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Abstract

Nested Named Entity Recognition (NNER)
has been extensively studied, aiming to iden-
tify all nested entities from potential spans
(i.e., one or more continuous tokens). How-
ever, recent studies for NNER either focus
on tedious tagging schemas or utilize com-
plex structures, which fail to learn effective
span representations from the input sentence
with highly nested entities. Intuitively, ex-
plicit span representations will contribute to
NNER due to the rich context information
they contain. In this study, we propose
a Hierarchical Transformer (HiTRANS) net-
work for the NNER task, which decomposes
the input sentence into multi-grained spans
and enhances the representation learning in a
hierarchical manner. Specifically, we first uti-
lize a two-phase module to generate span rep-
resentations by aggregating context informa-
tion based on a bottom-up and top-down trans-
former network. Then a label prediction layer
is designed to recognize nested entities hi-
erarchically, which naturally explores seman-
tic dependencies among different spans. Ex-
periments on GENIA, ACE-2004, ACE-2005
and NNE datasets demonstrate that our pro-
posed method achieves much better perfor-
mance than the state-of-the-art approaches.

1 Introduction

Named entity recognition (NER) is an essential
task in the research of natural language processing,
which aims to detect and classify text spans into
corresponding semantic categories, e.g., Person
(PER), Organization (ORG), and Location (LOC),
from a chunk of text. Most existing studies focus
on flat NER, i.e., without nested entities, by se-
quence labeling methods (Yang et al., 2020; Yoon
et al., 2019). However, named entities are generally
nested with each other in the real world (Finkel
and Manning, 2009). For example, in Figure 1, the
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Figure 1: An example of nested named entities. The
short entities with red labels are nested in long entities
with blue labels, respectively, in a hierarchical manner.

entity “St. Louis” with Label “CITY” is nested in
“St. Louis Cardinals” with Label “SPORTSTEAM”.
This poses a major technical challenge to the pre-
vious methods and thus a more robust model for
nested NER (NNER) is urgently desirable.

Previous literature for NNER can be roughly
categorized into three types: 1) hypergraph-
based models focus on designing a complex hy-
pergraph structure to obtain an expressive tag-
ging schema (Straková et al., 2019; Katiyar and
Cardie, 2018; Lu and Roth, 2015), which are
time-consuming when encountering ambiguous
schemas; 2) span-based models tend to detect can-
didate spans from an input sentence first, and then
train a classifier to predict entity categories (Luo
and Zhao, 2020; Zheng et al., 2019). However,
it is hard to get a complete meaning of the sen-
tence because each text span contains only a part
of the semantics, and errors may propagate to the
prediction stage if the span boundary is divided
incorrectly at the first stage; and 3) layered-based
models are proposed to utilize layered structures
to deal with NNER based on the divide and con-
quer strategy (Jue et al., 2020; Xia et al., 2019; Ju
et al., 2018). However, it merely breaks down the
complex problem into several smaller subtasks and
pays little attention to the hierarchical representa-
tion learning for multi-grained named entities.

To this end, we propose a novel hierarchical
transformer network (HiTRANS) to recognize more
named entities (either nested or not) for a given sen-
tence, where we capture the dependencies of adja-
cent candidate spans and utilizes an attention mech-
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anism to enhance the representation of text spans.
More specifically, the input of our proposed method
combines character-level, word-level, and sentence-
level representations, which are obtained by three
embedding networks, respectively. We then pro-
pose a two-phase span generation model (SGM)
on top of the multi-level representations, which
hierarchically aggregates adjacent spans based on
transformer mechanism at each layer. The SGM
includes a bottom-up and a top-down structure to
enhance the representation learning of each candi-
date span which is finally fed into a label prediction
layer to assign an entity class for the span. As a re-
sult, nested entities are comprehensively contained
in the candidate spans and the representation learn-
ing is further enhanced based on both multi-level
embedding and the hierarchical transformer mech-
anisms. Experimental results on FOUR datasets
demonstrate that HiTRANS establishes new state-
of-the-art performances, which verifies the effec-
tiveness of our proposed framework. The main
contributions of this work are as follows:

• We propose a novel hierarchical transformer
framework (HiTRANS) for NNER, which
is superior in modeling the nested relations
among multi-grained named entities and learn-
ing more effective representations.

• Entity representation learning is formulated
as a two-phase span generation, which aggre-
gates context information of adjacent spans
in a bottom-up and top-down manner respec-
tively. The span representation is enhanced by
multi-level features and context information.

• The overall superiority of our HiTRANS is
validated across four benchmarks comparing
with state-of-the-art methods. Visualization
and case study conducted on top of the out-
puts from each layer further shows an in-depth
understanding of our method.

2 Related Work

We briefly review some prior works closely related
to ours from three perspectives: hypergraph-based,
span-based, and layered-based approaches.

Hypergraph-based approaches obtain expressive
tagging schemas for NNER (Lu and Roth, 2015;
Wang and Lu, 2018). However, the hypergraph
requires specific modules designed to prevent the
spurious structure of hypergraphs. Muis and Lu

(2017) introduced mention separators to facilitate
multi-graph representation. Katiyar and Cardie
(2018) further improved the result using features ex-
tracted from a recurrent neural network. Recently,
Straková et al. (2019) proposed two competitive
neural networks using a linearized scheme. How-
ever, more expressive and unambiguous schemas
will inevitably cause higher time complexity.

Span-based methods achieve promising results
for NNER (Tan et al., 2020; Zheng et al., 2019;
Sohrab and Miwa, 2018), which explicitly enumer-
ate all possible spans from input sentences, which
will be fed into a classifier for category prediction
based on multitask learning. Lin et al. (2019) pro-
posed a sequence-to-nuggets architecture to recog-
nize nested entities with semantic central words. Li
et al. (2020) extracted answer spans from a passage
through a given question. Luo and Zhao (2020)
proposed a novel bipartite flat-graph network to
learn the dependencies of inner spans. But most
of these methods generally break input sequences
into fragments, leading to inferior semantics.

Layered-based models are recently proposed,
e.g., Finkel and Manning (2009) constructed a syn-
tactic constituency tree to transform each sentence
into a tree,Wang et al. (2018) proposed a transition-
based model by mapping a sentence with nested
mentions to a designated forest, Fisher and Vlachos
(2019) and Ju et al. (2018) dynamically stacked
multiple flat NER layers from inside to outside,
Shibuya and Hovy (2020) introduced a decoding
method that iteratively recognizes entities in an
outside-to-inside way, Jue et al. (2020) and Xia
et al. (2019) utilized a layered model to recursively
identify named entity candidates based on a hi-
erarchical structure, which is suitable for NNER.
However, few of them emphasize on learning more
effective span representations, failing to recognize
nested named entities in more complex sentences.

The core idea of our work is inspired to en-
hance representation learning for more complex
sentences. We propose to leverage the representa-
tion power of transformer based on a hierarchical
structure for improving NNER. Particularly, pre-
trained word embeddings such as GloVe (Penning-
ton et al., 2014), and pre-trained sentence-level
embedding such as BERT (Devlin et al., 2019) and
ALBERT (Lan et al., 2020) have proven to be ef-
fective to NER. In this paper, we will apply both
kinds of embeddings besides character embeddings
to further improve the performance.
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Figure 2: An overview of our HiTRANS model. (a) The character-level embedding (CL-EMB), word-level em-
bedding (WL-EMB), and sentence-level embedding (SL-EMB) are concatenated for better representations. (b)
There are two phases in span generation model (SGM) network, which iteratively generate span representations
for each layer by merging adjacent spans in a bottom-up and a top-down manner, respectively. “P” denotes the
padding when employing CNN and the outputs “*t spans" denote the representations of candidate spans at each
layer, where ! is set to 6 in the above example. (c) During hierarchical label prediction (HLP), the same labeling
network, e.g., !4, is employed in each layer. (d) Output entities. Different layers are displayed in different colors.

3 Our Proposed Method

Prior hypergraph-based and span-based methods
for NNER suffer from ambiguous schemas or
errors propagation in complex sentences, thus
layered-based models are proposed to decompose
the problem into several smaller subtasks. How-
ever, for NNER, learning effective representations
and modeling inter-entity dependencies is still a
substantial challenge. In this study, we hypothesis
that nested entities in the same context are comple-
mentary and the text representation at multi-level
could improve NNER.

Given an input sentence S is composed of a
sequence of words, i.e., S = {F1, F2, . . . , F |S |},
where |S| denotes the number of words. For the
NNER task, each word F8 is associated with mul-
tiple BIO2-format 1 labels Y8 = {Y1

8
,Y2

8
, . . . ,Y!

8
},

where ! denotes the maximum nesting depth. Note
that if ! = 1, a word F8 is associated with one cate-
gorical label, which is regarded as flat NER. There-
fore, we formulate NNER as a multi-layer predic-
tion problem. Specifically, the topmost layer is
processed as flat NER, and other layers merely us-
ing �−{2;0BB} and$ labels to recognize complete
entities from text spans. For each layer, it modeled
as sequence labeling, that is, 5 ; : e1e2 · · · e) →

1B-, I-, 0 indicate the beginning, intermediate, and outer
position of an entity, respectively, and 2;0BB indicates a cat-
egorical label takes from a pre-defined tag set, e.g., Person,
Location, or Organization.

H1H2 · · · H) , where ei indicates the representation
of a text span (i.e., one or more continuous words)
iteratively generated from the previous layer, )
indicates the number of spans in the ;-th layer
(1 ≤ ; ≤ !).

In the following subsections, we will introduce
our proposed HiTRANS, which consists of three
parts: Multi-level Representation, Span Generation
Model, and Hierarchical Label Prediction. Figure
2 gives an overview of our framework.

3.1 Multi-level Representation
To better capture the semantic information of a
sentence, we learn token representations from mul-
tiple levels, e.g., character level, word level, and
sentence level. As Figure 2 (a) shows, given a
sentence composed of a sequence of words S =

{F1, F2, . . . , F |S |} and 28 9 denotes the 9-th char-
acter within the 8-th word F8 . For the 8-th word, the
multi-level representation is represented as follows:

x8 = [x28 ; xF8 ; xB8 ] (1)

where x2
8

denotes the character-level representa-
tion within F8 . As each word can be regarded as a
character sequence, randomly initialized character
embeddings are encoded by a bidirectional LSTM
layer (Zheng et al., 2019) to capture sequential fea-
tures in the context, then we use the last hidden
state as x2

8
. xF
8

denotes the word-level representa-
tion obtained from GloVe (Pennington et al., 2014)
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for the 8-th word F8; and xB
8

denotes the sentence-
level representation obtained from pretrained lan-
guage model, e.g., BERT and ALBERT. And [; ]
denotes concatenation. Furthermore, a dense layer
is applied to reduce the embedding dimension, i.e.,
x8 → e8. Thus, we can obtain the span representa-
tion in the ;-th layer as Hl = {e1, e2, ..., eT}, where
) is the span number.

In order to learn more effective span repre-
sentations in Figure 2 (b), we further adapt the
multi-head attention mechanism from Transformer
(Vaswani et al., 2017) in each layer of HiTRANS, as
illustrated in Figure 3. Specifically, in the ;-th layer,
HiTRANS first transforms the multi-level represen-
tation Hl into multiple subspaces with different
linear projections:

Qℎ,Kℎ,Vℎ = H;W&

ℎ
,H;W 

ℎ ,H
;W+

ℎ (2)

where {Qℎ,Kℎ,Vℎ} are respectively the query,
key, and value representations with trainable pa-
rameters {W&

ℎ
,W 

ℎ
,W+

ℎ
} corresponding to the ℎ-

th head. Then, the attention functions are applied
to refine the span representations.

Hl
ℎ = softmax(

QhKh
)

√
3ℎ
)Vℎ (3)

where Hl
ℎ

is the ℎ-th head with 3ℎ as the dimension.
Furthermore, we concatenate the output representa-
tions of all these heads with the residual connection
to capture global semantic information in parallel,
which is as follows:

H; = [H;
1; H;

2; . . . ; H;
=]W$ +H; (4)

where H; ∈ ℝT×=3ℎ is the final span representation
in the ;-th layer, = is the number of parallel heads,
and W$ is a trainable parameter. For example, H1

indicates the refined span representations for the
first layer at Phase 1 of Figure 2 (b).

3.2 Span Generation Model
To extract nested entities from nested-structure sen-
tences, we design a hierarchical span generation
model (SGM) consisting of two phases to generate
candidate spans for the NNER, as shown in Figure
2 (b). Specifically, the two phases are composed of
! layers that respectively generate candidate spans
in a Bottom-Up and Top-Down manner (i.e., BU-
SGM and TD-SGM) in sequence. In each layer
of SGM, a convolution neural network (CNN) is
firstly utilized to aggregate two adjacent spans for

Figure 3: Detailed structure of candidate span genera-
tion for Layer 4. (a) the refined span representations
from Layer 3 at Phase 1; (b) the refined the representa-
tions from Layer 5 at Phase 2.

the next layer which generates all possible flat en-
tities as candidates for further prediction. Then a
multi-head attention layer is utilized to enhance
the representation learning of each candidate. The
details of each component will be described below.

BU-SGM. The core idea of BU-SGM network
is to generate feature vectors for candidate spans
by recursively stacking convolutional neural net-
works from the bottom layer to the top layer as
shown at Phase 1 of SGM in Figure 2 (b). Specif-
ically, the generated span representations in the
first layer correspond to 1-token entities. As for
higher layers, a CNN with a kernel size of 2 is
iteratively applied to generate continuous ;-token
span representations from the (; − 1)-th layer in a
bottom-up manner, which avoids breaking the con-
secutive context. The span representations in the
;-th layer can be obtained in a bottom-up manner:

Ĥl =

{
f(H;) , ; = 1
f(Conv(Ĥl−1)) , 1 < ; ≤ !

(5)

where f(·) indicates the shorthand of Equation (4),
H; denotes the refined multi-level representation
obtained from the first layer, and Ĥl denotes span
representations in Layer ; generated iteratively
from Layer ;−1. It is noted that stacking CNN will
lead to the length reduced by 1 in each layer. Be-
sides, a ReLU and Norm layer is applied to obtain
the final span representations.

TD-SGM. In the opposite direction, as long
entities at higher-layer are closely related to short
entities at lower-layer in the same context, high-
level features can contribute to identifying entities
in lower layers by providing additional background
information, which is complementary with low-
level features. Therefore, TD-SGM network aims
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to propagate the higher-layer information to lower
layers in a top-down manner, which is initialized
by 0 and guided with the output from the corre-
sponding layer of Phase 1. Specifically, the span
representations generated at Phase 2 is iteratively
obtained by stacking CNNs (with a kernel size of 2)
with proper zero-paddings in a top-down manner.
For example, as Figure 2 (b) shows, the span repre-
sentations in Layer 4 at Phase 2, i.e.{e′1, e

′
2, e

′
3}, are

generated from the span representations in Layer 5,
i.e., {0, e′1, e

′
2, 0}, which are obtained by concate-

nating the span representations in Layer 5 at Phase
1 and Phase 2, and then padding with zeros. Simi-
larly, the span representations in the ;-th layer can
be generated in a top-down manner as follows:

Ȟ; =

{
f( [0; Ĥ;]) , ; = !
f(Conv

′ ( [Ȟ;+1; Ĥ;+1])) , 1 ≤ ; < !
(6)

where Ȟ; denotes span representations in Layer ;
generated from Layer ; + 1, 0 denotes zero tensor
for initializing the top-layer representation.

3.3 Hierarchical Label Prediction

To recognize named entities from candidate spans,
a hierarchical label prediction (HLP) network is
introduced, as shown in Layer 4, Figure 2 (c). First,
the outputs of Phase 1 and Phase 2 are concate-
nated as the final candidate span representations
to combine bidirectional features into a global in-
formative representation. Formally, the final span
representations in the ;-th layer are as follows:

H; = [Ĥl; Ȟ;] (7)

As BiLSTM networks can make full use of the
context information at a higher level, we employ
a BiLSTM and a linear layer to predict labels for
candidate spans in a hierarchical manner. As we
have obtained complete candidate spans, e.g., {1-
token spans, 2-token spans, ..., !-token spans},
based on the attention weights in the SGM module,
we can easily classify them into a proper category.
The predicted labels for the span representations in
the ;-th layer is obtained as follows:

H; = BiLSTM(H;U1 + b1) (8)

Y; = argmax(H;U2 + b2) (9)

where U1,U2, b1, and b2 are trainable parameters,
Y; is the predicted labels of the ;-th layer. The total
output of the L layers is Y = {Y1,Y2, ...,YL}.

3.4 Model Training
We prepare the gold labels in a hierarchical manner,
therefore, each layer of the proposed model could
be simplified as a multi-class classification task in
any layer of bottom ! − 1 layers and a flat NER
task in the topmost layer. During training, our
model predicts the distribution of entity semantic
labels for each layer. Finally, we compute the cross-
entropy loss as follows:

L = −
∑
(Ŷ;) log(Y;) (10)

where Ŷ; and Y; denote the true distribution and
predicted distribution of entity semantic labels, re-
spectively. L is the summation of the loss from
all layers. Our complete training procedure for
HiTRANS is shown in Algorithm 1.

Algorithm 1 Pseudocode of HiTRANS.
Input: A sequence of words S = {F1, F2, . . . , F |S |};

The number of layers ! (; ∈ !)
Output: Entity labels of L layers Y = {Y1,Y2, ...,YL}.
1: for numbers of training iterations do
2: Multi-level Embedding x8 = [x28 ; xF

8
; xB
8
]

3: Attention-refined representation for the ;−th layer
using Equation (2) and (3)

4: initializing Ĥ1 ← Equation (4)
[Span Generation]

5: for ;:=1 to ! step 1 do
6: BU-SGM: Ĥl ← Equation (5)
7: for ;:=L to 1 step 1 do
8: TD-SGM: Ȟl ← Equation (6)

[Hierarchical Label Prediction]
9: for ;:=1 to ! step 1 do

10: H; = [Ĥl; Ȟ;]
11: H; ← BiLSTM by Equation (8)
12: Y; ← Equation (9)
13: end for
14: return Entity labels Y

4 Experiments

4.1 Datasets and Baseline Methods
To verify the effectiveness of HiTRANS, we con-
duct our experiments on four NNER datasets: GE-
NIA (Kim et al., 2003), ACE-2004 (Doddington
et al., 2004), ACE-2005 (Walker et al., 2006), and
NNE (Ringland et al., 2019). We adopt the prepro-
cess of (Finkel and Manning, 2009) and (Lu and
Roth, 2015). For GENIA, we use GENIA v3.0.2
corpus to construct the dataset and split it into
81%:9%:10% for training, development, and test-
ing, respectively. For ACE-2004 and ACE-2005,
we split the Train/Develop/Test set following the
preprocess as previous studies (Lu and Roth, 2015;
Zheng et al., 2019; Jue et al., 2020). For NNE, we
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Item GENIA ACE-2005 NNE ACE-2004

Train Develop Test Train Develop Test Train Develop Test Train Develop Test

Total sentences 15022 1669 1855 6198 742 809 7285 968 1058 43457 1989 3762
Nested sentences 3222 328 448 2718 294 388 2797 352 339 28606 1292 2489

Total entities 47006 4461 5596 22195 2514 3034 24700 3218 3029 248136 10463 21196
Nested entities 8382 818 1212 10157 1092 1417 9946 1191 1179 206618 8487 17670
Max length 20 20 15 57 35 42 49 31 27 16 15 15
Percentage 18% 18% 22% 46% 43% 47% 40% 37% 39% 83% 81% 83%

Table 1: The statistics of datasets. A nested sentence denotes the sentence containing any nested entity.

Model GENIA ACE-2004 ACE-2005 NNE
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Revisited (Katiyar and Cardie, 2018) 79.80 68.20 73.60 73.60 71.80 72.70 70.60 70.40 70.50 - - -
Linearization (Straková et al., 2019) - - 76.40 - - 77.10 - - 75.40 - - -
Exhaustive (Sohrab and Miwa, 2018) 93.20 64.00 77.10 70.40 62.50 66.20 75.20 58.00 65.50 - - -
Boundary-aware (Zheng et al., 2019) 74.00 76.10 75.00 74.40 74.10 74.20 76.40 71.20 73.70 89.10 89.30 89.20
Sequence2nuggets (Lin et al., 2019) 75.80 73.90 74.80 - - - 76.20 73.60 74.90 - - -
Boundary-enhanced (Tan et al., 2020) 78.90 72.70 75.70 78.10 72.80 75.30 77.10 74.20 75.60 - - -
BiFlaG (Luo and Zhao, 2020) 77.40 74.60 76.00 - - - 75.00 75.20 75.10 - - -
Layered (Ju et al., 2018) 78.50 71.30 74.70 - - - 74.20 70.30 72.20 - - -
Second-best (Shibuya and Hovy, 2020) 76.30 74.70 75.50 - - - 83.00 82.40 82.70 - - -
Multi-grained (Xia et al., 2019) - - - 81.70 77.40 79.50 79.00 77.30 78.20 - - -
Merge (Fisher and Vlachos, 2019) - - 76.44 - - 77.08 - - 75.36 - - -
Pyramid (Jue et al., 2020) 78.60 77.02 77.78 81.14 79.42 80.27 80.01 78.85 79.42 93.44 93.95 93.70

Merge (Fisher and Vlachos, 2019) - - 78.20 - - 84.33 - - 83.42 - - -
MRC (Li et al., 2020) 78.56 73.94 76.18 87.39 86.09 86.73 86.90 86.50 86.70 - - -
Boundary-enhanced (Tan et al., 2020) 79.20 77.40 78.30 85.80 84.80 85.30 83.80 83.90 83.90 - - -
Pyramid (Jue et al., 2020) - - - 87.71 87.78 87.74 85.30 87.40 86.34 94.30 95.07 94.68

HiTRANS 78.57 79.59 79.08 88.10 87.57 87.88 86.48 87.62 87.04 94.62 94.85 94.74

Table 2: Experiment results on the test set of four benchmarks compared to the state-of-the-art methods. Methods
listed in the lower part of the table are based on the pretrained language model.

use the original dataset split and pre-processing.
There are 5/7/7/114 different entity types in GE-
NIA, ACE-2004, ACE-2005, and NNE datasets,
respectively. For evaluation, we employ micro-
averaged precision (P), recall (R), and F1. Table 1
lists the concerned data statistics of each dataset.

We comprehensively compare our proposed
model with the state-of-the-art baselines, which
could be categorized into three groups as follows:

• Hypergraph-based methods: These obtain
expressive tagging schemas for NER, includ-
ing Revisited Model (Katiyar and Cardie,
2018), and Linearization model (Straková
et al., 2019).

• Span-based methods: They achieve a decent
performance by enumerating possible regions
of an input sequence for classification, in-
cluding Exhaustive Model (Sohrab and Miwa,
2018), Boundary-aware (Zheng et al., 2019),
Sequence2nuggets (Lin et al., 2019), MRC (Li
et al., 2020), Boundary-enhanced (Tan et al.,
2020), and BiFlaG (Luo and Zhao, 2020).

• Layered-based methods: These methods ap-
ply hierarchical structures to iteratively extract

named entities in order, including Layered
Model (Ju et al., 2018), Merge (Fisher and
Vlachos, 2019), Second-best Model (Shibuya
and Hovy, 2020), Multi-grained Model (Xia
et al., 2019), and Pyramid (Jue et al., 2020).

4.2 Experimental Settings
We obtain the character-level representation en-
coded by BiLSTM, and word-level representation
from the 100-dimensional pre-trained word em-
bedding GloVe (Pennington et al., 2014), which
is trained in 6B tokens. For sentence-level em-
beddings, we use the BERT and ALBERT embed-
dings to further improve the NNER. For ACE-2004,
ACE-2005, and NNE datasets, the dimensions of
character-level embedding, word-level embedding,
sentence-level embedding are set by default to 30,
100, and 5120 (1024+4096), respectively. As for
the GENIA dataset, we obtain word embedding
from pretrained embedding Pubmed trained on
biomedical corpus (Chiu et al., 2016), setting the
dimension of word-level embeddings to 200. The
output dimension of the multi-level representation
and the hidden size of bidirection LSTM are set
to 200. The number of parallel heads : is set to 8.
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The number of layers ! is set to 16, which exceeds
the length of most entities and the batch size is
empirically set to 32. We use SGD optimizer for
training our model with learning rate set to 0.02,
and the dropout rate is set to 0.4 to avoid overfitting.
All of our experiments are performed on the same
machine. We repeat these experiments 5 times, and
report the average performance on the test set.

4.3 Results and Analysis
Table 2 shows the overall results compared with the
baseline methods by groups. Overall, hypergraph-
based methods achieve decent results depending on
the expressive tagging schema; however, ambigu-
ity and high time complexity are hardly inevitable.
Span-based methods improve the performance of
NNER; however, they may break the continuous-
structure of the context. To alleviate the problem,
layered-based models further improve the final per-
formance with hierarchical layers, however, span
representations are oversimplified. In addition, the
methods incorporated with the pretrained language
model, e.g., BERT and ALBERT, generally outper-
form previous methods, which take the advantage
of capturing sentence-level features from context.
As shown in Table 1, we can observe that there
are 22%, 47%, 39%, and 83% in the test set of
GENIA, ACE-2004, ACE-2005, and NNE, respec-
tively, which contain nested entities to different de-
grees. Table 2 shows that our proposed HiTRANS

achieves the state-of-the-art results on GENIA 2,
ACE-2004, ACE-2005, and NNE datasets, which
verifies the effectiveness of HiTRANS for NNER.
Besides, HiTRANS outperforms other baselines on
NNE dataset containing 114 categories of entities,
which further validates the superiority in recogniz-
ing nested entities from complex sentences.

From the tendency, span-based methods and
layered-based methods draw more attention than
hypergraph-based methods in recent years, which
probably because they effectively balance the per-
formance and efficiency. In summary, the overall
performance of the HiTRANS demonstrates its su-
periority in NNER, which benefits from the hierar-
chical span representation.

4.4 Ablation Study
As shown in Table 3, we present the experimen-
tal results of our proposed model on ACE-2005.

2We reproduced the results using their implement code (Li
et al., 2020), which only obtains 76.18% F1 score, rather than
83.75% F1 score.

Setting P(%) R(%) F1(%)

without CL-EMB 86.28 87.42 86.85
without WL-EMB 84.80 87.65 86.20
without SL-EMB 80.46 76.76 78.56
without MHA 85.32 87.32 86.31
without Phase 2 85.86 87.19 86.52

HiTRANS 86.48 87.62 87.04

Table 3: Ablation study on ACE-2005. MHA denotes
the multi-head attention.

The multi-level features (i.e., CL-EMB, WL-EMB,
and SL-EMB) obtained from character-level, word-
level, and sentence-level are essential for the final
performance. Particularly, the sentence-level fea-
ture improves the performance by a large margin,
which may because the language model usually
has a large number of parameters to learn a better
representation. Besides, HiTRANS without WL-
EMB has a slight increase in recall, but a decrease
in precision, which indicates that the word-level
feature contributes to select the correct entity from
candidate spans. The residual multi-head attention
(MHA) contributes to the final performance as well,
which could be due to the refined span representa-
tions in each layer. In addition, HiTRANS model
with two phases shows better performance, which
may because phase 2 can further propagate infor-
mation in a top-down manner. We only remove
Phase 2 for ablation studies, since Phase 1 need to
take original multi-level representations as input.
In all, our HiTRANS achieves 87.04% F1 score,
which indicates that all components contribute to
the effectiveness and the whole framework has su-
perior in achieving the overall performance.

Sentence
These problems multiplied when the New

England chain Stop n’ Shop acquired Giant.

Gold Label
New England: [LOC]; the New

England chain: [ORG]; the New England
chain Stop n’ Shop :[ORG]; Giant: [ORG]

Exhaustive
the New England chain Stop n’ Shop :[ORG];

New England chain: [ORG]; Giant: [ORG]

Layered
the New England chain Stop n’ Shop :[ORG];

Giant: [ORG]

Boundary-aware
New England: [LOC]; Giant: [ORG];

the New England chain Stop n’ Shop :[ORG]

Pyramid

the New England chain Stop n’ Shop :[ORG];
the New England chain: [ORG]; New

England chain: [ORG]; New England: [LOC];
n’ Shop :[ORG]; Giant: [ORG];

Our model
Giant: [ORG]; New England: [LOC];

the New England chain: [ORG];
the New England chain Stop n’ Shop :[ORG]

Table 4: A case study of the NNER.



131

Figure 4: The confidences of entities in different layers.

4.5 Case Study and Visualization

Table 4 shows a case study comparing our model
with Exhaustive (Sohrab and Miwa, 2018), Lay-
ered (Ju et al., 2018), Boundary-aware (Zheng
et al., 2019), and Pyramid (Jue et al., 2020) models,
which are more germane and representative. In
this example, there is an entity “the New England
chain Stop n’ shop” containing the entity “the New
England chain", which also has an entity “New
England" nested in it. Our proposed model recog-
nizes all potential entities of different-length in a
fine-to-coarse manner. Exhaustive gets the wrong
token of entity heads and misses the token “the"
in entities, and Layered merely extracts outer enti-
ties. Compared with the Pyramid model detecting
wrong spans, our HiTRANS can extract both inner
and outer entities more precisely in a hierarchical
manner. It demonstrates that HiTRANS contributes
to the performance of NNER, which may due to
the hierarchical transformer refines span represen-
tations in each layer. Furthermore, the hierarchical
label prediction model has the advantage of identi-
fying nested named entities by incorporating both
semantic dependencies.

For in-depth analysis of HiTRANS, we visual-
ize the result of the predictions in each layer with
masking. Owing to space limit, only the first four
layers are shown in Figure 4. From the input sen-
tence, “his” is correctly recognized as entities of
1-token with 0.43 confidence in Layer 1, "Saddam
Hussein" and "his Henchmen" are recognized as
entities of 2-token with 0.29 and 0.31 confidence
in Layer 2, respectively. Likewise, other spans of
;-token in Layer ; ∈ ! are assigned with differ-
ent confidences. In a word, we can observe that
the recognized entities of different lengths are as-
signed with higher confidences than others in each
layer, which contributes to distill truth named enti-
ties from candidate spans and further validates the
effectiveness of our HiTRANS for the NNER.

Figure 5: Parameter sensitivity analysis of HiTRANS.
The out-of-memory problem occurs when the number
of layers is set to 32 (i.e., 25) on the NNE and GENIA
dataset, as shown at the left.

4.6 Parameter Sensitivity Analysis

Two primary parameters, i.e., the number of layers
and batch size, are selected to verify the impact
of parameters on the effectiveness of HiTRANS.
The number of layers denotes how many layers
used in the hierarchical model and the batch size
controls the size of allocated resources. To study
uncertainty in the output of our HiTRANS, we adopt
the single-parameter sensitivity analysis by varying
one parameter while fixing the others each time. As
Figure 5 shows, when the number of layers and the
batch size change, especially when the number of
layers is greater than 4, and the batch size is greater
than 4, HiTRANS still maintains high performance
on these four benchmark datasets. Although the
number of layers is related to the maximum nesting
depth, the results demonstrate that HiTRANS is
not sensitive to parameter settings and has superior
performance and robustness in NNER.

5 Conclusion

This paper presents a novel HiTRANS framework,
which learns effective span representations for la-
bel prediction of nested entities in a hierarchical
manner. The proposed framework iteratively gener-
ates candidate span representations by aggregating
adjacent features and further refines them based
on a bottom-up and top-down transformer network.
Moreover, a candidate span is further recognized
as a named entity sequentially, leveraging the se-
mantic dependency of adjacent spans. Extensive
experimental results demonstrate that HiTRANS

achieves the state-of-the-art performances on GE-
NIA, ACE-2004, ACE-2005 and NNE datasets.
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