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Abstract

User targeting is an essential task in the mod-
ern advertising industry: given a package of
ads for a particular category of products (e.g.,
green tea), identify the online users to whom
the ad package should be targeted. A (ad
package specific) user targeting model is typi-
cally trained using historical clickthrough data:
positive instances correspond to users who
have clicked on an ad in the package before,
whereas negative instances correspond to users
who have not clicked on any ads in the pack-
age that were displayed to them. Collecting a
sufficient amount of positive training data for
training an accurate user targeting model, how-
ever, is by no means trivial. This paper pro-
poses a novel method for automatic augmen-
tation of the set of positive training instances.
Experimental results on two datasets, includ-
ing a real-world company dataset, demonstrate
the effectiveness of our proposed method.

1 Introduction

User targeting is an essential task in the e-
commerce advertising industry. Informally, the
goal of user targeting is to identify online users to
whom a particular ad or ad package (i.e., a set of
ads on a particular kind of products, such as green
tea) should be targeted. Figure 1 shows a pipeline
through which the user targeting task is typically
tackled. Given an ad package that a company seeks
to advertise, the company starts by randomly sam-
pling a group of users from its customer database
and displaying select ads in the package on the
webpage(s) they visit. These users are then divided
into two groups: clicking users and non-clicking
users. Clicking users are those who clicked on the
ads and therefore expressed interest in them, while
their non-clicking counterparts are those who did
not click on the ads and are presumably not inter-
ested in the ads. These two groups of users then
serve as positive and negative examples for training
a user targeting model, which can then be used to
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Figure 1: The user targeting pipeline.

predict whether a new user should be targeted for
the given ad package.

While this approach of using historical click-
through data to automatically collect data for train-
ing a user targeting model is appealing at first
glance, it has a key weakness: it may take time to
collect enough data to train a reliable user targeting
model, especially for long-tail ads (i.e., ads with
few or no clicks). Worse still, even after waiting
long enough, we still cannot guarantee that there
will be enough clicks to generate positive training
examples. Collecting sufficient positive training
examples is critical to the success of this approach.

To address this challenge, we put forward the
following hypothesis: users who clicked on an ad
for a particular product category (e.g., green tea)
in the past are more likely to click on an ad for
the same product category in the future. Given
this hypothesis, we can potentially expedite the
collection of positive examples for training a user
targeting model as follows. Given a package of ads
for a particular product category, we first identify
ads for the same product category and then use
their clicking users to augment the training data for
training the user targeting model.

The question, then, is: how can we automatically
identify ads for the same product category as the
one under consideration? One approach would
be to train a classifier to classify an ad according
to its product category. While this approach is
straightforward, the resulting classifier will fail to
classify an ad for a (new) product category that
is not seen in the training data, In light of this
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weakness, we instead propose to learn how likely
two ads are for the same product category. Not
only will this address the aforementioned question
of identifying ads for the same product category
as the one under consideration, but the resulting
model will be applicable to new product categories.

The next question is: how can we train a model
to determine how likely two ads are for the same
product category? Since ads are displayed in the
form of creatives that are typically composed of
both texts and images, a reasonable solution to this
problem should involve matching the texts and the
images in the two ads. While algorithms for text
matching (Yang et al., 2019; Gong et al., 2018;
Wang et al., 2017b), image matching (Schroff et al.,
2015; Novotný et al., 2017), and text-image match-
ing (Zheng et al., 2020; Wang et al., 2019) exist,
none of them was developed specifically for ads.
We therefore propose ION, a bimodal method that
determines how likely two ads belong to the same
product category, the key highlights of which in-
clude the design of (1) a semantics-enhanced image
region extraction mechanism for identifying the re-
gion(s) of the image in an ad that is most relevant
to the text, and (2) a dual-path fusion attention
method for fusing the information extracted from
the two modalities.

In sum, our contributions in this paper are three
fold. First, we hypothesize that users who clicked
on an ad belonging to a particular product category
in the past is more likely to click on an ad belong-
ing to the same category in the future, and exploit
this hypothesis to augment the positive instances
used to train a user targeting model. Second, we
propose ION, a method for determining how likely
two ads belong to the same product category, as a
means to identify positive instances for user target-
ing. Finally, we evaluate ION in terms of (1) its
effectiveness in retrieving ads with the same prod-
uct category and (2) its ability to improve a user
targeting model via augmenting the training set us-
ing the positive instances it identifies. Experiments
on two datasets demonstrate its superiority to six
baseline systems, providing suggestive evidence of
its usefulness for the user targeting task.

The rest of this paper is structured as follows.
Section 2 describes related work. In Section 3, we
present ION, our model for determining how likely
two ads belong to the same product category. Sec-
tion 4 compares ION with state-of-the-art baselines
on two datasets. Finally, we conclude in Section 5.

2 Related Work

Works related to user targeting exist. Unlike ours,
they primarily focus on designing fancy models
that are trained on a large amount of data (Zhou
et al., 2018; Covington et al., 2016; Wang et al.,
2017a). In contrast, we aim at solving the insuffi-
cient training data problem, which to our knowl-
edge is an unexplored area of research.

A crucial aspect of our work concerns the de-
velopment of a method for determining how likely
two ads belong to the same product category. Be-
low we will discuss related work on text matching,
image matching, and text-image matching, even
though none of the existing matching algorithms
are specifically developed for ad matching.

Many text matching methods use an encoder
such as RNNs (Bowman et al., 2015), CNNs (Tan
et al., 2016), recursive networks (Tai et al., 2015)
and Transformer-based networks (Vaswani et al.,
2017; Devlin et al., 2019) to embed input texts into
vectors, possibly enhanced by attention (Parikh
et al., 2016; Chen et al., 2017), and then build a
binary classifier to determine whether the inputs
are similar. An exception is Yang et al. (2019),
whose matching method is based on rich alignment
features. In general, however, the text in ads are
often so ambiguous that it is difficult to determine
which products are promoted.

As for image matching, existing geometric fea-
ture detectors and descriptors can compute the sim-
ilarity between images (e.g., Lowe (2004), Wang
et al. (2018)), and a matching mechanism based on
CNNs has been proposed to retrieval face images
(Schroff et al., 2015). However, a large portion of
an ad image usually contain background objects,
which make the extracted image features too noisy
to accurately determine the underlying products
being promoted.

To perform text-image matching, some meth-
ods embed different modalities (e.g., texts and im-
ages) of the input into the same space and compute
similarity from feature vectors (Wang et al., 2016;
Zheng et al., 2020; Collell et al., 2017), but they
may be too coarse-grained to exploit local features,
i.e., words and image regions. Recent work (Karpa-
thy and Li, 2015; Huang et al., 2018; Qi et al.,
2018; Hu et al., 2019) split texts and images into
fine-grained words and visual regions, and com-
putes similarity by aligning the features of word
semantics and those extracted from image regions,
possibly with the help of attention (Lee et al., 2018)
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Figure 2: The framework of the proposed model.

and external knowledge (Shi et al., 2019; Wang
et al., 2019). Different from work on cross-modal
matching, which measures the similarity between
different modalities, our work focuses on fusing
features from the texts and the image in an ad to cre-
ate a multimodal representation. Note that there is
also related work that aims to generate multimodal
vectors containing both text and image features
for pre-training or classification (Xu et al., 2020;
Abavisani et al., 2020; Lu et al., 2019), in which
vectors from different modalities are concatenated
to form the multimodal representation. Rather than
performing a simple concatenation, our work pro-
poses an attention mechanism to fuse modalities
in order to better identify the correspondence be-
tween words and image regions. In addition, while
existing methods do not determine which words
and image regions in an ad are relevant to the prod-
uct under consideration and which ones are irrele-
vant/noisy, our method encodes words and extract
image regions selectively so that those that are re-
lated to the product are given larger weights.

3 Method

In this section, we describe our two-step method
for determining how likely two ads belong to the
same product category. During training, we train a
model for learning an ad representation such that
two ads that belong to the same product category
have similar representations. After training, we can
apply the resulting model as follows. Given an ad
in the test set, we retrieve the k ads that are most
similar to it, where similarity is computed using a
similarity metric applied to the representations of
two ads. The rest of this section focuses on the first
step, in which we train the model using multi-task

learning to learn ad representations (the main task)
simultaneously with keyword extraction from text
(the auxiliary task).

The model architecture is shown in Figure 2.
Given an ad composed of text and an image as in-
put, the model first embeds the sequence of words
using Transformer (Section 3.1). After that, a
Keyword-guided Selective Gate (KSG) mechanism
is adopted to mine the semantics from these text
representations (Section 3.2), which are leveraged
as clues for an attention module that reranks the
generated image regions extracted by the YOLOv3
object detection module (Redmon and Farhadi,
2018) (Section 3.3). Finally, the model combines
the re-ranked image regions and the distributed text
representation through a Dual-path Fusion Atten-
tion (DFA) layer to obtain a multimodal represen-
tation of the ad (Section 3.4). Below we introduce
each of these modules in detail.

3.1 Sentence Representation Learning

We encode each word in the text portion of the in-
put ad using Transformer (Vaswani et al., 2017), as
it has been shown effective in many NLP tasks (De-
vlin et al., 2019; Liu and Lapata, 2019). Given the
text, we encode its word sequence and obtain its
representations H = {h1,h2, . . .hn}, where n is
the number of words and hi ∈ Rdmodel .

3.2 Keywords-Guided Selective Encoding

Some words in the text portion of an ad contain
information that can help us to determine which
products are promoted by the ads, and thus are
more useful than those words that do not. As
an example, the ad shown in Figure 2 contains
the text “Spark Wrist with Brand XXX1, Treasure
Your Love Forever”. Here, the words “Spark” and
“Wrist” strongly suggest that it may be an ad of
something that is sparkling and worn on the wrist.
Furthermore, the brand may also indicate the prod-
uct category that helps us to determine the ad prod-
uct, as a brand advertiser usually sells products of
only a small number of categories. Based on word
semantics, it is highly likely that it may be an ad
involving bracelets. Therefore, it is essential to
extract information from keywords such as “Spark”
and “Wrist”, and at the same time ignore irrelevant
words such as “Your” and “Forever”. In the rest of
this subsection, we seek to improve the encoding
of an ad’s text that is guided by its keywords.

1The brand name is masked to preserve anonymity.
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Keyword extraction. First, we perform super-
vised keyword extraction by training a binary soft-
max classifier to determine whether each word in
the ad’s text is a keyword or not based on its hidden
representation hi. Each training instance therefore
corresponds to a word. We set its class label to
’1’ if its POS tag corresponds to a noun, a verb,
or an adjective, and ’0’ otherwise. Effectively, we
consider a word to be a keyword if it belongs to one
of these three broad syntactic categories. Neverthe-
less, it does not imply that the model will learn all
and only the words belonging to these categories as
keywords. Recall that keyword extraction is trained
(as an auxiliary task) jointly with ad representation
learning in a multi-task setting, so the model’s de-
cision on which words will be keywords is in part
influenced by the ad representation task.

Text encoding. Next, we use the extracted
keyphrases to create a representation of the text
portion of the ad that retains its most important
information via a Keyword-guided Selective Gate
(KSG) mechanism. First, we combine the represen-
tations of the keywords as follows:

s = λ1h1 ⊕ λ2h2 ⊕ . . . λnhn (1)

where λi is the keyword extraction model’s predic-
tion of whether word i is a keyword. Specifically,
λi is 1 if i is a keyword and 0 otherwise. Then
we utilize s to generate a selective signal that mea-
sures how much semantics of each word in the text
should contribute to its context representation:

keyGatei = σ(Wwhi + Wcs) (2)

Based on keyGatei, we filter information of hi:

hi
′

= keyGatei � hi (3)

where � represents element-wise multiplication.
Then we can generate the selective context repre-
sentation of an ad’s text as follows:

h = h1
′ ⊕ h2

′ ⊕ . . .hn
′

(4)

Using the keywords-guided selective gate mecha-
nism, keywords will contribute more semantics to
the context representation. For example, the words
“Spark” and “Wrist” are more valuable than “Your”
and “Forever” in the text shown in Figure 2.

3.3 Semantic-enhanced Region Extraction

To extract image region features, existing works
resort to pre-trained object detection models and
keep the top k extracted region features based on
the confidence scores that measure how likely the
object belongs to the fixed set of categories. How-
ever, ad images usually contain a large portion of
irrelevant objects that could mislead our ad similar-
ity matching procedure. Without considering the
internal context, it is highly likely that the bracelet
in the image in Figure 2 will be ignored as it only
occupies only a small number of pixels.

In light of this weakness, we propose to improve
image region extraction in this subsection by con-
sidering the interaction between ad texts and im-
ages. Specifically, we use the semantics extracted
from the texts to re-weigh image regions so that the
object regions related to the promoted products will
be given larger weights. For example, the bracelet
in the image in Figure 2 will have larger weights
based on the semantics of “Spark” and “Wrist”.

We implement this idea as follows. First, we
extract the top k1 candidate image regions with the
highest confidence scores generated by YOLOv3,
and feed the extracted region features to a single-
layer feed-forward network (FFN) as follows:

vi = FFNr(ri) (5)

where vi ∈ Rdmodel . To re-weigh regions, we pro-
pose a Semantic Clue Attention (SCA) mechanism,
where we use the selective context representation
derived in the previous subsection as supervisory
signals to give each region a semantic relevance
score. Specifically, we attend to the top k1 regions
{v1, ...,vk1} with respect to h:

αj = σ(Wvvj + Woh), j ∈ [1, k1] (6)

where αj is the "semantic relevance" score between
the j-th region and the key information of the text.
Using the relevance value αj , we re-sort the ini-
tial top k1 regions provided by YOLOv3 and take
the top k2 region features as the final fine-grained
visual features to represent an image.

3.4 Dual-path Fusion Attention Layer

Next we fuse the information extracted from an
ad’s text and image. The input modalities may
contain non-informative or misleading information.
To address this issue as well as fuse modalities,
we propose a Dual-path Fusion Attention (DFA) to
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generate an ad’s multimodal representation. First,
we use each modality to refine the features of the
other modality based on the confidence of its own
inputs. Specifically, the features of one modality
are attended to the other as follows:

βij = hi
′T
Wfvj , i ∈ [1, n], j ∈ [1, k2] (7)

To refine the features from text, the semantic fea-
tures are calculated by weighted sum as follows:

ṽj =
n∑

i=1

exp(βij)∑n
b=1 exp(βbj)

hi
′

(8)

where ṽj is the refined feature based on vj . Con-
versely, the refined image features are computed as:

h̃i =

k2∑
j=1

exp(βij)∑k2
b=1 exp(βib)

vj (9)

where h̃i is the refined features based on hi. Then
the refined and original features are fed to a fully-
connected layer combined with max-pooling to
decide which information should be passed.

ĥi = FFNh([hi
′
; h̃i]), (10)

v̂j = FFNv([vj ; ṽj ]) (11)

where [; ] denotes the concatenation operation. ĥi

and v̂j are fine-grained fusion features. Finally,
max-pooling is applied to retain globally useful
information: h̆ = max(ĥ1, ĥ2, . . . ĥn) and v̆ =
max(v̂1, v̂2, . . . v̂k2), which are then concatenated
to generate the multimodal representation of an ad:

f = FFNf ([h̆; v̆]), (12)

By construction, f contains fine-grained multi-
modal information.

3.5 Training
To learn ad representations, we utilize triplet
loss (Schroff et al., 2015) as the loss function.
Given an ad t and its embedding ft, we constrain
it through ‖ft‖2 = 1 and ensure that each ad ft
is closer to all other ads fg promoting the same
product category (positive) than it is to any ad fu
promoting different product categories (negative).
The total loss is calculated as follows:

L =
∑

∀(ft,fg ,fu)∈T

[
γ − ‖ft − fg‖22 + ‖ft − fu‖22

]
+

(13)

Dataset Train Validation Test
MP 9413/350 1000/180 3613/390
MS-COCO 16625/60 2375/60 6211/80

Table 1: Dataset statistics of samples/categories. There
are 40 and 20 categories in the MP and MS-COCO test sets
that are not seen in training and validation.

where γ is a hyper parameter and T is the set
of all possible triplets. Given all labeled ads, we
need to calculate all possible triplets, which is com-
putationally expensive. To ensure fast coverage,
we choose to learn from the hardest triplets only.
Specifically, we take an online strategy to gener-
ate triplets from a mini-batch. For each ad in a
mini-batch, we obtain the hardest positive sample,
ĝ = arg maxg 6=t ‖ft − fg‖22, and the hardest nega-
tive sample, û = arg minu ‖ft − fu‖22. The final
loss is calculated as:

L =

l∑
t=1

[
γ − ‖ft − fĝ‖22 + ‖ft − fû‖22

]
+

(14)

where l is the total number of training samples.
Recall that our model jointly learns keyword ex-

traction and ad representations. To learn keyword
extraction, we leverage the cross-entropy loss. The
overall loss is the weighted sum of the two tasks.

4 Evaluation

The goals of our evaluation are two-fold. First,
we evaluate ION’s effectiveness in retrieving ads.
Second, we evaluate its ability to improve user
targeting in real-world application scenarios.

4.1 Datasets
We employ two datasets for evaluation.

MP is a proprietary Chinese ad dataset owned
by Tencent. Each ad comprises text and an image.
The portion of the dataset that we use contains
14026 ads with 390 product categories. A portion
of the test set is composed of ads belonging to 40
product categories that do not appear in the training
or validation sets. This will allow us to evaluate
our model’s ability to generalize to new product
categories.

MS-COCO (Chen et al., 2015) is a large public
text-image matching dataset. Though it is not an ad
dataset, we use it because (1) there is currently no
public dataset for retrieving ads of the same prod-
uct category, (2) each sample has text, image and
object categories, which is similar to ad samples,
and (3) existing multimodal datasets collected for
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Figure 3: Results on MP.
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Figure 4: Results on MS-COCO.

specific tasks, such as visual question answering,
multimodal sarcasm, are not consistent with our
experimental setup. We only retain samples that
belong to one object category. There are 25211
samples with 80 labels. As in MP, a portion of our
test set in MS-COCO is composed of ads belonging
to 20 categories that do not appear in the training
or validation sets. Statistics on these datasets are
shown in Table 1.

4.2 Implementation Details

We exploit jieba to segment Chinese ad text in MP.
The input image size is 416×416×3 and dmodel is
128. Other parameters are tuned using grid search.
The Transformer we use contains 4 multi-head lay-
ers and the head number in each layer is 4. For
region detection, we use pretrained YOLOv3 and
take outputs of the last layer as region features. k1
and k2 are 20 and 10. For training, γ in the loss
function is 0.2 for MP and 0.3 for MS-COCO. In
our model’s loss function, we set the weight of the
ad representation learning task to 1 and that of the
keyword extraction task to 0.05. The Adam opti-
mizer with learning rate e−3 is used. All models
are trained on Tesla V100 with 32GB memory for
30 epochs with batch size 32, and the best epoch
based on the validation loss is selected for testing.
We use each sample s in the test set to query all
other samples in the test set to obtain the top k
ads that are most similar to s, where the distance
between two ads is the Euclidean distance between
their ad representations as learned by our model.
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Figure 5: Ablation results on MP and MS-COCO.
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In real application scenarios, it is useless to recall
all possible candidates and the top results are more
than adequate, so we employ Hit P@k (precision
within the top k results) as our evaluation metric.

4.3 Baseline Systems
We compare ION with five baselines that include
text-only, image-only and multimodal methods.
The text baseline is BERT (Devlin et al., 2019),
which has achieved prominent performance in
many language processing tasks. We weigh-sum
the last layer of BERT’s output as the text repre-
sentation. As the image baseline, we employ the
most commonly used Inceptionv3 (Szegedy et al.,
2016), which is pretrained on the ImageNet dataset.
As multimodal baselines, we employ D&R (Xu
et al., 2020) and MCAM (Abavisani et al., 2020),
which are the state-of-the-art multimodal networks
of their respective tasks. Furthermore, we com-
pare with the multimodal pre-trained model ViL-
BERT (Lu et al., 2019), which has achieved im-
pressive performance in numerous text-image tasks.
The baselines’ parameter settings are the same as
those reported in their respective papers.

4.4 Results and Discussion
Figure 3(1) and Figure 4(1) show the results of ION
and our baselines on the portion of the test sets in
MP and MS-COCO where the product categories
are seen during training. We present these results
in the form of a graph where HIT P@k is plotted
against k (the number of ads retrieved). As can
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k1 k2 P@1 P@5 P@10

20

1 0.7197 0.6240 0.5712
5 0.7349 0.6336 0.5788

10 0.7427 0.6443 0.5864
15 0.7421 0.6431 0.5845
20 0.7393 0.6393 0.5823

10 10 0.7396 0.6436 0.5846
30 0.7384 0.6356 0.5791

Table 2: ION performance with different k1, k2 pairs.

be seen, ION achieves the best results, obtaining
a 74.8% HIT P@1 on MP and a 85.6% on MS-
COCO. The image-only baseline performs worse
than the text-only baseline because images contain
a lot of background noise. Our multimodal base-
lines, R&D and MCAM, outperform the image-
only baseline by a large margin. These results
demonstrate the necessity of considering both texts
and images. Nevertheless, the multimodal base-
lines extract coarse-grained features from images
without considering the local correlations between
modalities and fail to curb the bad influence of un-
related pixels. As a result, they perform worse than
ION. It is worth noting that BERT and ViLBERT
have benefitted from large corpora for pre-training
and thus outperform both multimodal baselines.

Next, to verify ION’s generalization capability,
we compare ION with our baselines on the portion
of the test sets in MP and MS-COCO where the
product categories are not seen during training. As
shown in Figure 3(2) and Figure 4(2), ION outper-
forms all baselines, which demonstrates the better
generalization of our model.

4.5 Additional Experiments with ION

Ablation experiments. We perform three abla-
tion experiments to verify the effectiveness of each
component in ION. First, we ablate Keyword-
guided Selective Gate (KSG) (Section 3.2) sim-
ply by taking the representation from Transformer
as the word representation. We denote this as
w/o KSG. Next, to ablate Semantic Clue Atten-
tion (SCA) (Section 3.3), we retain the top k2
regions based on YOLOv3 scores instead of re-
ranking the detected regions. We denote this as w/o
SCA. Finally, we ablate Dual-path Fusion (DFA)
(Section 3.4) by replacing it with global concate-
nation fusion. Specifically, we apply max-pooling
over the text representations and the image repre-
sentations, and then concatenate them to create the
fusion representation. We denote this as w/o DFA.
Moreover, we have an experiment where we ablate
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Custom-tailored Overcoat, this Winter no Cold

Figure 8: Example of image region re-weighting.

all three mechanisms. We denote this as w/o all.
Ablation results are shown in Figure 5. As can
be seen, removing any of them negatively impacts
model performance.

Effect of encoder size. How will the results dif-
fer if a larger/smaller Transformer is used? As
shown in Figure 6, ION with a larger Transformer
(8 layers and 8 heads) or a smaller Transformer
(1 layer and 1 head) both exhibit a deterioration
in performance. The reason is that Large Trans-
former needs more data to learn better, while Small
Transformer may not be able to encode everything
needed to perform well. We also replace Trans-
former with BERT. While pre-training BERT opti-
mizes ION, it considerably increases inference time
and leads to low efficiency. To achieve high preci-
sion and efficiency, a smaller Transformer encoder
would therefore suffice. Our model can complete
the inference of 1 million ads in 3.8 hours using a
single-machine system, which meets the require-
ment of real scenarios.

Impact of regions. We evaluate the ION perfor-
mance with different settings of k1, k2 pair in de-
tecting image regions on MP. We vary k1 within
{10, 20, 30} by fixing k2 to 10 and k2 within {1,
5, 10, 15, 20} by fixing k1 to 20. As shown in
Table 2, ION works best with k1=20 and k2=10.
The small k2 results in insufficient visual features,
and the large k2 shows weakness on the grounds of
background noise. k1 has a similar impact on ION
performance.
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Impact of multi-task learning. We analyze how
the two tasks affect the learning process by varying
the keyword extraction’s weight in the total loss.
We set the keyword extraction weight ρ to 0, 0.05,
0.1, and 0.2. As shown in Figure 7, ION performs
worse as ρ increases since a larger ρ produces more
bias to the auxiliary task and results in insufficient
training for the main task. Considering the ρ=0
results, we can see that learning to extract keyword
improves ION.

Impact of γ. We also analyze how the triplet
loss margin parameter γ impacts ION. As shown in
Figure 7, ION achieves the best result with γ=0.2.

4.6 Qualitative Analyses

An example. We begin this subsection by illus-
trating how ION works via an example. Specif-
ically, we visualize the region detection perfor-
mance with and without SCA in Figure 8, which
shows the top 3 regions and their scores before
(left) and after (right) semantic based re-weighting.
It is clear that using text as clues gives larger scores
to product related regions and decreases those cor-
responding to background noise.

Error analysis. To gain insights into why ION
offers superior performance to ViLBERT, we ran-
domly select 100 samples from the test set for
which the similar ads are recalled incorrectly by
ViLBERT and correctly by ION and analyze these
samples. We found that ViLBERT typically ex-
tracts regions that have obvious object features,
specifically objects that take up a major portion of
an image, but the extracted regions are unrelated to
the ad product. In contrast, ION was able to focus
on product related regions. For example, ViLBERT
incorrectly recalls a sofa ad for a jeans ad. The rea-
son is that a model who is dressed in jeans is sitting
on a sofa in the jeans ad, and ViLBERT treats the
jeans ad as a sofa ad because the sofa has more ob-
vious object features. In contrast, guided by textual
information, ION successfully recognizes jeans.
Another example involves a watch ad. ViLBERT
incorrectly recalls a coat ad because the models
wearing the coat/watch occupy a large portion of
the images and are similar to each other, whereas
ION avoids this problem by paying attention to the
fine-grained region occupied by the product.

It is interesting to note that not all test samples
that are correctly classified by ViLBERT are also
correctly classified by ION. To better understand

how ViLBERT is better than ION, we randomly se-
lected another 500 samples in the test set for which
ViLBERT was correct but ION was wrong. We
found that ION has a bias towards image shape
features, which means that ION prefers to recall
ads with similar product shapes. As mentioned be-
fore, ION focuses on product-related regions. If
the shapes of two products are similar, ION would
assume the corresponding ads are similar. For ex-
ample, ION incorrectly recalls pen ads for lipstick
ads because the shape of pens and that of lipsticks
are both cylindrical. In contrast, ViLBERT does
not have this bias.

4.7 Experiments on User Targeting
To verify ION’s ability to improve user targeting
models (i.e., whether the idea of augmenting posi-
tive instances using users clicking on ads with the
same category works in real scenarios), we conduct
offline and simulation user targeting experiments.

The offline experiment. In this experiment, we
assemble a dataset for evaluating ION as follows.
We select from a database an initial ad package and
collect the clicking users over a certain period of
time P . These clicking users constitute the posi-
tive instances in the dataset. To get the negative
instances, we randomly sample from I , the set of
impression users (users who have seen the initial ad
package). To avoid a skewed class distribution, we
maintain a positive to negative ratio of 1:3, which
is the standard in the ad industry. We then reserve
10% of the users in this dataset for testing (and call
this test set T ), and use the remaining 90% to train a
user targeting model, which we call Minitial. Next,
to evaluate how effective ION is, we use ION to
find the 10 ads that most likely belong to the same
category as the initial ad package and use the click-
ing users of these 10 ads to augment the positive
training set used to train Minitial. Given this aug-
mented set of positive training instances, we also
augment the negative instances by randomly sam-
pling from I until the desired ratio of 1:3 is reached.
Finally, we use this augmented set of positive and
negative training instances to train a user targeting
model, which we will denote as Mexpanded. We
evaluate Minitial and Mexpanded on T . Figure 9
depicts this experimental procedure.

The simulation experiment. In the simulation
experiment, the test set is constructed by collecting
user clicks in real world. Specifically, we collect
over a certain period of time P ′, which would be
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Figure 9: Procedure for conducting the user targeting experiments.

sometime after time period P , the set of impression
users I ′ in P ′ who click on the initial ad package
during P ′ and denote the resulting set of users as
Uclick. Note that Uclick is the set of ground-truth
clicking users. We then use Minitial to retrieve
the targeted users of the initial ad package from I ′

and denote the resulting set of users as Upred. We
compute the Clickthrough Rate (CTR) as Upred ∩
Uclick divided by Upred. Note that a larger CTR
value implies that a user targeting model is better
at recalling potential clicking users. We similarly
user Mexpanded to retrieve the targeted users and
compute its CTR.

User targeting model. We employ XG-
Boost (Chen and Guestrin, 2016) to train our user
targeting model. XGBoost provides a regularizing
gradient boosting framework that is commonly
used to train models to predict click-through rates.
The inputs are the features of an user and the output
is 0/1 denoting click/non-click the ad package. In
our experiments, we use 57 user features, such as
property status, geographic location, and education
level, which are encoded as one-hot vectors. We
employ CART as the base classifier. The max
depth of CART is set to 6, the learning rate is 0.1,
and the number of gradient boosted trees is 550.

Dataset. As our dataset, we collect eight ad pack-
ages with low click-through rates (i.e., rates be-
tween 0.2% and 0.9%). Before augmentation by
ION, there are on average 3305 positive users (i.e.,
users who clicked ad packages) per package. After
augmentation, there are on average 59037 positive
users per package.

Results. Table 3 shows the average performance
obtained by repeating the offline and simulation
experiment 8 times with 8 ad packages. Compared
with Minitial, all Mexpanded yield increases in the
CTR value, thus demonstrating that augmenting

Offline Simulation
Model AUC CTR(‰)
Initial 0.75498 7.355
Bert 0.79237 11.01
Inception 0.76569 8.72
D&R 0.78943 10.713
MCAM 0.79498 11.941
ViLBERT 0.80583 12.191
ION 0.81413 13.177

Table 3: Results of offline and simulation experiments.

positive instances with user clicking data from the
same category works in real scenarios. Importantly,
ION achieves a greater degree of improvement on
AUC and CTR than the baselines do, which should
not be surprising as it is more accurate in determin-
ing which ads belong to the same category.

5 Conclusions

We proposed to alleviate the insufficient positive in-
stance problem associated with the training of user
targeting models by retrieving ads for the same
product category as that of the ad package under
consideration via a novel bimodal model, ION, and
then using their clicking users for data augmen-
tation. Results on two datasets showed that ION
can effectively retrieve ads belonging to the same
category and improve a user targeting model.
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