,Wh are parameters. We train the content-
planner by maximizing a cross-entropy loss:

LCP =

c∑
k=1

m∑
j=1

1(j = jk) log ujk , (15)

where 1(·) is an indicator function that returns 1
if the proposition in the argument is true, and 0
otherwise. The overall objective function is a sum
of the objective functions of the binary classifiers
and the pointer generator’s objective function.

L = LCS + LCP. (16)

We optimize the overall objective function by back-
propagation algorithm (Wang et al., 2018b, 2021a)

5 Experiments

5.1 Dataset
We evaluate our proposed model over three real-
world datasets, WIKIALL (Trisedya et al., 2020),
WIKIBIO (Lebret et al., 2016), and ROTOWIRE
(Wiseman et al., 2017). The WIKIALL and WIK-
IBIO datasets contain attributes-description pairs.
The description is a sentence that describes an en-
tity extracted from the first sentence of the cor-
responding Wikipedia page. The attributes com-
prise a set of attributes that belongs to the entity.
The WIKIALL dataset obtains the attributes from
Wikidata (Vrandecic and Krötzsch, 2014), while
the WIKIBIO dataset obtains the attributes from
the Wikipedia infobox. The ROTOWIRE dataset
contains pairs of data-records and NBA basketball
game summary. The data-record is a table of statis-
tics about an NBA game.

The WIKIALL dataset contains 152, 231
attributes-description pairs. It includes 53 entity
types with an average of 15 attribute types (and
up to 100 attribute tokens) per entity and an aver-
age of 20 tokens per description. The WIKIBIO
dataset focuses on biography (i.e., this dataset only
contains one entity type: PERSON). It contains
728, 321 attributes-description pairs. Its average
number of attribute types per entity is 19 (and up
to 100 attribute tokens), and its average number
of tokens per description is 26. The ROTOWIRE
dataset contains 4, 900 record-summary pairs with
39 record types. Its average number of attribute
tokens per game record is 600, and its average
number of tokens per summary is 337.

Our primary goal is to generate a content-plan
from a set of attributes. Our proposed model in-
cludes content-selection learning to obtain a bet-
ter content-plan. We need content-selection and

content-plan labels for each attributes-description
pair in all three datasets to train such a model.
For the WIKIALL and WIKIBIO datasets, we use
the data pre-processed by Trisedya et al. (2020).
For the ROTOWIRE dataset, we use the data
pre-processed by Puduppully et al. (2019). The
pre-processed data have content-plan labels, but
not content-selection labels. To obtain content-
selection labels, we give label 1 for input tokens
that appear in the target content-plan, and label 0
for the rest of the input tokens.

5.2 Training Details

We implement our model with Tensorflow and train
it on NVIDIA GeForce RTX 2080 Ti. We use
grid search to tune the hyperparameters. We select
the embedding size in [8, 128], the dropout rate
in [0.1, 0.5], and the learning rate in [1e−2, 1e−4].
The best hyper-parameter settings are as follows.
We use 128 hidden units for the networks. We
use 32, 16, and 8 dimensions of word embeddings
(attribute value token), type embeddings (attribute
key), and position embeddings, respectively. We
use a 0.1 dropout rate. We use Adam (Kingma
and Ba, 2015) with a learning rate of 1e−4. The
memory cost to store the model is 2, 475 MB, and
the average running time for training and testing
the model is 350 minutes on the WIKIALL dataset.

5.3 Tested Models

We compare our proposed model (GSC-attention)
with the following models.
• Enc-Dec (Wiseman et al., 2017), which em-

ploys an encoder-decoder framework with
LSTM in both the encoder and the decoder.
It also uses conditional copy (Gulcehre et al.,
2016) on the decoder side.
• NCP (Puduppully et al., 2019), which uses

LSTM in the encoder and Pointer Networks
in the decoder.
• Transformer, which is a direct adaptation of

the Transformer model (Vaswani et al., 2017).
For this model, we used the Transformer en-
coder and coupled it with Pointer Networks to
generate content-plans.

It is worth noting that we only take the content
planner part from the existing models (Enc-Dec
and NCP) since the main goal in this paper is to
generate a content-plan from a set of attributes.
For ablation tests, we run three variants for each
compared model as follows.
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Model
WIKIALL WIKIBIO ROTOWIRE

Precision Recall DLD Precision Recall DLD Precision Recall DLD

Enc-Dec 80.90 ±.27 68.79 ±.23 71.33 ±.28 70.01 ±.29 55.51 ±.29 58.42 ±.20 18.22 ±.15 27.12 ±.19 8.44 ±.18
+ Sorted 81.92 ±.21 72.30 ±.11 73.33 ±.24 69.88 ±.27 57.81 ±.24 59.07 ±.17 18.39 ±.19 27.79 ±.28 9.44 ±.10
+ CS loss 82.75 ±.10 70.98 ±.30 73.73 ±.25 71.00 ±.28 58.71 ±.24 59.82 ±.26 18.63 ±.30 28.66 ±.13 9.83 ±.13
+ CS mask 83.03 ±.21 70.56 ±.28 75.95 ±.14 71.88 ±.18 55.85 ±.29 60.70 ±.21 20.19 ±.18 26.51 ±.29 10.46 ±.20

NCP 85.72 ±.30 73.46 ±.23 73.96 ±.17 77.80 ±.11 61.76 ±.16 61.97 ±.25 33.88 ±.27 50.94 ±.26 18.27 ±.27
+ Sorted 86.48 ±.24 77.49 ±.22 77.16 ±.20 77.73 ±.12 62.60 ±.17 61.75 ±.30 34.65 ±.10 51.37 ±.13 19.04 ±.19
+ CS loss 86.99 ±.10 75.82 ±.26 76.15 ±.14 78.42 ±.14 62.99 ±.20 62.26 ±.21 34.63 ±.19 51.30 ±.14 19.75 ±.24
+ CS mask 88.22 ±.30 73.97 ±.25 78.08 ±.19 79.00 ±.28 61.15 ±.20 63.54 ±.26 35.72 ±.15 48.09 ±.13 21.37 ±.14

Transformer 90.19 ±.17 83.21 ±.11 80.57 ±.30 78.82 ±.29 64.40 ±.11 62.86 ±.21 33.16 ±.10 33.97 ±.19 22.14 ±.21
+ Sorted 89.72 ±.15 83.18 ±.29 80.24 ±.10 79.27 ±.21 64.13 ±.20 63.48 ±.27 34.58 ±.23 37.08 ±.14 24.35 ±.21
+ CS loss 90.05 ±.14 83.63 ±.19 81.40 ±.23 80.31 ±.20 66.75 ±.21 63.90 ±.28 35.04 ±.19 39.45 ±.28 25.96 ±.15
+ CS mask 90.30 ±.18 81.99 ±.14 81.76 ±.25 79.00 ±.19 64.11 ±.14 64.41 ±.13 37.39 ±.10 37.42 ±.25 28.07 ±.12

GSC-attention 90.70 ±.27 84.12 ±.24 82.71 ±.20 80.88 ±.27 67.20 ±.29 65.12 ±.24 44.97 ±.29 41.25 ±.22 27.64 ±.14
+ Sorted 90.48 ±.29 84.42 ±.22 82.72 ±.21 80.21 ±.23 66.19 ±.28 63.79 ±.30 47.59 ±.19 42.34 ±.11 27.84 ±.25
+ CS loss 90.99 ±.28 84.49 ±.11 82.81 ±.15 81.23 ±.19 69.65 ±.28 65.38 ±.26 49.07 ±.12 44.39 ±.10 29.87 ±.27
+ CS mask 92.15 ±.11 83.74 ±.12 84.69 ±.13 82.28 ±.13 68.91 ±.15 65.98 ±.23 51.68 ±.12 43.60 ±.12 32.72 ±.27

Table 2: Main results: comparison of different encoders

+ Sorted. This variant does not change the model
but takes a sorted input (alphabetically ordered
by the attribute keys). The intuition is that
sorted input may be easier to learn.

+ CS loss. This variant jointly learns content-
selection and content-planning but does not use
the masking strategy described in Section 4.4.

+ CS mask. This variant uses the masking strat-
egy described in Section 4.4.

5.4 Main Results

We use the following metrics to evaluate the mod-
els Wiseman et al. (2017). To measure model
performance on extracting salient attributes (i.e.,
content-selection), we use precision and recall. To
measure how well a model orders the selected at-
tributes (i.e., content-planning), we use Damerau-
Levenshtein Distance (DLD) between the gener-
ated content-plan and the gold standard.

Table 2 shows the results. From these results, we
see that our proposed GSC-attention achieves the
best performance for generating content-planning,
indicated by the highest DLD score on all three
datasets. We also see that the Transformer adap-
tation outperforms two existing models, Enc-Dec
and NCP. This is because both existing models
employ LSTM in the encoder side, which is sub-
optimal to encode the attribute set. Our model
further outperforms the direct Transformer adap-
tation since our model can capture both local and
global relationships among the attributes. In con-
trast, the Transformer adaptation linearizes the in-
put set, which omits the local relationships between
tokens within the same attributes. In general, all

models achieve higher DLD scores in WIKIALL
and WIKIBIO datasets but lower scores in the RO-
TOWIRE dataset. This is because the ROTOWIRE
dataset contains a larger (i.e., 600 records per game
compared to 100 attributes per entity in WIKIALL
and WIKIBIO) and homogeneous (i.e., mainly, it
contains numbers related to a game statistics) input.

Sorting the attributes in the input set (i.e., the
+ Sorted variant) gives a deterministic order to
the model input. However, this strategy does not
ensure that the encoder (especially the LSTM en-
coders) can capture the relationships among the
attributes. The alphabetically ordered attributes
may not reflect the correct attribute relationships.
These results verify that capturing the relationships
of the input set is non-trivial.

Ablation test results. In the ablation tests, we
aim to evaluate the effectiveness of our proposed
content-selection integration. We apply our pro-
posed integration to all models. In general, the
content-selection integration improves the perfor-
mance of the content-planner. All models benefit
from the content-selection integration. The vari-
ants that use joint learning of content-selection and
content-planning (i.e., the + CS loss variants) gain
1 to 2 points in DLD comparing with the respective
models without the integration. The + CS mask
variants further improve the content-planner’s per-
formance by 1 to 3 points in DLD. It is worth noting
that the masking strategy substantially improves the
precision and DLD score, but it may lower the re-
call. This is because the masking strategy narrows
the output selection to the attribute selected by the
content-selector. However, in content-plan gener-
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Model
BLEU-4 / ROUGE

WIKIALL WIKIBIO ROTOWIRE

Enc-Dec 54.21 / 48.789 38.32 / 34.488 14.24 / 12.816
NCP 59.87 / 53.883 40.21 / 36.189 16.45 / 14.805
Transformer 63.48 / 57.132 41.56 / 37.404 17.12 / 15.408
GSC-attention 64.59 / 58.131 43.57 / 39.213 19.21 / 17.289

Table 3: Text generation results

ation, we argue that precision and DLD are more
important than recall because we want to generate
accurate planning. Take an example in the bas-
ketball summary generation. The content-planner
should make an accurate content-plan prediction to
generate an accurate game summary.

5.5 Evaluation with Text Generation

The primary goal of this paper is content-plan gen-
eration, which is an intermediate goal of text gen-
eration. In this experiment, we further evaluate
the quality of the generated content-plans by using
them for text generation. We train a text genera-
tion model using an encoder-decoder framework.
Both the encoder and the decoder use the LSTM
model. We train the model over the gold standard
content-plan–target-sentence pairs of the dataset
(cf. Section 5.1). For testing, we use the content-
plan generated by the tested models as input, and
we compute the BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) scores of the sentence gener-
ated by the text generation model.

For each model, we take the best variant (i.e.,
the CS mask variant) to generate the content-plan.
Table 3 shows the text generation results. These
results confirm that our proposed model achieves
the best performance. The BLEU scores of the
generated text from the content-plan generated
by our model on WIKIALL, WIKIBIO, and RO-
TOWIRE as input are 64.59, 43.57, and 19.21
respectively. Note that the upper-bound perfor-
mances are 67.21, 46.32, and 24.06 in terms of
BLEU score in WIKIALL, WIKIBIO, and RO-
TOWIRE datasets, respectively.
Manual evaluations. We further perform man-
ual evaluations on the generated text. We define
three metrics for the manual evaluations: repeti-
tion, completeness, and coherence. Repetition mea-
sures whether there is repeating information (or
tokens) in the generated text. Completeness mea-
sures whether there is a missing attribute in the text.
Coherence measures correctness of the attribute
order in the generated text.

We randomly select 100 input sets of the

Model Repetition Completeness Coherence

Original input 1.25 1.35 1.43
Enc-Dec 2.32 2.19 1.45
NCP 2.52 2.23 1.58
Transformer 2.54 2.27 1.63
GSC-attention 2.68 2.45 2.02

Table 4: Manual evaluation results

WIKIALL dataset along with the generated text.
The manual evaluation is done by giving a score
from 1 to 3 for the generated text in each metric.
For each metric, score 3 is given to generated text
with no error; score 2 is given to generated text with
a single error; and score 1 is given to generated text
with more than one error.

Table 4 shows the manual evaluation results.
From these results, we can see that exploiting the
content-plan helps a text generation model to pro-
duce a better output. A text generation model that
takes the original attribute set as input generates
text that contains many repetition errors and miss-
ing information, i.e., it achieves a low score on the
repetition and completeness metric compared to the
text generation models that receive a content-plan
as input. This is because the generated content-
plan has been filtered from unnecessary informa-
tion. Among the compared content-planner, our
proposed GSC-attention achieves the best score
in all manual evaluation metrics. This result con-
firms the automatic evaluation where our proposed
model outperforms the competitors.

6 Conclusions and Future Works

We presented a model for generating a content-plan
from a set of entity attributes. To capture the local
and global contexts from the input set, we proposed
a novel GSC-attention. This attention mechanism
consists of three attention schemes, which combine
the intra-attention among tokens in an attribute and
the inter-attention among attributes. Our content-
planner further integrates a content-selection mech-
anism via a masking strategy. Experimental results
on real-world datasets confirm the effectiveness of
our model to generate a content-plan.

Despite outperforming all competitors, our gen-
erated content-plan can be further improved, es-
pecially for a large and homogeneous input set
(e.g., the ROTOWIRE dataset). A further decoding
strategy will be explored for future work. Another
interesting direction is to design a text generation
model that exploits the proposed content-planner.
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